6 research outputs found
Mercury or Mercury Free Restorations in Oral Cavity
Amalgam is basically a concoction of metals that has been used as a potent filling material in dentistry for the last 150 years. Amalgam usually consists of silver, mercury, tin and copper. Dental amalgam is a material used to fill cavities of tooth. Over the years, amalgam has become a topic of concern because it contains mercury. Mercury is a naturally occurring metal in the environment. Mercury exists as a liquid in room temperature but when heated, it becomes a gas. Flexibility of amalgam as a filling material is due Mercury. An alloy powder, a compound that is soft in nature when mixed with mercury makes it enough to mix and condense into the tooth. It hardens quickly and offers strong resistance to the forces of biting and chewing. There are studies reported on the safety of amalgam fillings. In 2005, European Union launched a comprehensive mercury strategy to reduce use of mercury. In 2008, countries like Norway and Denmark restricted the use of dental amalgam containing mercury. In 2009, this research was evaluated by U.S. Food and Drug Administration (FDA) and found no rationale to limit the use of amalgam. There are certain restorative materials that are available commercially that are mercury free in nature like Gold, Porcelain, Gallium alloys, Composite resin restoratives etc. They offer many advantages over amalgams containing mercury like: seals the dentin from future decay, reinforces remaining tooth structure, provides smooth and bonded margins, conservative and it blends naturally
A computational strategy for systematic virtual screening of plasmodium falciparum heme detoxification protein inhibitors from the Drugbank database
Antimalarial drug resistance poses one of the greatest threats to malaria treatment, resulting in increased morbidity and mortality. Heme Detoxification Protein (HDP) is among the essential hemoglobinases of P. falciparum (Pf), a vital molecular target for the treatment of malaria. In this study, we utilized the virtual screening workflow tool of the Schrodinger suite to find the best hits for the PfHDP from the DrugBank library. A total of 14,942 compounds were identified against the PfHDP. The top compounds with the highest docking scores and least energy scores were subjected to molecular simulations for 500鈥塶anosecond to check the stability of the protein-drug complexes. The top three DrugBank compounds were found to be stable over 500鈥塶s, namely DB09298 (silibinin), DB07426 (1-Hydroxy-2-(1,1':3',1''-Terphenyl-3-Yloxy) Ethane-1,1-Diyl] Bis (Phosphonic Acid), and DB07410 [(2-(3-Dibenzofuran-4-yl-Phenyl)-1-Hydroxy-1-Phosphono-Ethyl]-Phosphonic Acid). Overall analysis suggests that the top three compounds, DB09298, DB07426, and DB07410, have good stability for 500鈥塶s. Their scaffolds can be used to design and develop new analogs of the target HDP protein. Silibinin, the anti-cancer drug, was found to be highly stable for the entire simulation period as compared to the other compounds. DB07426 shows its therapeutic effect on bones, especially in the treatment of osteoporosis, and DB07410 has anti-tumor, antibacterial, anti-oxidative, and anti-viral activities. All three compounds can be considered for repurposing as antimalarial drugs to evaluate the binding capacity or inhibition potential of these compounds. Further in-vivo and in-vitro analysis against the PfHDP protein should be conducted. Communicated by Ramaswamy H. Sarma</p
Structure and Properties of Nanoparticles Formed by Ion Implantation
This chapter broadly describes the formation, basic microstructure, and fundamental optoelectronic properties of nanocomposites synthesized by ion implantation. It is not meant as a complete literature survey and by no means includes all references on a subject that has seen a considerable amount of research effort in the past 15 years. However, it should be a good starting point for those new to the field and in a concise way summarize the main lines of research by discussing the optical, magnetic, and smart properties of these nanoparticles and the dependence of these properties on the overall microstructure. The chapter concludes with an outlook for the future