50 research outputs found

    Carbamoylated Erythropoietin-Induced Cerebral Blood Perfusion and Vascular Gene Regulation.

    Get PDF
    Cerebral hypoperfusion is associated with enhanced cognitive decline and increased risk of neuropsychiatric disorders. Erythropoietin (EPO) is a neurotrophic factor known to improve cognitive function in preclinical and clinical studies of neurodegenerative and psychiatric disorders. However, the clinical application of EPO is limited due to its erythropoietic activity that can adversely elevate hematocrit in non-anemic populations. Carbamoylated erythropoietin (CEPO), a chemically engineered non-erythropoietic derivative of EPO, does not alter hematocrit and maintains neurotrophic and behavioral effects comparable to EPO. Our study aimed to investigate the role of CEPO in cerebral hemodynamics. Magnetic resonance imaging (MRI) analysis indicated increased blood perfusion in the hippocampal and striatal region without altering tight junction integrity. In vitro and in vivo analyses indicated that hippocampal neurotransmission was unaltered and increased cerebral perfusion was likely due to EDRF, CGRP, and NOS-mediated vasodilation. In vitro analysis using human umbilical vein endothelial cells (HUVEC) and hippocampal vascular gene expression analysis showed CEPO to be a non-angiogenic agent which regulates the MEOX2 gene expression. The results from our study demonstrate a novel role of CEPO in modulating cerebral vasodilation and blood perfusion

    One-step simultaneous liquid phase exfoliation-induced chirality in graphene and their chirality-mediated microRNA delivery

    Get PDF
    Graphene (G) has established itself as an exciting prospect for a broad range of applications owing to its remarkable properties. Recent innovations in chiral nanosystems have led to sensors, drug delivery, catalysis, etc. owing to the stereospecific interactions between various nanosystems and enantiomers. As the molecular structure of G itself is achiral introducing chirality in G by simple attachment of a functional group (a chiral ligand) on the G nanosheet may result in more diverse applications. Herein, we demonstrate direct liquid phase exfoliation and chiral induction in G nanosheets abbreviated as L-graphene and D-graphene in the presence of chiral L-tyrosine and D-tyrosine and by applying high-temperature sonication. The obtained exfoliated nanosheets demonstrated stable chirality confirmed by circular dichroism. Fourier transform infrared (FTIR) spectra, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and differential scanning calorimetry (DSC) showed functional, structural, morphological, surface, and thermal characteristics of L-graphene and D-graphene. The hemo-compatibility of these chiral graphenes was evaluated for the very first time utilizing human red blood cells. Lastly, for the very first time, an attempt was made to explore enantiomeric binding between chiral L-graphene and D-graphene with microRNA (miR-205) and their possibility towards chirality-mediated gene delivery in prostate cancerous cells

    Combined Effect of Disc Coulters and Operational Speeds on Soil Disturbance and Crop Residue Cutting under No-Tillage System in Soil Bin

    Get PDF
    In the present study, a residue cutting system comprising of different disc coulters (plain, notch, curved teeth, cutter bar and star wheel) was developed and its performance was evaluated under no-tillage system in soil bin. The performance of residue cutting system was evaluated by performing a total of 135 experiments (including replications) in soil bin (black cotton soil, moisture content: 16.8–18.4% db and cone index: 1600±100 kPa) using forward speeds of 0.56, 0.83 and 1.11 m∙s−1 under the crop residues of rice (8 t∙ha−1), wheat (8 t∙ha−1) and maize (16 t∙ha−1). The effects of disc coulters and operational speeds on performance parameters viz. penetration depth, top width, soil disturbance and residue cutting were investigated. For all type of disc coulters, penetration depth and top width were found in the range of 5–10 and 0.6–5.7 cm, respectively. The least soil disturbance was observed for star wheel disc coulter under maize residue. The operational speeds of 0.56 and 1.11 m∙s−1 favored lesser soil disturbance. The highest mean residue cutting was observed for star wheel disc coulter (98.15%) followed by notched (84.12%), curved teeth (75.82%), plain (61.82%) and cutter bar blade disc coulter (52.12%). The change in forward speed did not produce significant effect on residue cutting. Star wheel disc coulter was effective in cutting of medium to heavy residue loads of rice, wheat and maize crops along with minimal soil disturbance

    Daksha: On Alert for High Energy Transients

    Full text link
    We present Daksha, a proposed high energy transients mission for the study of electromagnetic counterparts of gravitational wave sources, and gamma ray bursts. Daksha will comprise of two satellites in low earth equatorial orbits, on opposite sides of earth. Each satellite will carry three types of detectors to cover the entire sky in an energy range from 1 keV to >1 MeV. Any transients detected on-board will be announced publicly within minutes of discovery. All photon data will be downloaded in ground station passes to obtain source positions, spectra, and light curves. In addition, Daksha will address a wide range of science cases including monitoring X-ray pulsars, studies of magnetars, solar flares, searches for fast radio burst counterparts, routine monitoring of bright persistent high energy sources, terrestrial gamma-ray flashes, and probing primordial black hole abundances through lensing. In this paper, we discuss the technical capabilities of Daksha, while the detailed science case is discussed in a separate paper.Comment: 9 pages, 3 figures, 1 table. Additional information about the mission is available at https://www.dakshasat.in

    Science with the Daksha High Energy Transients Mission

    Full text link
    We present the science case for the proposed Daksha high energy transients mission. Daksha will comprise of two satellites covering the entire sky from 1~keV to >1>1~MeV. The primary objectives of the mission are to discover and characterize electromagnetic counterparts to gravitational wave source; and to study Gamma Ray Bursts (GRBs). Daksha is a versatile all-sky monitor that can address a wide variety of science cases. With its broadband spectral response, high sensitivity, and continuous all-sky coverage, it will discover fainter and rarer sources than any other existing or proposed mission. Daksha can make key strides in GRB research with polarization studies, prompt soft spectroscopy, and fine time-resolved spectral studies. Daksha will provide continuous monitoring of X-ray pulsars. It will detect magnetar outbursts and high energy counterparts to Fast Radio Bursts. Using Earth occultation to measure source fluxes, the two satellites together will obtain daily flux measurements of bright hard X-ray sources including active galactic nuclei, X-ray binaries, and slow transients like Novae. Correlation studies between the two satellites can be used to probe primordial black holes through lensing. Daksha will have a set of detectors continuously pointing towards the Sun, providing excellent hard X-ray monitoring data. Closer to home, the high sensitivity and time resolution of Daksha can be leveraged for the characterization of Terrestrial Gamma-ray Flashes.Comment: 19 pages, 7 figures. Submitted to ApJ. More details about the mission at https://www.dakshasat.in
    corecore