17 research outputs found

    Replication of hematopoietic stem cell niche

    Full text link
    This thesis models the hematopoietic stem cell (HSC) niche by using decellularized extracellular matrix (ECM) scaffolds prepared by MS-5 cell line. The ECM replicates many of the properties of HSC niches in vivo, providing insights into expansion of HSCs that may have several applications in translational medicine

    Formulation and Evaluation of Herbo-Mineral Facial Scrub

    Get PDF
    The main objective of present study was to prepare a herbo-mineral facial scrub. Majorly facial skin comes in direct contact of dirt, pollution, dust particles and having large number of dead cells. In order to remove the dead cells and make the skin healthy, cleaned and nourished, some facial preparations required. The prepared scrub contains various natural ingredients which are safer for use and having fewer side effects and also they possess antiseptic, anti-infective, antioxidant, anti-aging and humectant properties. The scrub was prepared by using simple mixing method using various ingredients such as poppy seeds, neem extract, tulsi extract, aloe vera gel, almond oil, mixed in carbopol 934, rest of ingredients such as glycerin, triethanolamine, preservatives and perfuming agent were also added to this preparation with homogeneous mixing. The formulated scrub was evaluated for various parameters such as physical appearance, color, texture, odor, pH, viscosity, irritability, washability, homogeneity, extrudability, spreadability and found fruitful results for all the parameter tested. Thus the prepared formulation can be used effectively as it shows good scrubbing properties and it can be used to make a healthy, clean and glowing skin. Keywords: Facial scrub, antiseptic, anti-aging, herbal, poppy seeds etc

    Impact of oxygen levels on human hematopoietic stem and progenitor cell expansion

    Full text link
    Oxygen levels are an important variable during the in vitro culture of stem cells. There has been increasing interest in the use of low oxygen to maximize proliferation and, in some cases, effect differentiation of stem cell populations. It is generally assumed that the defined pO2 in the incubator reflects the pO2 to which the stem cells are being exposed. However, we demonstrate that the pO2 experienced by cells in static culture can change dramatically during the course of culture as cell numbers increase and as the oxygen utilization by cells exceeds the diffusion of oxygen through the media. Dynamic culture (whereby the cell culture plate is in constant motion) largely eliminates this effect, and a combination of low ambient oxygen and dynamic culture results in a fourfold increase in reconstituting capacity of human hematopoietic stem cells compared with those cultured in static culture at ambient oxygen tension. Cells cultured dynamically at 5% oxygen exhibited the best expansion: 30-fold increase by flow cytometry, 120-fold increase by colony assay, and 11% of human CD45 engraftment in the bone marrow of NOD/SCID mice. To our knowledge, this is the first study to compare individual and combined effects of oxygen and static or dynamic culture on hematopoietic ex vivo expansion. Understanding and controlling the effective oxygen tension experienced by cells may be important in clinical stem cell expansion systems, and these results may have relevance to the interpretation of low oxygen culture studies

    Evaluation of an Electricity-free, Culture-based Approach for Detecting Typhoidal Salmonella Bacteremia during Enteric Fever in a High Burden, Resource-limited Setting

    Get PDF
    Background: In many rural areas at risk for enteric fever, there are few data on Salmonella enterica serotypes Typhi (S. Typhi) and Paratyphi (S. Paratyphi) incidence, due to limited laboratory capacity for microbiologic culture. Here, we describe an approach that permits recovery of the causative agents of enteric fever in such settings. This approach involves the use of an electricity-free incubator based upon use of phase-change materials. We compared this against conventional blood culture for detection of typhoidal Salmonella. Methodology/Principal Findings: Three hundred and four patients with undifferentiated fever attending the outpatient and emergency departments of a public hospital in the Kathmandu Valley of Nepal were recruited. Conventional blood culture was compared against an electricity-free culture approach. Blood from 66 (21.7%) patients tested positive for a Gram-negative bacterium by at least one of the two methods. Sixty-five (21.4%) patients tested blood culture positive for S. Typhi (30; 9.9%) or S. Paratyphi A (35; 11.5%). From the 65 individuals with culture-confirmed enteric fever, 55 (84.6%) were identified by the conventional blood culture and 60 (92.3%) were identified by the experimental method. Median time-to-positivity was 2 days for both procedures. The experimental approach was falsely positive due to probable skin contaminants in 2 of 239 individuals (0.8%). The percentages of positive and negative agreement for diagnosis of enteric fever were 90.9% (95% CI: 80.0%–97.0%) and 96.0% (92.7%–98.1%), respectively. After initial incubation, Salmonella isolates could be readily recovered from blood culture bottles maintained at room temperature for six months. Conclusions/Significance: A simple culture approach based upon a phase-change incubator can be used to isolate agents of enteric fever. This approach could be used as a surveillance tool to assess incidence and drug resistance of the etiologic agents of enteric fever in settings without reliable local access to electricity or local diagnostic microbiology laboratories.Boston Children's Hospital (Frederick H. Lovejoy Fund)Harvard Global Health InstituteNational Institute of Allergy and Infectious Diseases (U.S.) (Grant AI100023)National Institute of Allergy and Infectious Diseases (U.S.) (Grant AI077883

    Controlling the effective oxygen tension experienced by cells using a dynamic culture technique for hematopoietic ex vivo expansion

    No full text
    Clinical hematopoietic stem/progenitor cell (HSPC) transplantation outcomes are strongly correlated with the number of cells infused. Hence, to generate sufficient HSPCs for transplantation, the best culture parameters for expansion are critical. It is generally assumed that the defined oxygen (O2) set for the incubator reflects the pericellular O2 to which cells are being exposed. Studies have shown that low O2 tension maintains an undifferentiated state, but the expansion rate may be constrained because of limited diffusion in a static culture system. A combination of low ambient O2 and dynamic culture conditions has been developed to increase the reconstituting capacity of human HSPCs. In this unit, the protocols for serum‐free expansion of HSPCs at 5% and 20% O2 in static and dynamic nutrient flow mode are described. Finally, the impact of O2 tension on HSPC expansion in vitro by flow cytometry and colony forming assays and in vivo through engraftment using a murine model is assesse
    corecore