1,021 research outputs found

    N-P co-limitation of primary production and response of arthropods to N and P in early primary succession on Mount St. Helens Volcano

    Get PDF
    Background: The effect of low nutrient availability on plant-consumer interactions during early succession is poorly understood. The low productivity and complexity of primary successional communities are expected to limit diversity and abundance of arthropods, but few studies have examined arthropod responses to enhanced nutrient supply in this context. We investigated the effects of nitrogen (N) and phosphorus (P) addition on plant productivity and arthropod abundance on 24-yr-old soils at Mount St. Helens volcano. Methodology/Principal Findings:We measured the relative abundance of eight arthropod orders and five families in plots that received N, P, or no nutrients for 3-5 years. We also measured plant % cover, leaf %N, and plant diversity. Vegetation responded rapidly to N addition but showed a lagged response to P that, combined with evidence of increased N fixation, suggested P-limitation to N availability. After 3 yrs of fertilization, orthopterans (primarily Anabrus simplex (Tettigoniidae) and Melanoplus spp (Acrididae)) showed a striking attraction to P addition plots, while no other taxa responded to fertilization. After 5 yrs of fertilization, orthopteran density in the same plots increased 80%-130% with P addition and 40% with N. Using structural equation modeling, we show that in year 3 orthopteran abundance was associated with a P-mediated increase in plant cover (or correlated increases in resource quality), whereas in year 5 orthopteran density was not related to cover, diversity or plant %N, but rather to unmeasured effects of P, such as its influence on other aspects of resource quality. Conclusions/Significance:The marked surprising response to P by orthopterans, combined with a previous observation of P-limitation in lepidopteran herbivores at these sites, suggests that P-mediated effects of food quantity or quality are critical to insect herbivores in this N-P co-limited primary successional system. Our results also support a previous suggestion that the availability of N in these soils is P-limited. © 2010 Bishop et al

    Pre-Diagnosis Oophorectomy, Estrogen Therapy and Mortality in a Cohort of Women Diagnosed with Breast Cancer

    Get PDF
    Introduction: Pre-diagnosis oophorectomy and estrogen therapy could impact mortality due to breast cancer and cardiovascular disease (CVD) among breast cancer survivors. Elective bilateral oophorectomy at the time of hysterectomy for benign conditions is not uncommon among US women. Methods: We examined the association between pre-diagnosis total abdominal hysterectomy with bilateral salpingo-oophorectomy (TAHBSO) and both overall and cause-specific mortality in the Collaborative Breast Cancer Studies cohort. Medical history and prior estrogen use were collected during standardized telephone interviews. Vital status, including date and cause of death, was obtained by linkage with the National Death Index. Multivariate hazard ratios (HR) and 95% confidence intervals (CI) for cause-specific mortality were calculated using Cox proportional hazards regression. Results: Seventeen percent (N = 1,778) of breast cancer survivors (mean age at diagnosis = 63.5) reported pre-diagnosis TAHBSO. During follow-up (mean = 9.5 years), 2,856 deaths occurred, including 1,060 breast cancer deaths and 459 CVD deaths. Breast cancer deaths occurred a median of 5.1 years after diagnosis; CVD deaths occurred further from diagnosis (median = 9.7 years). Women who reported pre-diagnosis TAHBSO had a 16% decrease in all-cause mortality (HR = 0.84; 95% CI: 0.76, 0.92) compared to those with an intact uterus and ovaries. This overall decrease reflected a 27% lower breast cancer mortality among women who never used postmenopausal hormones (HR = 0.73; CI: 0.55, 0.96) and 43% lower CVD risk among women who reported using estrogen (HR = 0.57; CI: 0.39, 0.83) after TAHBSO. Conclusions: Information on prior TAHBSO and estrogen use can inform risk of death from both breast cancer and cardiovascular disease among breast cancer survivors

    No difference between red wine or white wine consumption and breast cancer risk.

    Get PDF
    Epidemiologic studies have reported an increased risk of breast cancer among women who drink alcohol, including wine (1, 2) Two meta-analyses estimated a ∼10% [95% confidence interval (CI), 5-15%] increased risk of breast cancer with each additional 10 grams (∼1 drink) of alcohol/day regardless of beverage type (3, 4). Few studies have evaluated breast cancer risk separately for red and white wine (5-8). There is some evidence of beneficial health effects of red wine from laboratory (9) and epidemiologic studies of heart disease (10) and prostate cancer (11, 12). We evaluated overall alcohol as well as red and white wine consumption to examine beverage-specific effects on breast cancer

    Virginia\u27s Plan for Dual Enrollment

    Get PDF
    [First paragraph] There is a plan where Virginia pays Average Daily Membership (ADM) monies to a school system for a student attending a community college - and the community college collects the Full Time Equivalency (FTE) from the State. Principals must be aware of this dual enrollment plan for secondary students with community colleges approved in September of 1988. This plan provides options for students which were not available before. Dual enrollment allows high school students to accumulate credits for graduation while simultaneously earning college credit. The courses to be offered are to be mutually agreed upon by the school division and the community college

    Genomic epidemiology of Escherichia coli:Antimicrobial resistance through a One Health lens in sympatric humans, livestock and peri-domestic wildlife in Nairobi, Kenya

    Get PDF
    BackgroundLivestock systems have been proposed as a reservoir for antimicrobial-resistant (AMR) bacteria and AMR genetic determinants that may infect or colonise humans, yet quantitative evidence regarding their epidemiological role remains lacking. Here, we used a combination of genomics, epidemiology and ecology to investigate patterns of AMR gene carriage in Escherichia coli, regarded as a sentinel organism.MethodsWe conducted a structured epidemiological survey of 99 households across Nairobi, Kenya, and whole genome sequenced E. coli isolates from 311 human, 606 livestock and 399 wildlife faecal samples. We used statistical models to investigate the prevalence of AMR carriage and characterise AMR gene diversity and structure of AMR genes in different host populations across the city. We also investigated household-level risk factors for the exchange of AMR genes between sympatric humans and livestock.ResultsWe detected 56 unique acquired genes along with 13 point mutations present in variable proportions in human and animal isolates, known to confer resistance to nine antibiotic classes. We find that AMR gene community composition is not associated with host species, but AMR genes were frequently co-located, potentially enabling the acquisition and dispersal of multi-drug resistance in a single step. We find that whilst keeping livestock had no influence on human AMR gene carriage, the potential for AMR transmission across human-livestock interfaces is greatest when manure is poorly disposed of and in larger households.ConclusionsFindings of widespread carriage of AMR bacteria in human and animal populations, including in long-distance wildlife species, in community settings highlight the value of evidence-based surveillance to address antimicrobial resistance on a global scale. Our genomic analysis provided an in-depth understanding of AMR determinants at the interfaces of One Health sectors that will inform AMR prevention and control

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio

    Amyloid angiopathy of the floor of the mouth: a case report and review of the literature

    Get PDF
    Amyloidosis is a rare disease characterised by the deposition of insoluble extracellular fibrillar proteins in various tissues of the body. The pattern of manifestation is organ dependent and also on whether the disease is localised or systemic, primary or secondary

    A novel East African monopartite begomovirus-betasatellite complex that infects Vernonia amygdalina

    Get PDF
    The complete genomes of a monopartite begomovirus (genus Begomovirus, family Geminiviridae) and an associated betasatellite found infecting Vernonia amygdalina Delile (family Compositae) in Uganda were cloned and sequenced. Begomoviruses isolated from two samples showed the highest nucleotide sequence identity (73.1% and 73.2%) to an isolate of the monopartite begomovirus tomato leaf curl Vietnam virus, and betasatellites from the same samples exhibited the highest nucleotide sequence identity (67.1% and 68.2%) to vernonia yellow vein Fujian betasatellite. Following the current taxonomic criteria for begomovirus species demarcation, the isolates sequenced here represent a novel begomovirus species. Based on symptoms observed in the field, we propose the name vernonia crinkle virus (VeCrV) for this novel begomovirus and vernonia crinkle betasatellite (VeCrB) for the associated betasatellite. This is the first report of a monopartite begomovirus-betasatellite complex from Uganda
    • …
    corecore