3,153 research outputs found

    Discovery of a tight correlation between pulse lag/luminosity and jet-break times: a connection between gamma-ray burst and afterglow properties

    Get PDF
    A correlation is presented between the pulse lag and the jet-break time for seven BATSE gamma-ray bursts with known redshifts. This is, to our best knowledge, the first known direct tight correlation between a property of the gamma-ray burst phase (the pulse lag) and the afterglow phase (the jet-break time). As pulse lag and luminosity have been found to be correlated this also represents a correlation between peak luminosity and jet-break time. Observed timescales (variability or spectral lags) as well as peak luminosity naturally have a strong dependence on the Lorentz factor of the outflow and so we propose that much of the variety among GRBs has a purely kinematic origin (the speed or direction of the outflow). We explore a model in which the variation among GRBs is due to a variation in jet-opening angles, and find that the narrowest jets have the fastest outflows. We also explore models in which the jets have similar morphology and size, and the variation among bursts is caused by variation in viewing angle and/or due to a velocity profile. The relations between luminosity, variability, spectral lag and jet-break time can be qualitatively understood from models in which the Lorentz factor decreases as a function of angle from the jet axis. One expects to see high luminosities, short pulse lags and high variability as well as an early jet-break time for bursts viewed on axis, while higher viewing inclinations will yield lower luminosities, longer pulse lags, smoother bursts and later jet-break times.Comment: 10 pages, 3 figures, accepted to ApJ (new version contains minor changes

    Reaction rate calculation by parallel path swapping

    Full text link
    The efficiency of path sampling simulations can be improved considerably using the approach of path swapping. For this purpose, we have devised a new algorithmic procedure based on the transition interface sampling technique. In the same spirit of parallel tempering, paths between different ensembles are swapped, but the role of temperature is here played by the interface position. We have tested the method on the denaturation transition of DNA using the Peyrard-Bishop-Dauxois model. We find that the new algorithm gives a reduction of the computational cost by a factor 20.Comment: 5 pages, 3 figure

    The crystal and molecular structure of Hydridotetrakis(diethyl phenylphosphonite)cobalt(I)

    Get PDF
    An X-ray structure determination of the title compound shows that the co-ordination about the cobalt atom is approximately trigonal bipyramidal; n.m.r. data indicate that the complex is non-rigid in solution

    Design of digital games in health sciences education

    Get PDF
    No Abstrac

    The ammonoids from the Three Forks Shale (Late Devonian) of Montana

    Get PDF

    Multi-camera Realtime 3D Tracking of Multiple Flying Animals

    Full text link
    Automated tracking of animal movement allows analyses that would not otherwise be possible by providing great quantities of data. The additional capability of tracking in realtime - with minimal latency - opens up the experimental possibility of manipulating sensory feedback, thus allowing detailed explorations of the neural basis for control of behavior. Here we describe a new system capable of tracking the position and body orientation of animals such as flies and birds. The system operates with less than 40 msec latency and can track multiple animals simultaneously. To achieve these results, a multi target tracking algorithm was developed based on the Extended Kalman Filter and the Nearest Neighbor Standard Filter data association algorithm. In one implementation, an eleven camera system is capable of tracking three flies simultaneously at 60 frames per second using a gigabit network of nine standard Intel Pentium 4 and Core 2 Duo computers. This manuscript presents the rationale and details of the algorithms employed and shows three implementations of the system. An experiment was performed using the tracking system to measure the effect of visual contrast on the flight speed of Drosophila melanogaster. At low contrasts, speed is more variable and faster on average than at high contrasts. Thus, the system is already a useful tool to study the neurobiology and behavior of freely flying animals. If combined with other techniques, such as `virtual reality'-type computer graphics or genetic manipulation, the tracking system would offer a powerful new way to investigate the biology of flying animals.Comment: pdfTeX using libpoppler 3.141592-1.40.3-2.2 (Web2C 7.5.6), 18 pages with 9 figure

    Dynamics of a two-level system coupled with a quantum oscillator in the very strong coupling limit

    Full text link
    The time-dependent behavior of a two-level system interacting with a quantum oscillator system is analyzed in the case of a coupling larger than both the energy separation between the two levels and the energy of quantum oscillator (Ω<ω<λ\Omega < \omega < \lambda , where Ω\Omega is the frequency of the transition between the two levels, ω\omega is the frequency of the oscillator, and λ\lambda is the coupling between the two-level system and the oscillator). Our calculations show that the amplitude of the expectation value of the oscillator coordinate decreases as the two-level system undergoes the transition from one level to the other, while the transfer probability between the levels is staircase-like. This behavior is explained by the interplay between the adiabatic and the non-adiabatic regimes encountered during the dynamics with the system acting as a quantum counterpart of the Landau-Zener model. The transition between the two levels occurs as long as the expectation value of the oscillator coordinate is driven close to zero. On the contrary, if the initial conditions are set such that the expectation values of the oscillator coordinate are far from zero, the system will remain locked on one level.Comment: 4 pages, 4 figures, to be published in Physical Review
    • …
    corecore