1,237 research outputs found

    Femtosecond Time-Bin Entangled Qubits for Quantum Communication

    Full text link
    We create pairs of non-degenerate time-bin entangled photons at telecom wavelengths with ultra-short pump pulses. Entanglement is shown by performing Bell kind tests of the Franson type with visibilities of up to 91%. As time-bin entanglement can easily be protected from decoherence as encountered in optical fibers, this experiment opens the road for complex quantum communication protocols over long distances. We also investigate the creation of more than one photon pair in a laser pulse and present a simple tool to quantify the probability of such events to happen.Comment: 6 pages, 7 figure

    Two independent photon pairs versus four-photon entangled states in parametric down conversion

    Full text link
    We study the physics of four-photon states generated in spontaneous parametric down-conversion with a pulsed pump field. In the limit where the coherence time of the photons t_c is much shorter than the duration of the pump pulse Delta t, the four photons can be described as two independent pairs. In the opposite limit, the four photons are in a four-particle entangled state. Any intermediate case can be characterized by a single parameter chi, which is a function of t_c/Delta t. We present a direct measurement of chi through a simple experimental setup. The full theoretical analysis is also provided.Comment: 10 pages, 3 figures, submitte

    Quantum Cryptography using entangled photons in energy-time Bell states

    Full text link
    We present a setup for quantum cryptography based on photon pairs in energy-time Bell states and show its feasability in a laboratory experiment. Our scheme combines the advantages of using photon pairs instead of faint laser pulses and the possibility to preserve energy-time entanglement over long distances. Moreover, using 4-dimensional energy-time states, no fast random change of bases is required in our setup : Nature itself decides whether to measure in the energy or in the time base.Comment: 4 pages including 2 figure

    Pulsed energy-time entangled twin-photon source for quantum communication

    Full text link
    A pulsed source of energy-time entangled photon pairs pumped by a standard laser diode is proposed and demonstrated. The basic states can be distinguished by their time of arrival. This greatly simplifies the realization of 2-photon quantum cryptography, Bell state analyzers, quantum teleportation, dense coding, entanglement swapping, GHZ-states sources, etc. Moreover the entanglement is well protected during photon propagation in telecom optical fibers, opening the door to few-photon applications of quantum communication over long distances.Comment: 8 pages, 4 figure

    Spectrally compensated sum-frequency mixing scheme for generation of broadband radiation at 193 nm

    Get PDF
    A dispersively compensated scheme for sum-frequency mixing of broadband ultrashort laser pulses is reported. An increase of the bandwidth of the sum-frequency mixing process by 12 times compared with the noncompensated bandwidth of the given crystal has been demonstrated. Mixing radiation at 266 and 707 nm in a 1-mm-thick beta-barium metaborate crystal by using the compensated scheme results in an output bandwidth of 0.6 nm at 193 nm, which corresponds to a minimum output pulse duration of 90 fs

    Ultrahigh-brightness, femtosecond ArF excimer laser system

    Get PDF
    An ultrahigh-brightness ArF excimer laser system is described that is capable of generating pulse energies of 60 mJ with a pulse duration of ~700 fs. The system utilizes a newly developed seed pulse generation scheme based on spectrally compensated sum-frequency mixing in beta-barium metaborate (BBO), and a double-pass discharge pumped ArF excimer preamplifier followed by an electron beam pumped power amplifier

    Femtosecond gain characteristics of the discharge-pumped ArF excimer amplifier

    Get PDF
    The gain characteristics of a discharge-pumped ArF excimer amplifier are measured with ~700-fs-long pulses. The small-signal gain and saturation energy are found to be 0.17 cm-1 and 3.65 ± 0.15 mJ/cm2, respectively. The maximum output energy density extracted from the deeply saturated amplifier is as much as 10 mJ/cm2. The demonstrated femtosecond gain characteristics of ArF indicate that, by utilizing sufficiently high seed pulse energies, the ArF excimer laser is expected to show a performance similar to a femtosecond high-brightness KrF excimer laser system

    An arbitrated quantum signature scheme

    Get PDF
    The general principle for a quantum signature scheme is proposed and investigated based on ideas from classical signature schemes and quantum cryptography. The suggested algorithm is implemented by a symmetrical quantum key cryptosystem and Greenberger-Horne-Zeilinger (GHZ) triplet states and relies on the availability of an arbitrator. We can guarantee the unconditional security of the algorithm, mostly due to the correlation of the GHZ triplet states and the use of quantum one-time pads.Comment: 10 pages, no figures. Phys. Rev. A 65, (In press
    • …
    corecore