21 research outputs found

    Variational inference for latent variables and uncertain inputs in Gaussian processes

    Get PDF
    The Gaussian process latent variable model (GP-LVM) provides a flexible approach for non-linear dimensionality reduction that has been widely applied. However, the current approach for training GP-LVMs is based on maximum likelihood, where the latent projection variables are maximised over rather than integrated out. In this paper we present a Bayesian method for training GP-LVMs by introducing a non-standard variational inference framework that allows to approximately integrate out the latent variables and subsequently train a GP-LVM by maximising an analytic lower bound on the exact marginal likelihood. We apply this method for learning a GP-LVM from i.i.d. observations and for learning non-linear dynamical systems where the observations are temporally correlated. We show that a benefit of the variational Bayesian procedure is its robustness to overfitting and its ability to automatically select the dimensionality of the non-linear latent space. The resulting framework is generic, flexible and easy to extend for other purposes, such as Gaussian process regression with uncertain or partially missing inputs. We demonstrate our method on synthetic data and standard machine learning benchmarks, as well as challenging real world datasets, including high resolution video data.This research was partially funded by the European research project EU FP7-ICT (Project Ref 612139 \WYSIWYD"), the Greek State Scholarships Foundation (IKY) and the University of She eld Moody endowment fund. We also thank Colin Litster and \Fit Fur Life" for allowing us to use their video les as datasets

    Entropy-based adaptive Hamiltonian Monte Carlo

    Get PDF
    Hamiltonian Monte Carlo (HMC) is a popular Markov Chain Monte Carlo (MCMC) algorithm to sample from an unnormalized probability distribution. A leapfrog integrator is commonly used to implement HMC in practice, but its performance can be sensitive to the choice of mass matrix used therein. We develop a gradient-based algorithm that allows for the adaptation of the mass matrix by encouraging the leapfrog integrator to have high acceptance rates while also exploring all dimensions jointly. In contrast to previous work that adapt the hyperparameters of HMC using some form of expected squared jumping distance, the adaptation strategy suggested here aims to increase sampling efficiency by maximizing an approximation of the proposal entropy. We illustrate that using multiple gradients in the HMC proposal can be beneficial compared to a single gradient-step in Metropolis-adjusted Langevin proposals. Empirical evidence suggests that the adaptation method can outperform different versions of HMC schemes by adjusting the mass matrix to the geometry of the target distribution and by providing some control on the integration time

    Entropy-based adaptive Hamiltonian Monte Carlo

    Get PDF
    Hamiltonian Monte Carlo (HMC) is a popular Markov Chain Monte Carlo (MCMC) algorithm to sample from an unnormalized probability distribution. A leapfrog integrator is commonly used to implement HMC in practice, but its performance can be sensitive to the choice of mass matrix used therein. We develop a gradient-based algorithm that allows for the adaptation of the mass matrix by encouraging the leapfrog integrator to have high acceptance rates while also exploring all dimensions jointly. In contrast to previous work that adapt the hyperparameters of HMC using some form of expected squared jumping distance, the adaptation strategy suggested here aims to increase sampling efficiency by maximizing an approximation of the proposal entropy. We illustrate that using multiple gradients in the HMC proposal can be beneficial compared to a single gradient-step in Metropolis-adjusted Langevin proposals. Empirical evidence suggests that the adaptation method can outperform different versions of HMC schemes by adjusting the mass matrix to the geometry of the target distribution and by providing some control on the integration time

    Unbiased Implicit Variational Inference

    No full text
    We develop unbiased implicit variational inference (UIVI), a method that expands the applicability of variational inference by defining an expressive variational family. UIVI considers an implicit variational distribution obtained in a hierarchical manner using a simple reparameterizable distribution whose variational parameters are defined by arbitrarily flexible deep neural networks. Unlike previous works, UIVI directly optimizes the evidence lower bound (ELBO) rather than an approximation to the ELBO. We demonstrate UIVI on several models, including Bayesian multinomial logistic regression and variational autoencoders, and show that UIVI achieves both tighter ELBO and better predictive performance than existing approaches at a similar computational cost

    A Contrastive Divergence for Combining Variational Inference and MCMC

    No full text
    We develop a method to combine Markov chain Monte Carlo (MCMC) and variational inference (VI), leveraging the advantages of both inference approaches. Specifically, we improve the variational distribution by running a few MCMC steps. To make inference tractable, we introduce the variational contrastive divergence (VCD), a new divergence that replaces the standard Kullback-Leibler (KL) divergence used in VI. The VCD captures a notion of discrepancy between the initial variational distribution and its improved version (obtained after running the MCMC steps), and it converges asymptotically to the symmetrized KL divergence between the variational distribution and the posterior of interest. The VCD objective can be optimized efficiently with respect to the variational parameters via stochastic optimization. We show experimentally that optimizing the VCD leads to better predictive performance on two latent variable models: logistic matrix factorization and variational autoencoders (VAEs)

    Variance reduction for Metropolis–Hastings samplers

    No full text
    AbstractWe introduce a general framework that constructs estimators with reduced variance for random walk Metropolis and Metropolis-adjusted Langevin algorithms. The resulting estimators require negligible computational cost and are derived in a post-process manner utilising all proposal values of the Metropolis algorithms. Variance reduction is achieved by producing control variates through the approximate solution of the Poisson equation associated with the target density of the Markov chain. The proposed method is based on approximating the target density with a Gaussian and then utilising accurate solutions of the Poisson equation for the Gaussian case. This leads to an estimator that uses two key elements: (1) a control variate from the Poisson equation that contains an intractable expectation under the proposal distribution, (2) a second control variate to reduce the variance of a Monte Carlo estimate of this latter intractable expectation. Simulated data examples are used to illustrate the impressive variance reduction achieved in the Gaussian target case and the corresponding effect when target Gaussianity assumption is violated. Real data examples on Bayesian logistic regression and stochastic volatility models verify that considerable variance reduction is achieved with negligible extra computational cost.</jats:p

    Overdispersed black-box variational inference

    No full text
    We introduce overdispersed black-box variational inference, a method to reduce the variance of the Monte Carlo estimator of the gradient in black-box variational inference. Instead of taking samples from the variational distribution, we use importance sampling to take samples from an overdispersed distribution in the same exponential family as the variational approximation. Our approach is general since it can be readily applied to any exponential family distribution, which is the typical choice for the variational approximation. We run experiments on two non-conjugate probabilistic models to show that our method effectively reduces the variance, and the overhead introduced by the computation of the proposal parameters and the importance weights is negligible. We find that our overdispersed importance sampling scheme provides lower variance than black-box variational inference, even when the latter uses twice the number of samples. This results in faster convergence of the black-box inference procedure

    The generalized reparameterization gradient

    No full text
    The reparameterization gradient has become a widely used method to obtain Monte Carlo gradients to optimize the variational objective. However, this technique does not easily apply to commonly used distributions such as beta or gamma without further approximations, and most practical applications of the reparameterization gradient fit Gaussian distributions. In this paper, we introduce the generalized repa-rameterization gradient, a method that extends the reparameterization gradient to a wider class of variational distributions. Generalized reparameterizations use invert-ible transformations of the latent variables which lead to transformed distributions that weakly depend on the variational parameters. This results in new Monte Carlo gradients that combine reparameterization gradients and score function gradients. We demonstrate our approach on variational inference for two complex probabilistic models. The generalized reparameterization is effective: even a single sample from the variational distribution is enough to obtain a low-variance gradient

    An empirical analysis of the relationship between UK speculative assets and business conditions

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DX192603 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore