76 research outputs found

    New Insights into the Role of Macrophages in Adipose Tissue Inflammation and Fatty Liver Disease: Modulation by Endogenous Omega-3 Fatty Acid-Derived Lipid Mediators

    Get PDF
    Obesity is causally linked to a chronic state of “low-grade” inflammation in adipose tissue. Prolonged, unremitting inflammation in this tissue has a direct impact on insulin-sensitive tissues (i.e., liver) and its timely resolution is a critical step toward reducing the prevalence of related co-morbidities such as insulin resistance and non-alcoholic fatty liver disease. This article describes the current state-of-the-art knowledge and novel insights into the role of macrophages in adipose tissue inflammation, with special emphasis on the progressive changes in macrophage polarization observed over the course of obesity. In addition, this article extends the discussion to the contribution of Kupffer cells, the liver resident macrophages, to metabolic liver disease. Special attention is given to the modulation of macrophage responses by omega-3-PUFAs, and more importantly by resolvins, which are potent anti-inflammatory and pro-resolving autacoids generated from docosahexaenoic and eicosapentaenoic acids. In fact, resolvins have been shown to work as endogenous “stop signals” in inflamed adipose tissue and to return this tissue to homeostasis by inducing a phenotypic switch in macrophage polarization toward a pro-resolving phenotype. Collectively, this article offers new views on the role of macrophages in metabolic disease and their modulation by endogenously generated omega-3-PUFA-derived lipid mediators

    Addressing Profiles of Systemic Inflammation Across the Different Clinical Phenotypes of Acutely Decompensated Cirrhosis

    Get PDF
    ACLF; Acute decompensation; CirrhosisInsuficiencia hepática aguda sobre crónica; Descompensación aguda; CirrosisInsuficiència hepàtica aguda sobre crònica; Descompensació aguda; CirrosiBackground: Patients with acutely decompensated cirrhosis (AD) may or may not develop acute-on-chronic liver failure (ACLF). ACLF is characterized by high-grade systemic inflammation, organ failures (OF) and high short-term mortality. Although patients with AD cirrhosis exhibit distinct clinical phenotypes at baseline, they have low short-term mortality, unless ACLF develops during follow-up. Because little is known about the association of profile of systemic inflammation with clinical phenotypes of patients with AD cirrhosis, we aimed to investigate a battery of markers of systemic inflammation in these patients. Methods: Upon hospital admission baseline plasma levels of 15 markers (cytokines, chemokines, and oxidized albumin) were measured in 40 healthy controls, 39 compensated cirrhosis, 342 AD cirrhosis, and 161 ACLF. According to EASL-CLIF criteria, AD cirrhosis was divided into three distinct clinical phenotypes (AD-1: Creatinine<1.5, no HE, no OF; AD-2: creatinine 1.5-2, and or HE grade I/II, no OF; AD-3: Creatinine<1.5, no HE, non-renal OF). Results: Most markers were slightly abnormal in compensated cirrhosis, but markedly increased in AD. Patients with ACLF exhibited the largest number of abnormal markers, indicating "full-blown" systemic inflammation (all markers). AD-patients exhibited distinct systemic inflammation profiles across three different clinical phenotypes. In each phenotype, activation of systemic inflammation was only partial (30% of the markers). Mortality related to each clinical AD-phenotype was significantly lower than mortality associated with ACLF (p < 0.0001 by gray test). Among AD-patients baseline systemic inflammation (especially IL-8, IL-6, IL-1ra, HNA2 independently associated) was more intense in those who had poor 28-day outcomes (ACLF, death) than those who did not experience these outcomes. Conclusions: Although AD-patients exhibit distinct profiles of systemic inflammation depending on their clinical phenotypes, all these patients have only partial activation of systemic inflammation. However, those with the most extended baseline systemic inflammation had the highest the risk of ACLF development and death

    Resolution of inflammation in obesity-induced liver disease

    Get PDF
    Low-grade inflammation in adipose tissue is recognized as a critical event in the development of obesity-related co-morbidities. This chronic inflammation is powerfully augmented through the infiltration of macrophages, which together with adipocytes, perpetuate a vicious cycle of inflammatory cell recruitment and secretion of free fatty acids and deleterious adipokines that predispose to greater incidence of metabolic complications. In the last decade, many factors have been identified to contribute to mounting unresolved inflammation in obese adipose tissue. Among them, pro-inflammatory lipid mediators (i.e., leukotrienes) derived from the omega-6 polyunsaturated arachidonic acid have been shown to play a prominent role. Of note, the same lipid mediators that initially trigger the inflammatory response also signal its termination by stimulating the formation of anti-inflammatory signals. Resolvins and protectins derived from the omega-3 polyunsaturated docosahexaenoic and eicosapentaenoic acids have emerged as a representative family of this novel class of autacoids with dual anti-inflammatory and pro-resolving properties that act as “stop-signals” of the inflammatory response. This review discusses the participation of these endogenous autacoids in the resolution of adipose tissue inflammation, with a special emphasis in the amelioration of obesity-related metabolic dysfunctions, namely insulin resistance and non-alcoholic fatty liver disease

    Impact of primary NO2 emissions at different urban sites exceeding the European NO2 standard limit

    Get PDF
    A large part of the European population is still exposed to ambient nitrogen dioxide (NO2) levels exceeding the European Union (EU) air quality standards, being a key challenge to reduce NO2 concentrations across many European urban areas, particularly close to roads. In this work, a trend analysis of pollutants involved in NO2 processes was done for the period 2003–2014 in traffic sites fromthree Spanish cities (Barcelona,Madrid and Granada) that still exceed the European NO2 air quality standard limits. We also estimated the contributions of primary NO2 emissions and photo-chemically formed NO2 to the observed ambient NO2 concentrations in order to explore their possible role in the observedNO2 concentration trends. TheNOx andNOconcentrations at these traffic sites showed significant decreasing trends during the period 2003–2014, especially at Barcelona (BARTR) andMadrid (MADTR) traffic stations. The NO2 concentrations showed statistically significant downward trends at BARTR and MADTR and remained unchanged at Granada traffic station (GRATR) during the study period. Despite the significant decrease in NO2 concentrations in BCNTR and MADTR during the analysed period, the NO2 concentrations observed over these sites still above the annual NO2 standard limit of 40 μg m−3 and, therefore, more efficient measures are still needed. Primary NO2 emissions significantly influence NO2 concentrations at the three analysed sites. However, as no drastic changes are expected in the after-exhaust treatment technology that can reduce primary NO2 emissions to zero in the near future, only a substantial reduction in NOx emissions will help to comply with the NO2 European air quality standards. Reduction of 78%, 56% and 16% on NOx emissions in Barcelona,Madrid and Granada were estimated to be necessary to comply with the NO2 annual limit of 40 μg m−3

    Coordinate Functional Regulation between Microsomal Prostaglandin E Synthase-1 (mPGES-1) and Peroxisome Proliferator-activated Receptor y (PPARy) in the Conversion of White-to-brown Adipocytes

    Get PDF
    Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor and a master regulator of adipogenesis. Microsomal prostaglandin E (PGE) synthase-1 (mPGES-1) is an inducible enzyme that couples with cyclooxygenase-2 for the biosynthesis of PGE2. In this study we demonstrate the existence of a coordinate functional interaction between PPARγ and mPGES-1 in controlling the process of pre-adipocyte differentiation in white adipose tissue (WAT). Adipocyte-specific PPARγ knock-out mice carrying an aP2 promoter-driven Cre recombinase transgene showed a blunted response to the adipogenic effects of a high fat diet. Pre-adipocytes from these knock-out mice showed loss of PPARγ and were resistant to rosiglitazone-induced WAT differentiation. In parallel, WAT from these mice showed increased expression of uncoupling protein 1, a mitochondrial enzyme that dissipates chemical energy as heat. Adipose tissue from mice lacking PPARγ also showed mPGES-1 up-regulation and increased PGE2 levels. In turn, PGE2 suppressed PPARγ expression and blocked rosiglitazone-induced pre-adipocyte differentiation toward white adipocytes while directly elevating uncoupling protein 1 expression and pre-adipocyte differentiation into mature beige/brite adipocytes. Consistently, pharmacological mPGES-1 inhibition directed pre-adipocyte differentiation toward white adipocytes while suppressing differentiation into beige/brite adipocytes. This browning effect was reproduced in knockdown experiments using a siRNA directed against mPGES-1. The effects of PGE2 on pre-adipocyte differentiation were not seen in mice lacking PPARγ in adipose tissue and were not mirrored by other eicosanoids (i.e. leukotriene B4). Taken together, these findings identify PGE2 as a key regulator of white-to-brown adipogenesis and suggest the existence of a coordinate regulation of adipogenesis between PPARγ and mPGES-1

    Inhibition of soluble epoxide hydrolase modulates inflammation and autophagy in obese adipose tissue and liver. Role for omega-3 epoxides

    Get PDF
    Soluble epoxide hydrolase (sEH) is an emerging therapeutic target in a number of diseases that have inflammation as a common underlying cause. sEH limits tissue levels of cytochrome P450 (CYP) epoxides derived from omega-6 and omega-3 polyunsaturated fatty acids (PUFA) by converting these antiinflammatory mediators into their less active diols. Here, we explored the metabolic effects of a sEH inhibitor (t-TUCB) in fat-1 mice with transgenic expression of an omega-3 desaturase capable of enriching tissues with endogenous omega-3 PUFA. These mice exhibited increased CYP1A1, CYP2E1, and CYP2U1 expression and abundant levels of the omega-3-derived epoxides 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic (19,20-EDP) in insulin-sensitive tissues, especially liver, as determined by LC-ESI-MS/MS. In obese fat-1 mice, t-TUCB raised hepatic 17,18-EEQ and 19,20-EDP levels and reinforced the omega-3-dependent reduction observed in tissue inflammation and lipid peroxidation. t-TUCB also produced a more intense antisteatotic action in obese fat-1 mice, as revealed by magnetic resonance spectroscopy. Notably, t-TUCB skewed macrophage polarization toward an antiinflammatory M2 phenotype and expanded the interscapular brown adipose tissue volume. Moreover, t-TUCB restored hepatic levels of Atg12-Atg5 and LC3-II conjugates and reduced p62 expression, indicating up-regulation of hepatic autophagy. t-TUCB consistently reduced endoplasmic reticulum stress demonstrated by the attenuation of IRE-1α and eIF2α phosphorylation. These actions were recapitulated in vitro in palmitate-primed hepatocytes and adipocytes incubated with 19,20-EDP or 17,18-EEQ. Relatively similar but less pronounced actions were observed with the omega-6 epoxide, 14,15-EET, and nonoxidized DHA. Together, these findings identify omega-3 epoxides as important regulators of inflammation and autophagy in insulin-sensitive tissues and postulate sEH as a druggable target in metabolic diseases

    The specialized pro-resolving lipid mediator maresin 1 protects hepatocytes from lipotoxic and hypoxia-induced endoplasmic reticulum stress.

    Get PDF
    Endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) are hallmarks of nonalcoholic fatty liver disease (NAFLD), which is the hepatic manifestation of the metabolic syndrome associated with obesity. The specialized proresolving lipid mediator maresin 1 (MaR1) preserves tissue homeostasis by exerting cytoprotective actions, dampening inflammation, and expediting its timely resolution. Here, we explored whether MaR1 protects liver cells from lipotoxic and hypoxia-induced ER stress. Mice were rendered obese by high-fat diet feeding, and experiments were performed in primary hepatocytes, Kupffer cells, and precision-cut liver slices (PCLSs). Palmitate-induced lipotoxicity increased ER stress and altered autophagy in hepatocytes, effects that were prevented by MaR1. MaR1 protected hepatocytes against lipotoxicity-induced apoptosis by activating the UPR prosurvival mechanisms and preventing the excessive up-regulation of proapoptotic pathways. Protective MaR1 effects were also seen in hepatocytes challenged with hypoxia and TNF-α-induced cell death. High-throughput microRNA (miRNA) sequencing revealed that MaR1 actions were associated with specific miRNA signatures targeting both protein folding and apoptosis. MaR1 also prevented lipotoxic-triggered ER stress and hypoxia-induced inflammation in PCLSs and enhanced Kupffer cell phagocytic capacity. Together, these findings describe the ability of MaR1 to oppose ER stress in liver cells under conditions frequently encountered in NAFLD.-Rius, B., Duran-Güell, M., Flores-Costa, R., López-Vicario, C., Lopategi, A., Alcaraz-Quiles, J., Casulleras, M., Lozano, J. J., Titos, E., Clària, J. The specialized proresolving lipid mediator maresin 1 protects hepatocytes from lipotoxic and hypoxia-induced endoplasmic reticulum stress

    Role of bioactive lipid mediators in obese adipose tissue inflammation and endocrine dysfunction.

    Get PDF
    White adipose tissue is recognized as an active endocrine organ implicated in the maintenance of metabolic homeostasis. However, adipose tissue function, which has a crucial role in the development of obesity-related comorbidities including insulin resistance and non-alcoholic fatty liver disease, is dysregulated in obese individuals. This review explores the physiological functions and molecular actions of bioactive lipids biosynthesized in adipose tissue including sphingolipids and phospholipids, and in particular fatty acids derived from phospholipids of the cell membrane. Special emphasis is given to polyunsaturated fatty acids of the omega-6 and omega-3 families and their conversion to bioactive lipid mediators through the cyclooxygenase and lipoxygenase pathways. The participation of omega-3-derived lipid autacoids in the resolution of adipose tissue inflammation and in the prevention of obesity-associated hepatic complications is also thoroughly discussed

    Resolution of inflammation in obesity-induced liver disease

    Get PDF
    Low-grade inflammation in adipose tissue is recognized as a critical event in the development of obesity-related co-morbidities. This chronic inflammation is powerfully augmented through the infiltration of macrophages, which together with adipocytes, perpetuate a vicious cycle of inflammatory cell recruitment and secretion of free fatty acids and deleterious adipokines that predispose to greater incidence of metabolic complications. In the last decade, many factors have been identified to contribute to mounting unresolved inflammation in obese adipose tissue. Among them, pro-inflammatory lipid mediators (i.e., leukotrienes) derived from the omega-6 polyunsaturated arachidonic acid have been shown to play a prominent role. Of note, the same lipid mediators that initially trigger the inflammatory response also signal its termination by stimulating the formation of anti-inflammatory signals. Resolvins and protectins derived from the omega-3 polyunsaturated docosahexaenoic and eicosapentaenoic acids have emerged as a representative family of this novel class of autacoids with dual anti-inflammatory and pro-resolving properties that act as 'stop-signals' of the inflammatory response. This review discusses the participation of these endogenous autacoids in the resolution of adipose tissue inflammation, with a special emphasis in the amelioration of obesity-related metabolic dysfunctions, namely insulin resistance and non-alcoholic fatty liver disease
    corecore