237 research outputs found

    Vaccine delivery using nanoparticles

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Vaccination has had a major impact on the control of infectious diseases. However, there are still many infectious diseases for which the development of an effective vaccine has been elusive. In many cases the failure to devise vaccines is a consequence of the inability of vaccine candidates to evoke appropriate immune responses. This is especially true where cellular immunity is required for protective immunity and this problem is compounded by the move toward devising sub-unit vaccines. Over the past decade nanoscale size (<1000 nm) materials such as virus-like particles, liposomes, ISCOMs, polymeric, and non-degradable nanospheres have received attention as potential delivery vehicles for vaccine antigens which can both stabilize vaccine antigens and act as adjuvants. Importantly, some of these nanoparticles (NPs) are able to enter antigen-presenting cells by different pathways, thereby modulating the immune response to the antigen. This may be critical for the induction of protective Th1-type immune responses to intracellular pathogens. Their properties also make them suitable for the delivery of antigens at mucosal surfaces and for intradermal administration. In this review we compare the utilities of different NP systems for the delivery of sub-unit vaccines and evaluate the potential of these delivery systems for the development of new vaccines against a range of pathogens.This work was partly supported by grant number U54 AI057156 from the Western Regional Centre for Excellence, USA. The study performed in the laboratory of RWT was supported by NIH/NIAID grant U54 AI057156 from the Western Regional Center for Excellence. The contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIAID or NIH

    Derivation and validation of a simple, accurate and robust prediction rule for risk of mortality in patients with Clostridium difficile infection.

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tBACKGROUND: Clostridium difficile infection poses a significant healthcare burden. However, the derivation of a simple, evidence based prediction rule to assist patient management has not yet been described. METHOD: Univariate, multivariate and decision tree procedures were used to deduce a prediction rule from over 186 variables; retrospectively collated from clinical data for 213 patients. The resulting prediction rule was validated on independent data from a cohort of 158 patients described by Bhangu et al. (Colorectal Disease, 12(3):241-246, 2010). RESULTS: Serum albumin levels (g/L) (P = 0.001), respiratory rate (resps /min) (P = 0.002), C-reactive protein (mg/L) (P = 0.034) and white cell count (mcL) (P = 0.049) were predictors of all-cause mortality. Threshold levels of serum albumin ≤ 24.5 g/L, C- reactive protein >228 mg/L, respiratory rate >17 resps/min and white cell count >12 × 10(3) mcL were associated with an increased risk of all-cause mortality. A simple four variable prediction rule was devised based on these threshold levels and when tested on the initial data, yield an area under the curve score of 0.754 (P < 0.001) using receiver operating characteristics. The prediction rule was then evaluated using independent data, and yield an area under the curve score of 0.653 (P = 0.001). CONCLUSIONS: Four easily measurable clinical variables can be used to assess the risk of mortality of patients with Clostridium difficile infection and remains robust with respect to independent data.This work was funded by University of Exeter, Systems Biology Initiative, a small grants fund from the RD&E NHS Trust and The National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for the South West Peninsula (PenCLAHRC). This article presents independent research funded by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for the South West Peninsula. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health in England

    Immunization with the C-domain of α-toxin prevents lethal infection, localizes tissue injury, and promotes host response to challenge with Clostridium perfringens

    Get PDF
    © 2004 by the Infectious Diseases Society of America. All rights reserved.Clostridium perfringens gas gangrene is characterized by rapid tissue destruction, impaired host response, and, often, death. Phospholipase C (α-toxin) is the virulence factor most responsible for these pathologies. The present study investigated the efficacy of active immunization with the C-terminal domain of α-toxin (Cpa247–370) in a murine model of gas gangrene. Primary end points of the study were survival, progression of infection, and tissue perfusion. Secondary end points, which were based on findings of histologic evaluation of tissues, included the extent of tissue destruction and microvascular thrombosis, as well as the magnitude of the tissue inflammatory response. Survival among C-domain–immunized animals was significantly greater than that among sham-immunized control animals. Furthermore, immunization with the C-domain localized the infection and prevented ischemia of the feet. Histopathologic findings demonstrated limited muscle necrosis, reduced microvascular thrombosis, and enhanced granulocytic influx in C-domain–immunized mice. We conclude that immunization with the C-domain of phospholipase C is a viable strategy for the prevention of morbidity and mortality associated with C. perfringens gas gangrene

    Galleria mellonella as an infection model to investigate virulence of Vibrio parahaemolyticus

    Get PDF
    This is the final version. Available from Taylor & Francis via the DOI in this recordNon-toxigenic V. parahaemolyticus isolates (tdh-/trh-/T3SS2-) have recently been isolated from patients with gastroenteritis. In this study we report that the larvae of the wax moth (Galleria mellonella) are susceptible to infection by toxigenic or non-toxigenic clinical isolates of V. parahaemolyticus. In comparison larvae inoculated with environmental isolates of V. parahaemolyticus did not succumb to disease. Whole genome sequencing of clinical non-toxigenic isolates revealed the presence of a gene encoding a nudix hydrolase, identified as mutT. A V. parahaemolyticus mutT mutant was unable to kill G. mellonella at 24 h post inoculation, indicating a role of this gene in virulence. Our findings show that G. mellonella is a valuable model for investigating screening of possible virulence genes of V. parahaemolyticus and can provide new insights into mechanisms of virulence of atypical non-toxigenic V. parahaemolyticus. These findings will allow improved genetic tests for the identification of pathogenic V. parahaemolyticus to be developed and will have a significant impact for the scientific community.This work was partly supported by Wellcome Trust Institutional Strategic Support Fund (WT097835MF), Wellcome Trust Multi User Equipment Award (WT097835MF) Medical Research Council Clinical Infrastructure Funding (MR/M008924/1) and Biotechnology and Biological Sciences Research Council (BBSRC) funding (BB/N016513/1)

    Campylobacter jejuni 11168H exposed to penicillin forms persister cells and cells with altered redox protein activity

    Get PDF
    The formation of persister cells is one mechanism by which bacteria can survive exposure to environmental stresses. We show that Campylobacter jejuni 11168H forms persister cells at a frequency of 10−3 after exposure to 100 × MIC of penicillin G for 24 h. Staining the cell population with a redox sensitive fluorescent dye revealed that penicillin G treatment resulted in the appearance of a population of cells with increased fluorescence. We present evidence, to show this could be a consequence of increased redox protein activity in, or associated with, the electron transport chain. These data suggest that a population of penicillin G treated C. jejuni cells could undergo a remodeling of the electron transport chain in order to moderate membrane hyperpolarization and intracellular alkalization; thus reducing the antibiotic efficacy and potentially assisting in persister cell formation

    Genome Sequence of Staphylococcus aureus Ex1, Isolated from a Patient with Spinal Osteomyelitis.

    Get PDF
    Here, we present the genome sequence of Staphylococcus aureus Ex1, isolated in 2015 from a patient with spinal osteomyelitis at the Royal Devon and Exeter Hospital in the United Kingdom. The availability of the Ex1 genome sequence provides a resource for studying the basis for spinal infection and horizontal gene transfer in S. aureus.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site

    Diversity of Francisella Species in Environmental Samples from Martha’s Vineyard, Massachusetts

    Get PDF
    We determined whether Francisella spp. are present in water, sediment, and soil from an active tularemia natural focus on Martha’s Vineyard, Massachusetts, during a multiyear outbreak of pneumonic tularemia. Environmental samples were tested by polymerase chain reaction (PCR) targeting Francisella species 16S rRNA gene and succinate dehydrogenase A (sdhA) sequences; evidence of the agent of tularemia was sought by amplification of Francisella tularensis-specific sequences for the insertion element ISFTu2, 17-kDa protein gene tul4, and the 43-kDa outer membrane protein gene fopA. Evidence of F. tularensis subsp. tularensis, the causative agent of the human infections in this outbreak, was not detected from environmental samples despite its active transmission among ticks and animals in the sampling site. Francisella philomiragia was frequently detected from a brackish-water pond using Francisella species PCR targets, and subsequently F. philomiragia was isolated from an individual brackish-water sample. Distinct Francisella sp. sequences that are closely related to F. tularensis and Francisella novicida were detected from samples collected from the brackish-water pond. We conclude that diverse Francisella spp. are present in the environment where human cases of pneumonic tularemia occur

    Clostridium perfringens epsilon toxin mutant Y30A-Y196A as a recombinant vaccine candidate against enterotoxemia

    Get PDF
    Epsilon toxin (Etx) is a β-pore-forming toxin produced by Clostridium perfringens toxinotypes B and D and plays a key role in the pathogenesis of enterotoxemia, a severe, often fatal disease of ruminants that causes significant economic losses to the farming industry worldwide. This study aimed to determine the potential of a site-directed mutant of Etx (Y30A-Y196A) to be exploited as a recombinant vaccine against enterotoxemia. Replacement of Y30 and Y196 with alanine generated a stable variant of Etx with significantly reduced cell binding and cytotoxic activities in MDCK.2 cells relative to wild type toxin (>430-fold increase in CT50) and Y30A-Y196A was inactive in mice after intraperitoneal administration of trypsin activated toxin at 1000× the expected LD50 dose of trypsin activated wild type toxin. Moreover, polyclonal antibody raised in rabbits against Y30A-Y196A provided protection against wild type toxin in an in vitro neutralisation assay. These data suggest that Y30A-Y196A mutant could form the basis of an improved recombinant vaccine against enterotoxemia

    Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens

    Full text link
    Clostridium perfringens is a Gram-positive, anaerobic spore-forming bacterium commonly found in soil, sediments, and the human gastrointestinal tract. C. perfringens is responsible for a wide spectrum of disease, including food poisoning, gas gangrene (clostridial myonecrosis), enteritis necroticans, and non-foodborne gastrointestinal infections. The complete genome sequences of Clostridium perfringens strain ATCC 13124, a gas gangrene isolate and the species type strain, and the enterotoxin-producing food poisoning strain SM101, were determined and compared with the published C. perfringens strain 13 genome. Comparison of the three genomes revealed considerable genomic diversity with >300 unique "genomic islands" identified, with the majority of these islands unusually clustered on one replichore. PCR-based analysis indicated that the large genomic islands are widely variable across a large collection of C. perfringens strains. These islands encode genes that correlate to differences in virulence and phenotypic characteristics of these strains. Significant differences between the strains include numerous novel mobile elements and genes encoding metabolic capabilities, strain-specific extracellular polysaccharide capsule, sporulation factors, toxins, and other secreted enzymes, providing substantial insight into this medically important bacterial pathogen. ©2006 by Cold Spring Harbor Laboratory Press

    Whole-Genome Immunoinformatic Analysis of F. tularensis: Predicted CTL Epitopes Clustered in Hotspots Are Prone to Elicit a T-Cell Response

    Get PDF
    The cellular arm of the immune response plays a central role in the defense against intracellular pathogens, such as F. tularensis. To date, whole genome immunoinformatic analyses were limited either to relatively small genomes (e.g. viral) or to preselected subsets of proteins in complex pathogens. Here we present, for the first time, an unbiased bacterial global immunoinformatic screen of the 1740 proteins of F. tularensis subs. holarctica (LVS), aiming at identification of immunogenic peptides eliciting a CTL response. The very large number of predicted MHC class I binders (about 100,000, IC50 of 1000 nM or less) required the design of a strategy for further down selection of CTL candidates. The approach developed focused on mapping clusters rich in overlapping predicted epitopes, and ranking these “hotspot” regions according to the density of putative binding epitopes. Limited by the experimental load, we selected to screen a library of 1240 putative MHC binders derived from 104 top-ranking highly dense clusters. Peptides were tested for their ability to stimulate IFNγ secretion from splenocytes isolated from LVS vaccinated C57BL/6 mice. The majority of the clusters contained one or more CTL responder peptides and altogether 127 novel epitopes were identified, of which 82 are non-redundant. Accordingly, the level of success in identification of positive CTL responders was 17–25 fold higher than that found for a randomly selected library of 500 predicted MHC binders (IC50 of 500 nM or less). Most proteins (ca. 2/3) harboring the highly dense hotspots are membrane-associated. The approach for enrichment of true positive CTL epitopes described in this study, which allowed for over 50% increase in the dataset of known T-cell epitopes of F. tularensis, could be applied in immunoinformatic analyses of many other complex pathogen genomes
    corecore