1,923 research outputs found

    Looking into historical cracks analysing repaired silver objects by electron microscopy

    Get PDF
    ABSTRACT: The identification of structural alterations of silver alloy objects of cultural interest is essential to assess their state of conservation and define maintenance programmes. Alterations induced by previous repair and cleaning actions strongly affect the conservation condition, influencing the type and extension of conservation procedures. The detailed analysis of ancient repairs is a subject to be investigated. In this work, we show the potentialities of scanning electron microscopy in the characterisation of structural repairs and their influence on the conservation state of silver objects. The study of distinct silver objects dated to the 16th and 18th centuries allowed us to show, among others, the non-intentional dealloying of copper due to the use of acid solutions in surface cleanings and cracks resulting from incorrect handling. The data collected by microscopic examination contributed to the definition of preservation and maintenance methodologies applied to those silver objects.info:eu-repo/semantics/publishedVersio

    Benthic invertebrates that form habitat on deep banks off southern California, with special reference to deep sea coral

    Get PDF
    There is increasing interest in the potential impacts that fishing activities have on megafaunal benthic invertebrates occurring in continental shelf and slope ecosystems. We examined how the structure, size, and high-density aggregations of invertebrates provided structural relief for fishes in continental shelf and slope ecosystems off southern California. We made 112 dives in a submersible at 32−320 m water depth, surveying a variety of habitats from high-relief rock to flat sand and mud. Using quantitative video transect methods, we made 12,360 observations of 15 structure-form-ing invertebrate taxa and 521,898 individuals. We estimated size and incidence of epizoic animals on 9105 sponges, black corals, and gorgonians. Size variation among structure-form-ing invertebrates was significant and 90% of the individuals were <0.5 m high. Less than 1% of the observations of organisms actually sheltering in or located on invertebrates involved fishes. From the analysis of spatial associations between fishes and large invertebrates, six of 108 fish species were found more often adjacent to invertebrate colonies than the number of fish predicted by the fish-density data from transects. This finding indicates that there may be spatial associations that do not necessarily include physical contact with the sponges and corals. However, the median distances between these six fish species and the invertebrates were not particularly small (1.0−5.5 m). Thus, it is likely that these fishes and invertebrates are present together in the same habitats but that there is not necessarily a functional relationship between these groups of organisms. Regardless of their associations with fishes, these invertebrates provide structure and diversity for continental shelf ecosystems off southern California and certainly deserve the attention of scientists undertaking future conservation efforts

    Redox Proteomics and Platelet Activation: Understanding the Redox Proteome to Improve Platelet Quality for Transfusion.

    Get PDF
    Blood banks use pathogen inactivation (PI) technologies to increase the safety of platelet concentrates (PCs). The characteristics of PI-treated PCs slightly differ from those of untreated PCs, but the underlying reasons are not well understood. One possible cause is the generation of oxidative stress during the PI process. This is of great interest since reactive oxygen species (ROS) act as second messengers in platelet functions. Furthermore, there are links between protein oxidation and phosphorylation, another mechanism that is critical for cell regulation. Current research efforts focus on understanding the underlying mechanisms and identifying new target proteins. Proteomics technologies represent powerful tools for investigating signaling pathways involving ROS and post-translational modifications such as phosphorylation, while quantitative techniques enable the comparison of the platelet resting state versus the stimulated state. In particular, redox cysteine is a key player in platelet activation upon stimulation by different agonists. This review highlights the experiments that have provided insights into the roles of ROS in platelet function and the implications for platelet transfusion, and potentially in diseases such as inflammation and platelet hyperactivity. The review also describes the implication of redox mechanism in platelet storage considerations

    A general moment NRIXS approach to the determination of equilibrium Fe isotopic fractionation factors: application to goethite and jarosite

    Get PDF
    We measured the reduced partition function ratios for iron isotopes in goethite FeO(OH), potassium-jarosite KFe3(SO4)2(OH)6, and hydronium-jarosite (H3O)Fe3(SO4)2(OH)6, by Nuclear Resonant Inelastic X-Ray Scattering (NRIXS, also known as Nuclear Resonance Vibrational Spectroscopy -NRVS- or Nuclear Inelastic Scattering -NIS) at the Advanced Photon Source. These measurements were made on synthetic minerals enriched in 57Fe. A new method (i.e., the general moment approach) is presented to calculate {\beta}-factors from the moments of the NRIXS spectrum S(E). The first term in the moment expansion controls iron isotopic fractionation at high temperature and corresponds to the mean force constant of the iron bonds, a quantity that is readily measured and often reported in NRIXS studies.Comment: 38 pages, 2 tables, 8 figures. In press at Geochimica et Cosmochimica Acta. Appendix C contains new derivations relating the moments of the iron PDOS to the moments of the excitation probability function measured in Nuclear Resonant Inelastic X-ray Scatterin

    Establishing the liquid phase equilibrium of angrites to constrain their petrogenesis

    Get PDF
    Angrites are a series of differentiat-ed meteorites, extremely silica undersaturated and with unusally high Ca and Al contents [1]. They are thought to originate from a small planetesimal parent body of ~ 100-200 km in radius ([2-3]), can be either plutonic (i.e., cumulates) or volcanic (often referred to as quenched) in origin, and their old formation ages (4 to 11 Myr after CAIs) have made them prime anchors to tie the relative chronologies inferred from short-lived radionuclides (e.g., Al-Mg, Mn-Cr, Hf-W) to the absolute Pb-Pb clock [4]. They are also the most vola-tile element-depleted meteorites available, displaying a K-depletion of a factor of 110 relative to CIs

    When gold stops glittering: corrosion mechanisms of René Lalique's Art Nouveau jewellery

    Get PDF
    ABSTRACT: Art Nouveau jewellery created by René Lalique is presently corroded. To identify the corrosion processes, Au-Ag-Cu alloys with compositions comparable to those used in the René Lalique’s jewellery were fabricated to be exposed to sulphide-containing environments. Using SEM-EDS, XRD, UV-Vis spectroscopy and ellipsometry, it was for the first time demon-strated that at the surface of tarnished Au alloys forms a corrosion film with a layer-by-layer structure. Considering the complex refractive indices of bulk Cu and Ag oxides and sulphides, a two-step corrosion mechanism was proposed. The formation of Cu-based compounds during the early corrosion stages is followed by the formation of Ag-based compounds. The thinness of the formed film, shown for one of the gold alloys to be of 80 nm, is due to a corrosion kinetics controlled by the presence of Au and by the formation of an Au-S self-assembled monolayer. The corrosion mechanism of gold alloys raises a new conservation challenge concerning the removal of nanometric layers.info:eu-repo/semantics/publishedVersio

    Scalable Production and Purification of Adeno-Associated Viral Vectors (AAV).

    Get PDF
    Here we describe methods for the production of adeno-associated viral (AAV) vectors by transient transfection of HEK293 cells grown in serum-free medium in orbital shaken bioreactors and the subsequent purification of vector particles. The protocol for expression of AAV components is based on polyethyleneimine (PEI) mediated transfection of a 2-plasmid system and is specified for production in milliliter to liter scales. After PEI and plasmid DNA (pDNA) complex formation the diluted cell culture is transfected without a prior concentration step or medium exchange. Following a 3-day batch process, cell cultures are further processed using different methods for lysis and recovery. Methods for the purification of viral particles are described, including iodixanol gradient purification, immunoaffinity chromatography, and ultrafiltration, as well as quantitative PCR to quantify vector titer

    The influence of the COVID-19 lockdown on infants' physiological regulation during mother-father-infant interactions in Switzerland.

    Get PDF
    In this study, we investigated the physiological regulation of vagal tone during dyadic and triadic parent-infant interactions in infants born before or around the COVID-19 lockdown in Switzerland. We hypothesized that there would be a decrease in vagal tone in triadic interactions compared with dyadic interactions, as triadic interactions are more complex and therefore more resource demanding. However, we expected this difference to be smaller for infants who experienced the period of confinement, as the lockdown led parents to spend more time at home. We also hypothesized that parents would have less stressful interactional events in the triadic interaction because they would be used to interacting with the child together. This study included 36 parents with their 3 month-old infants. Eighteen families met the study authors before the onset of the pandemic (pre-COVID) and 18 met them after its onset, having experienced a period of confinement during the infants' first 3 months of life (COVID). Results showed that the COVID group had no decrease in vagal tone during triadic interactions, whereas the pre-COVID group did. This difference could not, however, be explained by less stressful interactional events in triadic interactions, as the COVID group showed more stressful interactional events in mother-father-infant interactions

    Unusual molecular material formed through irreversible transformation and revealed by 4D electron microscopy

    Get PDF
    Four-dimensional (4D) electron microscopy (EM) uniquely combines the high spatial resolution to pinpoint individual nano-objects, with the high temporal resolution necessary to address the dynamics of their laser-induced transformation. Here, using 4D-EM, we demonstrate the in situ irreversible transformation of individual nanoparticles of the molecular framework Fe(pyrazine)Pt(CN)4. The newly formed material exhibits an unusually large negative thermal expansion (i.e. contraction), which is revealed by time-resolved imaging and diffraction. Negative thermal expansion is a unique property exhibited by only few materials. Here we show that the increased flexibility of the metal–cyanide framework after the removal of the bridging pyrazine ligands is responsible for the negative thermal expansion behavior of the new material. This in situ visualization of single nanostructures during reactions should be extendable to other classes of reactive systems
    corecore