15 research outputs found

    A Wnt1 regulated Frizzled-1/Ī²-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection.

    Get PDF
    BACKGROUND: Dopamine-synthesizing (dopaminergic, DA) neurons in the ventral midbrain (VM) constitute a pivotal neuronal population controlling motor behaviors, cognitive and affective brain functions, which generation critically relies on the activation of Wingless-type MMTV integration site (Wnt)/Ī²-catenin pathway in their progenitors. In Parkinson's disease, DA cell bodies within the substantia nigra pars compacta (SNpc) progressively degenerate, with causes and mechanisms poorly understood. Emerging evidence suggests that Wnt signaling via Frizzled (Fzd) receptors may play a role in different degenerative states, but little is known about Wnt signaling in the adult midbrain. Using in vitro and in vivo model systems of DA degeneration, along with functional studies in both intact and SN lesioned mice, we herein highlight an intrinsic Wnt1/Fzd-1/Ī²-catenin tone critically contributing to the survival and protection of adult midbrain DA neurons. RESULTS: In vitro experiments identifie Fzd-1 receptor expression at a mRNA and protein levels in dopamine transporter (DAT) expressing neurons, and demonstrate the ability of exogenous Wnt1 to exert robust neuroprotective effects against Caspase-3 activation, the loss of tyrosine hydroxylase-positive (TH+) neurons and [3H] dopamine uptake induced by different DA-specific insults, including serum and growth factor deprivation, 6-hydroxydopamine and MPTP/MPP+. Co-culture of DA neurons with midbrain astrocytes phenocopies Wnt1 neuroprotective effects, whereas RNA interference-mediated knockdown of Wnt1 in midbrain astrocytes markedly reduces astrocyte-induced TH+ neuroprotection. Likewise, silencing Ī²-catenin mRNA or knocking down Fzd-1 receptor expression in mesencephalic neurons counteract astrocyte-induced TH+ neuroprotection. In vivo experiments document Fzd-1 co-localization with TH+ neurons within the intact SNpc and blockade of Fzd/Ī²-catenin signaling by unilateral infusion of a Fzd/Ī²-catenin antagonist within the SN induces reactive astrocytosis and acutely inhibits TH+ neuron survival in ipsilateral SNpc, an effect efficiently prevented by pharmacological activation of Ī²-catenin signaling within the SNpc. CONCLUSION: These results defining a novel Wnt1/Fzd-1/Ī²-catenin astrocyte-DA autoprotective loop provide a new mechanistic inside into the regulation of pro-survival processes, with potentially relevant consequences for drug design or drug action in Parkinson's disease.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    GSK-3\u3b2-induced Tau pathology drives hippocampal neuronal cell death in Huntington's disease: involvement of astrocyte-neuron interactions

    Get PDF
    Glycogen synthase kinase-3\u3b2 (GSK-3\u3b2) has emerged as a critical factor in several pathways involved in hippocampal neuronal maintenance and function. In Huntington's disease (HD), there are early hippocampal deficits both in patients and transgenic mouse models, which prompted us to investigate whether disease-specific changes in GSK-3\u3b2 expression may underlie these abnormalities. Thirty-three postmortem hippocampal samples from HD patients (neuropathological grades 2-4) and age- and sex-matched normal control cases were analyzed using real-time quantitative reverse transcription PCRs (qPCRs) and immunohistochemistry. In vitro and in vivo studies looking at hippocampal pathology and GSK-3\u3b2 were also undertaken in transgenic R6/2 and wild-type mice. We identified a disease and stage-dependent upregulation of GSK-3\u3b2 mRNA and protein levels in the HD hippocampus, with the active isoform pGSK-3\u3b2-Tyr(216) being strongly expressed in dentate gyrus (DG) neurons and astrocytes at a time when phosphorylation of Tau at the AT8 epitope was also present in these same neurons. This upregulation of pGSK-3\u3b2-Tyr(216) was also found in the R6/2 hippocampus in vivo and linked to the increased vulnerability of primary hippocampal neurons in vitro. In addition, the increased expression of GSK-3\u3b2 in the astrocytes of R6/2 mice appeared to be the main driver of Tau phosphorylation and caspase3 activation-induced neuronal death, at least in part via an exacerbated production of major proinflammatory mediators. This stage-dependent overactivation of GSK-3\u3b2 in HD-affected hippocampal neurons and astrocytes therefore points to GSK-3\u3b2 as being a critical factor in the pathological development of this condition. As such, therapeutic targeting of this pathway may help ameliorate neuronal dysfunction in HD

    Stress, glucocorticoids and the susceptibility to develop autoimmune disorders of the central nervous system

    No full text
    Alterations of the immunoendocrine circuit along the hypothalamic-pituitary-adrenocortical (HPA) axis in various autoimmune diseases have recently been observed, suggesting a modulatory role of this feedback regulation in the pathogenesis of autoimmune diseases. Susceptibility to experimental autoimmune encephalomyelitis (EAE) may be influenced by variations in the production of endogenous glucocorticoid hormones (GC). The adrenocortical response is central to recovery from EAE in the Lewis rat, as reflected by increased severity of the disease in adrenalectomized animals. The key role of GC in modifying the induction and progression of EAE is also emphasized by a reversal of corticoid-mediated effects through treatment with glucocorticoid receptor (GR) antagonists. We studied the relationship between defective GR function and susceptibility to EAE in transgenic (Tg) mice expressing GR antisense RNA. EAE was induced with the encephalitogenic myelin oligodendrocyte peptide (pMOG 36-50) in wild type (Wt) and transgenic (Tg) female mice bearing GR antisense RNA. pMOG 36-50 induced typical EAE in Wt mice but not in Tg mice. Histological examination of brains and spinal cords of Wt mice showed the presence of inflammation and/or demyelination, whereas in Tg mice neither were present. Although the mechanisms underlying the resistance of Tg mice to EAE induction are not yet clarified, compensatory changes at different levels of the HPA-immune axis in response to the potent immunogenic challenge are likely to participate in the observed effects. This work underlies the plasticity of the HPA-immune axis and suggests that pharmacological manipulation of neuroendocrine-immune networks may be a therapy of multiple sclerosis

    Stress, the immune system and vulnerability to degenerative disorders of the central nervous system in transgenic mice expressing glucocorticoid receptor antisense RNA

    No full text
    Current research evidence suggests that interactions between genetic and environmental factors contribute to modulate the susceptibility to degenerative disorders, including inflammatory and autoimmune diseases of the central nervous system (CNS). In this context, bidirectional communication between the neuroendocrine and immune systems during ontogeny plays a pivotal role in programming the development of neuroendocrine and immune responses in adult life, thereby influencing the predisposition to several disease entities. Glucocorticoids (GCs), the end products of the hypothalamic-pituitary-adrenocortical (HPA) axis, gender and signals generated by hypothalamic-pituitary-gonadal (HPG) axis are major players coordinating the development of immune system function and exerting powerful effects in the susceptibility to autoimmune disorders, including experimental autoimmune encephalomyelitis (EAE), the experimental model for multiple sclerosis (MS). In particular, GCs exert their beneficial immunosuppressive and anti-inflammatory effects in inflammatory disorders of the CNS, after binding to their cytoplasmic receptors (GRs). Here we review our work using transgenic (Tg) mice with a dysfunctional GR from early embryonic life on programming vulnerability to EAE. The GR-deficiency of these Tg mice confers resistance to active EAE induction. The interplay between GCs, proinflammatory mediators, gender and EAE is summarized. On the basis of our data, it does appear that exposure to a defective GR through development programs major changes in endogenous neuroendocrine and immune mechanisms controlling the vulnerability to EAE. These studies highlight the plasticity of the HPA-immune axis and its pharmacological manipulation in autoimmune diseases of the CNS

    Endothelial cell-pericyte cocultures induce PLA2 protein expression through activation of PKCalpha and the MAPK/ERK cascade

    No full text
    Little is known about the regulatorymechanisms of endothelial cell (EC) proliferation by retinal pericytes and vice versa. In a model of coculture with bovine retinal pericytes lasting for 24 h, rat brain ECs showed an increase in arachidonic acid (AA) release, whereas Western blot and RT-PCR analyses revealed that ECs activated the protein expression of cytosolic phospholipase A2 (cPLA2) and its phosphorylated form and calcium-independent intracellular phospholipase A2 (iPLA2). No activation of the same enzymes was seen in companion pericytes. In ECs, the protein level of phosphorylated extracellular signal-regulated kinase (ERK) 1/2 was also enhanced significantly, a finding not observed in cocultured pericytes. The expression of protein kinase C-a (PKCa) and its phosphorylated form was also enhanced in ECs. Wortmannin, LY294002, and PD98059, used as inhibitors of upstream kinases (the PI3-kinase/Akt/PDK1 or MEK-1 pathway) in cultures, markedly attenuated AA release and the expression of phosphorylated forms of endothelial cPLA2, PKCa, and ERK1/2. By confocal microscopy, activation of PKCa in perinuclear regions of ECs grown in coculture as well as strong activation of cPLA2 in ECs taken from a model of mixed culture were clearly observed. However, no increased expression of both enzymes was found in cocultured pericytes. Our findings indicate that a sequential activation of PKCa contributes to endothelial ERK1/2 and cPLA2 phosphorylation induced by either soluble factors or direct cell-tocell contact, and that the PKCa-cPLA2 pathway appears to play a key role in the early phase of EC-pericyte interactions regulating blood retina or blood-brain barrier maturation

    Exposure to a dysfunctional glucocorticoid receptor from early embryonic life programs the resistance to experimental autoimmune encephalomyelitis via nitric oxide-induced immunosuppression

    No full text
    Glucocorticoid (GC) hormones play a central role in the bidirectional communication between the neuroendocrine and the immune systems and exert, via GC receptors (GR), potent immunosuppressive and anti-inflammatory effects. In this study, we report that GR deficiency of transgenic mice expressing GR antisense RNA from early embryonic life has a dramatic impact in programming the susceptibility to experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. GR deficiency renders mice resistant to myelin oligodendrocyte glycoprotein-induced EAE, and such mice do not develop clinical or histological signs of disease compared with EAE-susceptible wild-type mice. Resistance to EAE in GR-deficient mice is associated not with endogenous GC levels, but with a significant reduction in spleen and lymph node cell proliferation. The use of NO inhibitors in vitro indicates that NO is the candidate immunosuppressor molecule. GR-deficient mice develop 3- to 6-fold higher nitrite levels in the periphery and are resistant to NO inhibition by GCs. Specific inhibition of NO production in vivo by treatment with the inducible NO synthase inhibitor, L-N(6)-(1-iminoethyl)-lysine, suppressed circulating nitrites, increased myelin oligodendrocyte glycoprotein-specific cell proliferation, and rendered GR-deficient mice susceptible to EAE. Thus, life-long GR deficiency triggers inducible NO synthase induction and NO generation with consequent down-regulation of effector cell proliferation. These findings identify a novel link among GR, NO, and EAE susceptibility and highlight NO as critical signaling molecule in bidirectional communication between the hypothalamic-pituitary-adrenocortical axis and the immune system
    corecore