698 research outputs found

    A rational use of laboratory tests in the diagnosis and management of hepatitis C virus infection

    Get PDF
    The prevalence of HCV infection is very diversified according to geographical areas and ranges from 1% in the Northern regions of the world to more than 20% as we move South. Due to the presence of HCVassociated liver diseases and the development of effective treatments, the diagnosis of HCV infection is a growing medical need. Several tests are available, from simple screening to identify the presence of antiHCV antibodies to the more sophisticated quantification of viral load and genotyping. However, these tests are to be used in a logical, consequential and cost-effective manner. This review article will report on the protocol in use in the North-Eastern part of Italy for the screening and diagnosis of HCV infection. The protocol is based on a consensus among several experts and may be the basis for a more rational approach in this rapidly growing field

    The cytotoxic effect of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells is modulated by the expression level of MRP1 but not MDR1

    Get PDF
    In vitro and in vivo studies have demonstrated that UCB (unconjugated bilirubin) is neurotoxic. Although previous studies suggested that both MRP1 (multidrug resistance-associated protein 1) and MDR1 (multidrug resistance protein 1) may protect cells against accumulation of UCB, direct comparison of their role in UCB transport was never performed. To this end, we used an inducible siRNA (small interfering RNA) expression system to silence the expression of MRP1 and MDR1 in human neuroblastoma SH-SY5Y cells. The effects of in vitro exposure to clinicallyrelevant levels of unbound UCB were compared between unsilenced (control) cells and cells with similar reductions in the expression of MRP1 or MDR1, documented by RT\u2013PCR (reverse transcription\u2013PCR) (mRNA), immunoblotting (protein), and for MDR1, the enhanced net uptake of a specific fluorescent substrate. Cytotoxicity was assessed by the MTT [3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyl-2H-tetrazolium bromide] test. MRP1-deficient cells accumulated significantly more UCB and suffered greater cytotoxicity than controls. By contrast, MDR1-deficient cells exhibited UCB uptake and cytotoxicity comparable with controls. At intermediate levels of silencing, the increased susceptibility to UCB toxicity closely correlated with the decrease in the expression of MRP1, but not of MDR1. These data support the concept that limitation of cellular UCB accumulation, due to UCB export mediated by MRP1, but not MDR1, plays an important role in preventing bilirubin encephalopathy in the newborn

    A transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells

    Get PDF
    Background: The deposition of unconjugated bilirubin (UCB) in selected regions of the brain results in irreversible neuronal damage, or Bilirubin Encephalopathy (BE). Although UCB impairs a large number of cellular functions in other tissues, the basic mechanisms of neurotoxicity have not yet been fully clarified. While cells can accumulate UCB by passive diffusion, cell protection may involve multiple mechanisms including the extrusion of the pigment as well as pro-survival homeostatic responses that are still unknown. Results: Transcriptome changes induced by UCB exposure in SH-SY5Y neuroblastoma cell line were examined by high density oligonucleotide microarrays. Two-hundred and thirty genes were induced after 24 hours. A Gene Ontology (GO) analysis showed that at least 50 genes were directly involved in the endoplasmic reticulum (ER) stress response. Validation of selected ER stress genes is shown by quantitative RT-PCR. Analysis of XBP1 splicing and DDIT3/CHOP subcellular localization is presented. Conclusion: These results show for the first time that UCB exposure induces ER stress response as major intracellular homeostasis in surviving neuroblastoma cells in vitro

    Relationship between fatty liver and glucose metabolism: A cross-sectional study in 571 obese children

    Get PDF
    BACKGROUND AND AIMS: Early onset type 2 diabetes mellitus (T2DM) is associated with obesity, insulin resistance and impaired beta-cell function. Non-alcoholic fatty liver disease (NAFLD) may be an independent risk factor for T2DM. We investigated the relationship between NAFLD and glucose metabolism in a large sample of obese children. METHODS AND RESULTS: A total of 571 obese children (57% males and 43% females) aged 8-18 years were consecutively studied at a tertiary care centre specialised in paediatric obesity. Liver ultrasonography was used to diagnose NAFLD after exclusion of hepatitis B and C and alcohol consumption. Oral-glucose tolerance testing (OGTT) was performed; insulin sensitivity was evaluated by using the insulin sensitivity index (ISI) and beta-cell function by using the ratio between the incremental areas under the curve (AUC) of insulin and glucose (incAUCins/incAUCglu). A total of 41% of the obese children had NAFLD. Impaired glucose tolerance or T2DM was present in 25% of the children with NAFLD versus 8% of those without it (p<0.001). Children with NAFLD had higher body mass index (BMI), fasting glucose, 120-min OGTT glucose, incAUCins/incAUCglu and lower ISI as compared with children without NAFLD (p</=0.002). At bootstrapped multivariable median regression analysis controlling for gender, age, pubertal status and BMI, NAFLD was an independent predictor of 120-min OGTT glucose and ISI, but not of incAUCins/incAUCglu. Similar findings were obtained using continuous liver steatosis as the predictor, instead of dichotomous NAFLD. CONCLUSION: NAFLD was present in 41% of our obese children and was associated with higher insulin resistance, but not with impaired beta-cell function

    The Expression Level of ABCC6 Transporter in Colon Cancer Cells Correlates with the Activation of Different Intracellular Signaling Pathways

    Get PDF
    The ATP-binding cassette sub-family C member 6 transporter (ABCC6) is mainly found in the basolateral plasma membrane of hepatic and kidney cells. In hepatocarcinoma HepG2 cells, ABCC6 was involved in cell migration. In the present study, we investigated the role of ABCC6 in colon cancer evaluating the effect of Quercetin and Probenecid, inhibitors of the ectonucleotidase NT5E and ABCC6, respectively, on migration rate of Caco2 and HT29 cell lines. Both drugs reduced cell migration analyzed by scratch test. Gene and protein expression were evaluated by quantitative reverse-transcription PCR (RT-qPCR) and Western blot, respectively. In Caco2 cells, in which ABCC6 is significantly expressed, the addition of ATP restored motility, suggesting the involvement of P2 receptors. Contrary to HT29 cells, where the expression of ABCC6 is negligible but remarkable to the level of NT5E, no effect of ATP addition was detected, suggesting a main role on their migration by the phosphatidylinositol 3′-kinase (PI3K)/Akt system. Therefore, in some colon cancers in which ABCC6 is overexpressed, it may have a primary role in controlling the extracellular purinergic system by feeding it with ATP, thus representing a potential target for a therapy aimed at mitigating invasiveness of those type of cancers

    Systematic review and meta-analysis on the adverse events of rimonabant treatment: Considerations for its potential use in hepatology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cannabinoid-1 receptor blockers have been proposed in the management of obesity and obesity-related liver diseases (fatty liver as NAFLD or NASH). Due to increasing number of patients to be potentially treated and the need to assess the advantage of this treatment in terms of risk/benefit, we analyze the side events reported during the treatment with rimonabant by a systematic review and meta-analysis of all randomized controlled studies.</p> <p>Methods</p> <p>All published randomized controlled trials using rimonabant <it>versus </it>placebo in adult subjects were retrieved. Relative risks (RR) with 95% confidence interval for relevant adverse events and number needed to harm was calculated.</p> <p>Results</p> <p>Nine trials (n = 9635) were considered. Rimonabant 20 mg was associated with an increased risk of adverse event (RR 1.35; 95%CI 1.17-1.56), increased discontinuation rate (RR 1.79; 95%CI 1.35-2.38), psychiatric (RR 2.35; 95%CI 1.66-3.34), and nervous system adverse events (RR 2.35; 95%CI 1.49-3.70). The number needed to harm for psychiatric adverse events is 30.</p> <p>Conclusion</p> <p>Rimonabant is associated with an increased risk of adverse events. Despite of an increasing interest for its use on fatty liver, the security profile and efficacy it is needs to be carefully assessed before its recommendation. At present the use of rimonabant on fatty liver cannot be recommended.</p

    Subzero nonfreezing storage of rat hepatocytes using UW solution and 1,4-butanediol. II- functional testing on rewarming and gene expression of urea cycle enzymes

    Get PDF
    In the present study we have analyzed the viability and metabolic competence of isolated rat hepatocytes subjected first, to subzero nonfreezing storage (up to 120 h at -4 oC) in modified University of Wisconsin (UW) solution with 8% 1,4-butanediol, and then to a normothermic rewarming step (KHR media, 37 oC, up to 120 min, carbogen atmosphere). Results were compared with hepatocytes stored up to 120 h at 0oC in modified UW solution and with freshly isolated hepatic cells. We have found that only cell suspensions stored in subzero nonfreezing conditions were able to finish the rewarming period with a viability comparable with the control group. Also, we have investigated the enzyme activities and the relative expression at messenger RNAs levels of two of the Urea cycle (UC) enzymes: Carbamyl phosphate synthetase I (CPSI) and ornithine transcarbamylase (OTC), during 60 min of rewarming. Results were compared with the ammonium removal efficiency of the three groups. In conclusion: These data indicated that hepatocytes preserved under cold or subzero conditions up to 120 h followed by 60 min of rewarming, maintain UC enzymes at levels similar to freshly isolated hepatocytes, allowing their use in bioartificial liver devices
    corecore