3 research outputs found

    Fluoroquinolone-resistant pneumococci: dynamics of serotypes and clones in Spain in 2012 compared with those from 2002 and 2006

    Get PDF
    In Spain, rates of ciprofloxacin resistance in pneumococci were low during the last decade (2.6% in 2002 and 2.3% in 2006). In 2012, the rate remained at 2.3%, equivalent to 83 of 3,621 isolates. Of the 83 resistant isolates, 15 showed a low level (MIC of 4 to 8 μg/ml) and 68 a high level (MIC of 16 to 128 μg/ml) of ciprofloxacin resistance. Thirteen low-level-resistant isolates had single changes in ParC, one had a single ParE change, and one did not present any mutations. High-level-resistant isolates had GyrA changes plus additional ParC and/or ParE changes: 51, 15, and 2 isolates had 2, 3, or 4 mutations, respectively. Although 24 different serotypes were observed, 6 serotypes accounted for 51.8% of ciprofloxacin-resistant isolates: 8 (14.5%), 19A (10.8%), 11A (7.2%), 23A (7.2%), 15A (6.0%), and 6B (6.0%). A decrease in pneumococcal 7-valent conjugate vaccine (PCV7) serotypes was observed from 2006 (35.7%) to 2012 (16.9%), especially of serotype 14 (from 16.3% to 2.4%; P<0.001). In comparison with findings in 2006, multidrug resistance was greater in 2012 (P=0.296), mainly due to the increased presence and/or emergence of clonal complexes associated with non-PCV7 serotypes: CC63 expressing serotypes 8, 15A, and 19A; CC320 (with serotype 19A); and CC42 (with serotype 23A). Although rates of ciprofloxacin resistance remained low and stable throughout the last decade, changes in serotype and genotype distributions were observed in 2012, notably the expansion of a preexisting multidrug-resistant clone, CC63, and the emergence of the CC156 clone expressing serotype 11A.This study was supported by grant BIO2011-25343 from the Ministerio de Ciencia y Tecnología, by grant PI11/0763 from the Fondo de Investigaciones Sanitarias, and by Ciber de Enfermedades Respiratorias, an initiative of the Instituto de Salud Carlos III. A.D. was supported by an Agustí Pumarola grant from the Societat Catalana de Malaties Infecciones i Microbiologia Clínica and the Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica

    An increase in negative supercoiling in bacteria reveals topology-reacting gene clusters and a homeostatic response mediated by the DNA topoisomerase I gene

    Get PDF
    We studied the transcriptional response to an increase in DNA supercoiling in Streptococcus pneumoniae by using seconeolitsine, a new topoisomerase I inhibitor. A homeostatic response allowing recovery of supercoiling was observed in cells treated with subinhibitory seconeolitsine concentrations. Supercoiling increases of 40.7% (6 μM) and 72.9% (8 μM) were lowered to 8.5% and 44.1%, respectively. Likewise, drug removal facilitated the recovery of cell viability and DNA-supercoiling. Transcription of topoisomerase I depended on the supercoiling level. Also specific binding of topoisomerase I to the gyrase A gene promoter was detected by chromatin-immunoprecipitation. The transcriptomic response to 8 μM seconeolitsine had two stages. An early stage, associated to an increase in supercoiling, affected 10% of the genome. A late stage, manifested by supercoiling recovery, affected 2% of the genome. Nearly 25% of the early responsive genes formed 12 clusters with a coordinated transcription. Clusters were 6.7-31.4 kb in length and included 9-22 responsive genes. These clusters partially overlapped with those observed under DNA relaxation, suggesting that bacteria manage supercoiling stress using pathways with common components. This is the first report of a coordinated global transcriptomic response that is triggered by an increase in DNA supercoiling in bacteria.Ministerio de Economía y Competitividad [BIO2014-55462-R to A.G.C.]. AJMG is the beholder of a Miguel Servet contract from the Spanish Ministry of Health. Funding for open access charge: Ministerio de Economía y Competitividad [BIO2014-55462-R to A.G.C.]. AJMG is the beholder of a Miguel Servet contract from the Spanish Ministry of Health.S

    Seconeolitsine, the Novel Inhibitor of DNA Topoisomerase I, Protects against Invasive Pneumococcal Disease Caused by Fluoroquinolone-Resistant Strains

    Get PDF
    Antibiotic resistance in Streptococcus pneumoniae has increased worldwide, making fluoroquinolones an alternative therapeutic option. Fluoroquinolones inhibit the type II DNA topoisomerases (topoisomerase IV and gyrase). In this study we have evaluated the in vivo activity of seconeolitsine, an inhibitor of topoisomerase I. Levofloxacin (12.5 to 50 mg/kg) or seconeolitsine (5 to 40 mg/kg) were administered every 12 h during two days in mice infected with a serotype 8-resistant strain. At 48 h, a 70% protection was obtained with seconeolitsine (40 mg/kg; p < 0.001). However, survival with levofloxacin was 20%, regardless of the dose. In addition, seconeolitsine decreased bacteremia efficiently. Levofloxacin had higher levels in serum than seconeolitsine (Cmax of 14.7 vs. 1.6; p < 0.01) and higher values of area under the serum concentration-time curve (AUC0-12h of 17.3 vs. 5; p < 0.01). However, seconeolitsine showed higher levels of time to peak concentration and elimination half-life. This is consistent with the higher binding of seconeolitsine to plasma proteins (40% and 80% when used at 1 µg/mL and 50 µg/mL, respectively) in comparison to levofloxacin (12% at 5 µg/mL and 33% at 50 µg/mL). Our results suggest that seconeolitsine would be a promising therapeutic alternative against pneumococcal isolates with high fluoroquinolone resistance levels
    corecore