3,203 research outputs found

    Student Recital

    Get PDF

    Polarities and field configurations of the vertex components of the human auditory evoked response: A reinterpretation

    Full text link
    The cephalic spatial distributions and phase relationships of the late components, N1 and P2, of the auditory evoked response, elicited by repetitive moderate-intensity tone pips, were assessed in man with a non-cephalic reference. There was no evidence of a polarity reversal at any site on the head, failing to confirm Vaughan and Ritter's (1970) sylvian phase reversal hypothesis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/33589/1/0000093.pd

    Computing H/D-Exchange rates of single residues from data of proteolytic fragments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein conformation and protein/protein interaction can be elucidated by solution-phase Hydrogen/Deuterium exchange (sHDX) coupled to high-resolution mass analysis of the digested protein or protein complex. In sHDX experiments mutant proteins are compared to wild-type proteins or a ligand is added to the protein and compared to the wild-type protein (or mutant). The number of deuteriums incorporated into the polypeptides generated from the protease digest of the protein is related to the solvent accessibility of amide protons within the original protein construct.</p> <p>Results</p> <p>In this work, sHDX data was collected on a 14.5 T FT-ICR MS. An algorithm was developed based on combinatorial optimization that predicts deuterium exchange with high spatial resolution based on the sHDX data of overlapping proteolytic fragments. Often the algorithm assigns deuterium exchange with single residue resolution.</p> <p>Conclusions</p> <p>With our new method it is possible to automatically determine deuterium exchange with higher spatial resolution than the level of digested fragments.</p

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure
    corecore