3,949 research outputs found
The face inhibition effect: Social contrast or motor competition?
Merely viewing the faces of famous athletes affects the observers' motor system, suggesting that actionbased information is a core feature of person representations, even when no specific action is visible (Bach & Tipper, 2006). Unexpectedly, these person-based motor priming effects were inhibitory. Foot responses were slower when identifying footballers, and hand responses for tennis players. Here, we demonstrate that these inhibitory effects are only evoked when action is implicitly associated with the athletes; when the athletes are seen performing their skilled actions the effect reverses towards facilitation. The contrast between inhibition evoked by implicit action priming and facilitation evoked by the explicit presentation of an action supports the notion of inhibitory control in the motor system. We hypothesise that when no specific action is perceived, a range of actions are activated triggering lateral inhibition, whereas when a specific action is viewed, there is no competition and excitation facilitates similar responses. © 2011 Psychology Press
Simple and Robust Boolean Operations for Triangulated Surfaces
Boolean operations of geometric models is an essential issue in computational
geometry. In this paper, we develop a simple and robust approach to perform
Boolean operations on closed and open triangulated surfaces. Our method mainly
has two stages: (1) We firstly find out candidate intersected-triangles pairs
based on Octree and then compute the inter-section lines for all pairs of
triangles with parallel algorithm; (2) We form closed or open
intersection-loops, sub-surfaces and sub-blocks quite robustly only according
to the cleared and updated topology of meshes while without coordinate
computations for geometric enti-ties. A novel technique instead of
inside/outside classification is also proposed to distinguish the resulting
union, subtraction and intersection. Several examples have been given to
illus-trate the effectiveness of our approach.Comment: Novel method for determining Union, Subtraction and Intersectio
Cell sleeping for energy efficiency in cellular networks: Is it viable?
An approach advocated in the recent literature for reducing energy consumption in cellular networks is to put base stations to sleep when traffic loads are low. However, several practical considerations are ignored in these studies. In this paper, we aim to raise questions on the feasibility and benefits of base station sleeping. Specifically we analyze the interference and capacity of a coverage-based energy reduction system in CDMA based cellular networks using a simple analytical model and show that sleeping may not be a feasible solution to reduce energy consumption in many scenarios. © 2012 IEEE
Information reuse in dynamic spectrum access
Dynamic spectrum access (DSA), where the permission to use slices of radio spectrum is dynamically shifted (in time an in different geographical areas) across various communications services and applications, has been an area of interest from technical and public policy perspectives over the last decade. The underlying belief is that this will increase spectrum utilization, especially since many spectrum bands are relatively unused, ultimately leading to the creation of new and innovative services that exploit the increase in spectrum availability. Determining whether a slice of spectrum, allocated or licensed to a primary user, is available for use by a secondary user at a certain time and in a certain geographic area is a challenging task. This requires 'context information' which is critical to the operation of DSA. Such context information can be obtained in several ways, with different costs, and different quality/usefulness of the information. In this paper, we describe the challenges in obtaining this context information, the potential for the integration of various sources of context information, and the potential for reuse of such information for related and unrelated purposes such as localization and enforcement of spectrum sharing. Since some of the infrastructure for obtaining finegrained context information is likely to be expensive, the reuse of this infrastructure/information and integration of information from less expensive sources are likely to be essential for the economical and technological viability of DSA. © 2013 IEEE
ptp++: A Precision Time Protocol Simulation Model for OMNeT++ / INET
Precise time synchronization is expected to play a key role in emerging
distributed and real-time applications such as the smart grid and Internet of
Things (IoT) based applications. The Precision Time Protocol (PTP) is currently
viewed as one of the main synchronization solutions over a packet-switched
network, which supports microsecond synchronization accuracy. In this paper, we
present a PTP simulation model for OMNeT++ INET, which allows to investigate
the synchronization accuracy under different network configurations and
conditions. To show some illustrative simulation results using the developed
module, we investigate on the network load fluctuations and their impacts on
the PTP performance by considering a network with class-based
quality-of-service (QoS) support. The simulation results show that the network
load significantly affects the network delay symmetry, and investigate a new
technique called class probing to improve the PTP accuracy and mitigate the
load fluctuation effects.Comment: Published in: A. F\"orster, C. Minkenberg, G. R. Herrera, M. Kirsche
(Eds.), Proc. of the 2nd OMNeT++ Community Summit, IBM Research - Zurich,
Switzerland, September 3-4, 201
A survey on cyber security for smart grid communications
A smart grid is a new form of electricity network with high fidelity power-flow control, self-healing, and energy reliability and energy security using digital communications and control technology. To upgrade an existing power grid into a smart grid, it requires significant dependence on intelligent and secure communication infrastructures. It requires security frameworks for distributed communications, pervasive computing and sensing technologies in smart grid. However, as many of the communication technologies currently recommended to use by a smart grid is vulnerable in cyber security, it could lead to unreliable system operations, causing unnecessary expenditure, even consequential disaster to both utilities and consumers. In this paper, we summarize the cyber security requirements and the possible vulnerabilities in smart grid communications and survey the current solutions on cyber security for smart grid communications. © 2012 IEEE
On Security and Reliability using Cooperative Transmissions in Sensor Networks
Recent work on cooperative communications has demonstrated benefits in terms of improving the reliability of links through diversity and/or increasing the reach of a link
compared to a single transmitter transmitting to a single receiver (single-input single-output or SISO). In one form of cooperative transmissions, multiple nodes can act as virtual antenna elements and provide such benefits using space-time coding. In a multi-hop sensor network, a source node can make use of its neighbors as relays with itself to reach an intermediate node, which will use its neighbors and so on to reach the destination. For the same reliability of a link as SISO, the number of hops between a source and destination may be reduced using cooperative transmissions.
However, the presence of malicious or compromised nodes in
the network impacts the use of cooperative transmissions. Using more relays can increase the reach of a link, but if one or more relays are malicious, the transmission may fail. In this paper, we analyze this problem to understand the conditions under which cooperative transmissions may fare better or worse than SISO transmissions
Resilient network design: Challenges and future directions
This paper highlights the complexity and challenges of providing reliable services in the evolving communications infrastructure. The hurdles in providing end-to-end availability guarantees are discussed and research problems identified. Avenues for overcoming some of the challenges examined are presented. This includes the use of a highly available network spine embedded in a physical network together with efficient crosslayer mapping to offer survivability and differentiation of traffic into classes of resilience. © 2013 Springer Science+Business Media New York
A Framework of Efficient Hybrid Model and Optimal Control for Multihop Wireless Networks
The performance of multihop wireless networks (MWN) is normally studied via simulation over a fixed time horizon using a steady-state type of statistical analysis procedure. However, due to the dynamic nature of network connectivi- ty and nonstationary traffic, such an approach may be inap- propriate as the network may spend most time in a transien- t/nonstationary state. Moreover, the majority of the simu- lators suffer from scalability issues. In this work, we presents a performance modeling framework for analyzing the time varying behavior of MWN. Our framework is a hybrid mod- el of time varying connectivity matrix and nonstationary network queues. Network connectivity is captured using s- tochastic modeling of adjacency matrix by considering both wireless link quality and node mobility. Nonstationary net- work queues behavior are modeled using fluid flow based differential equations. In terms of the computational time, the hybrid fluid-based model is a more scalable tool than the standard simulator. Furthermore, an optimal control strategy is proposed on the basis of the hybrid model
- …
