
ptp++: A Precision Time Protocol Simulation
Model for OMNeT++ / INET

Martin Lévesque and David Tipper
School of Information Sciences

University of Pittsburgh
Pittsburgh, PA, USA

Abstract—Precise time synchronization is expected to play a
key role in emerging distributed and real-time applications such
as the smart grid and Internet of Things (IoT) based applications.
The Precision Time Protocol (PTP) is currently viewed as one
of the main synchronization solutions over a packet-switched
network, which supports microsecond synchronization accuracy.
In this paper, we present a PTP simulation model for OMNeT++
INET, which allows to investigate the synchronization accuracy
under different network configurations and conditions. To show
some illustrative simulation results using the developed module,
we investigate on the network load fluctuations and their impacts
on the PTP performance by considering a network with class-
based quality-of-service (QoS) support. The simulation results
show that the network load significantly affects the network delay
symmetry, and investigate a new technique called class probing
to improve the PTP accuracy and mitigate the load fluctuation
effects.

I. INTRODUCTION

Precise time synchronization is a key requirement in several
packet based communication networks and real-time net-
worked application domains, such as the automated industrial
systems and smart power grid systems. For instance, the com-
munication technologies such as the Long Term Evolution-
Advanced (LTE-A) cellular networks require backhaul equip-
ment base stations to provide time synchronization in order
to synchronize transmissions over frequencies from adjacent
base stations and interference coordination. Also, the emerging
smart power grid systems, which are characterized by a two-
way flow of energy and end-to-end communications, will
also require tight time synchronization. In those systems, the
communications are machine-to-machine in nature and require
synchronized information in order to improve reliability and
efficiency of power delivery.

A general solution to provide the synchronization func-
tionality among networked devices requiring time alignment
is to incorporate an atomic clock or a Global Positioning
System (GPS) component in each device. However, equipping
each device of these technologies would be extremely costly,
especially for instance in sensor and actuator devices, which in
many applications are cost and computationally constrained.

This work was supported by NSERC Postdoctoral Fellowship No. 453711-
2014.

Corresponding author: Martin Lévesque, School of Information
Sciences, University of Pittsburgh, Pittsburgh, PA 15260 (email:
levesque@pitt.edu).

To reduce these cost issues, network protocols have been
developed to distribute time over packet-switched networks
and synchronized distributed devices. The Network Time
Protocol (NTP)1 is a widely used Internet time synchronization
protocol, which provides millisecond synchronization accuracy
and is implemented at the application layer. However, millisec-
ond accuracy is not sufficient for all applications requiring
synchronization. To provide precise time synchronization, the
Precision Time Protocol (PTP) was then proposed [1], which
operation principle is similar to NTP, but provides new features
to meet microsecond synchronization accuracy.

Given the emergence of distributed and real-time applica-
tions requiring tight time synchronization performance, there is
a growing need to study time synchronization for these appli-
cations in a low-cost manner. PTP is currently one of the most
investigated synchronization protocols, but there is still a lack
of module compliant with the OMNeT++ INET framework
to study PTP-based applications over wired and wireless net-
works. In [2], the authors developed a PTP simulation model
over IEEE 802.11 networks. However, the PTP module was
added using 802.11 modules specifically without following
the OMNeT++ node structures, and the implementation is
currently not available to the best of our knowledge. In our
implementation, PTP can be used with any communications
technology (e.g., Ethernet, 802.11, etc.), since PTP is an
application layer protocol and uses the above network layers.
In this paper, we present our developed PTP module for
OMNeT++ INET, tested with the most recent version (INET
2.6 for OMNeT++ 4.4). To show some illustrative simulation
results, we investigate the PTP performance under the presence
of variable network loads with (and without) quality-of-service
(QoS) support, and propose a new mechanism to improve the
PTP accuracy.

The remainder of the paper is structured as follows. In
Section II, we overview key background information on the
Precision Time Protocol (PTP). In Section III, the PTP im-
plementation model for OMNeT++ is next described. The
simulation results are then provided in Section IV. Conclusions
are finally drawn in Section V.

Proceedings of the “OMNeT++ Community Summit 2015”

1

ar
X

iv
:1

50
9.

03
16

9v
1

 [
cs

.N
I]

 1
0

Se
p

20
15

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/33563365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Master Slave

T4

D1

D2

Router with
PTP support (TC/BC)

Regular
router

Other

intermediate

nodes

Time Time Time Time

Sync

Follow_up

Delay_Req

Delay_Resp

T1

T2

T3

T1, T2, T3, T4

rtms
1

rtsm1

Residence
time

: delay asymmetryDasym

rtms
1 , rtsm1 , Dasym

Known by the
slave:

Fig. 1: The Precision Time Protocol (PTP) over a network with
a subset of the routers having PTP support. (TC: Transparent
clock, BC: Boundary clock)

II. BACKGROUND

In this section, we describe some key PTP notions, which
we investigate in this paper using our developed OMNeT++
module. The Precision Time Protocol (PTP) version 2, IEEE
1588 [1], enables precise synchronization of clocks over het-
erogeneous systems with accuracy in the microsecond to sub-
microsecond range. PTP was proposed to meet tighter synchro-
nization accuracy compared to the widely used NTP protocol,
where NTP targets distributed applications to meet millisecond
synchronization requirements. On the other hand, PTP was
designed to reach precise synchronization requirements for
industrial automation, power systems, and telecommunications
applications. In a fashion similar to NTP, PTP operates at
the application layer. Further, each PTP node contains one
or many ports, and communicates with other PTP nodes in
a given network by implementing a synchronization protocol
described hereafter.

A. PTP Synchronization Protocol

The main procedures of the PTP synchronization protocol,
depicted in Fig. 1, are listed as follow:

• The master node periodically transmits a Sync message
to the slave nodes containing the sent time T1.

• A Follow up message which contains T1 is optionally
sent depending on the timestamp processing mechanism.

• When T1 arrives at a given slave node, the received time
T2 is recorded.

• The slave node then sends a Delay req message contain-
ing T3 to the master clock.

• Finally, the master node records the reception time T4 and
sends it back to the slave node in a Delay resp message.

1The RFCs and relevant information on NTP are available online: http:
//www.ntp.org/.

Both the NTP and PTP protocols follow a similar strategy
to update the clocks. First, the offset time at a given slave
node k is approximated by:

Θk =
D1 −D2

2
, (1)

where D1 = T2 − T1 and D2 = T4 − T3 correspond
to the downstream (from the master node to slave node)
and upstream (from a slave node to master node) delays,
respectively. To correct its clock, a given slave node k adjusts
its local time tk to:

tk ← tk −Θk. (2)

It is worth noting that Eq. (1) approximates the offset
precisely if the messages experience symmetrical delays, that
is, if both D1 and D2 are close. The presence of asymmetrical
delays can significantly degrade the synchronization accuracy.

B. PTP Delay and Offset Improvement Mechanisms

PTP introduces three main improvement mechanisms to
mitigate the negative effects of asymmetric links on the
synchronization accuracy:

• Residence time at intermediate nodes: The residence time
at a given router corresponds to the time duration a PTP
packet resides in a switching fabric from the input port
to the output port. In Fig. 1, two residence times are
recorded, rtms

1 and rtsm1 , which are measured at the
router with PTP support.

• Asymmetric delay parameter, Dasym: If the asymmet-
ric delay properties are known in a given network, an
asymmetric delay parameter can be used [3], which
corresponds to the delayAsymmetry field in IEEE 1588.

• Peer-to-peer path correction: Peer-to-peer transparent
ports measure the link propagation delays. Such a mech-
anism helps at reducing asymmetry, at the expense of an
increased cost.

All of these techniques can be integrated in Eq. (1), as
described in [1].

C. Performance

One significant metric to quantify the PTP performance is
the synchronization error, which is the average time deviation
between the slaves and master clocks. The PTP performance
can vary significantly depending on the network and condi-
tions (traffic load, asymmetry, timestamping method, etc.). In
testbeds following most of the PTP standard recommenda-
tions, a synchronization accuracy of approximately 50 ns was
achieved [4], [5]. Further, a synchronization precision of 2 ns
under ideal conditions was obtained by implementing all PTP
features in hardware, including the timestamping function [6].
However, under the presence of multi-hop communications
with non PTP routers, significantly worst synchronization
accuracies of 450 µs were measured under the presence
of asymmetrical delays [7]. The investigation of the PTP
performance is convenient by using an event-driven simulator

Proceedings of the “OMNeT++ Community Summit 2015”

2

PtpNode

UDP

udpApp

network
Layer

eth wlanlo

PtpMaster

PtpSlave

swClock

hwClock
AsymmAlgo

Lee Lv

PtpNode

PtpMaster
Node

PtpSlave
Node

PTP

Fig. 2: Main components of the PTP simulation model.

such as OMNeT++, especially to evaluate new mechanisms,
as we show shortly in Section IV.

III. IMPLEMENTATION DETAILS

We next describe our PTP simulation model, ptp++2, which
architecture is depicted in Fig. 2. We adapted and extended the
module developed in [8]. The main components of our model
are described as follow:

• PtpNode: This class models a PTP node, which can be
either a master or slave. As PTP operates at the appli-
cation layer, both the master and slave applications are
modeled as a User Datagram Protocol (UDP) application
(udpApp). In order to be compliant with the OMNeT++
INET 2.6 networking framework, PtpNode follows a
structure similar to NodeBase, thus implementing the
overall UDP/Internet Protocol (IP) stack structure, includ-
ing the application layer (udpApp), UDP, network layer,
Medium Access Protocol (MAC), and physical layer.

• Software and hardware clocks: As the goal of PTP is
to synchronize clocks, a hardware clock needs to be
modeled at each node. The implemented hardware clock
(hwClock) can take different drift distributions based
on the model proposed by [8], [9]. The software clock
(swClock) takes the hardware clock signals as input, and a
processing delay can be added to model variable software
impairments.

• AsymmAlgo: As we mentioned in the previous section,
asymmetrical connections can significantly degrade the
PTP accuracy. Recently, several mechanisms (e.g., Lee
[10] and Lv et al. [11]) have been proposed to detect
and mitigate the negative effects of the asymmetry on
the PTP accuracy. These mechanisms periodically send
extra control messages after the PTP execution. Thus,
we developed the simulation model such that currently
proposed and new asymmetry mitigation techniques can
be evaluated.

Further, a StatsCollector module records the clock devi-
ations in order to evaluate the accuracy performance under
different network conditions. When a software clock time
varies, the synchronization error is computed and added in the
StatsCollector. In the current implementation, three statistic
output files are generated at the end of a given simulation:

2ptp++: https://github.com/martinlevesque/ptp-plusplus.

Fig. 3: Simulation scenario consisting of 10 slaves synchro-
nizing to a master node over intermediate Ethernet routers.

• Summary text file: The average synchronization error,
standard deviation, minimum, and maximum values are
appended in a general statistic file. If multiple configu-
rations are executed, such a file can be used for plotting
results under variable conditions.

• Probability distribution function: Using the recorded syn-
chronization errors, probabilities are computed to repre-
sent the distribution of the synchronization errors.

• Deviation vector: An OMNeT++ vector of the synchro-
nization errors is also recorded such that the errors can
be visualized at the end of a given simulation.

Fig. 3 depicts a sample scenario consisting of 10 slave nodes
synchronizing to a master node over three Ethernet routers.
Depending on the load variations in the network, the PTP
accuracy varies significantly, as we will show in the next
section. Further, as recommended in the PTP standard, to
improve accuracy, PTP messages must be processed as soon
as they arrive in the router queues, where PTP messages are
filtered with high quality-of-service (QoS) class priority. We
implemented a class-based queue PtpPrioritizedQueue which
processes PTP messages first by following a deep packet
inspection procedure, which we investigate in the following
results section.

IV. SIMULATION RESULTS

In this section, we investigate the network depicted in Fig.
3 in terms of PTP synchronization accuracy under variable
network loads using our developed PTP simulation model.
All communications interfaces are based on Ethernet with
100 Mbps full duplex capacity. The communications links are
symmetric in terms of propagation and transmission delays.
The asymmetry component we consider corresponds to the
variable queuing delays experienced mainly in the router
switching fabrics (e.g., nodes router1, router2, downstream,
and upstream). In order to vary the network load, we have
two traffic generators, trafGen1 and trafGen2, which exchange
messages between each other using the intermediate routers.
Further, we configure the network routing tables such that the
packets coming to router1 and destinated to nodes s[1..10]
and trafGen2 are routed to the downstream and router1

Proceedings of the “OMNeT++ Community Summit 2015”

3

nodes. Similarly, the packets coming in router2 and destinated
upstream are routed to the upstream and router1 nodes. There-
fore, the downstream and upstream delays experienced by the
PTP messages vary depending on the traffic load generated by
the trafGen1 and trafGen2 nodes. Further, to simulate realistic
and bursty traffic patterns, the traffic generators follow a Pareto
distribution such that the average interarrival time between the
generated packets equals µ = a·b

a−1 , where a = 1.5 and b are
the shape and scale of the Pareto distribution, respectively.

Fig. 4a) depicts the synchronization accuracy under variable
upstream and downstream load conditions without using any
QoS mechanism3. When the traffic load is close to 0 Mbps
in the upstream and downstream directions, as expected, the
synchronization error is below 10 µs. However, as the traffic
increases, the synchronization error grows, especially when
the network is under asymmetrical traffic load conditions (e.g.,
when the upstream load equals 90 Mbps with 0 Mbps down-
stream load). To improve these performance, we next configure
prioritized queues in order to process PTP messages first, as
discussed in the previous section. Fig. 4b) shows significant
accuracy improvement while using priority queues, where the
synchronization error varies between 0-80 µs compared to
0-400 µs while not using any QoS mechanism. As in the
previous results (without using any QoS), when the traffic
load is asymmetrical, the synchronization error increases.
However, we observe that when priority queues are used at
high loads, the synchronization error decreases compared at
medium loads. This is due to the fact that at high load, the
probability that a transmission of a non PTP packet occurs,
while a PTP packet arrives at the same time, is higher.

We next propose a new mechanism called class probing,
which consists of sending an extra non PTP message (and
thus low priority) prior to sending a PTP message in order to
increase the transmission probability of non PTP message in
both directions, to improve asymmetry and consequently the
synchronization accuracy. We show a comparison of using this
technique vs. using the PTP standard in Fig. 5. We observe a
significant improvement of sending an extra non PTP message
prior to sending a PTP message, which will be investigated
more extensively in future work.

V. CONCLUSIONS

In this paper, we described our PTP simulation model which
extends the OMNeT++ / INET framework. Our implementa-
tion follows the PTP standard and allows to measure the proto-
col under different network configurations and conditions. We
shown, using the implemented model, that the synchronization
accuracy gets significantly affected by variable network loads,
and using a prioritized QoS mechanism significantly improves
the accuracy. The simulation model allows to investigate new
PTP mechanisms under different settings at low-cost. The
framework can also be used for time-aware applications, or
other protocols requiring tight synchronization. For instance,

3For each given upstream/downstream pair, we repeated the experiment 15
times with different random seed numbers.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50 60 70 80 90

S
y
n
c
h
ro

n
iz

a
ti
o
n
 e

rr
o
r

(µ
s
)

Downstream load (Mbps)

 Upstream load = 0 Mbps

 Upstream load = 30 Mbps

 Upstream load = 60 Mbps

 Upstream load = 90 Mbps

(a) Without QoS.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90

S
y
n
c
h
ro

n
iz

a
ti
o
n
 e

rr
o
r

(µ
s
)

Downstream load (Mbps)

 Upstream load = 0 Mbps

 Upstream load = 30 Mbps

 Upstream load = 60 Mbps

 Upstream load = 90 Mbps

(b) With QoS.

Fig. 4: Synchronization accuracy with variable upstream and
downstream network loads.

some security protocols exchange timestamps to detect re-
play attacks [12]. Further, the emerging Internet-of-Things
applications require to timestamp events, thus using a time
synchronization protocol such as PTP improves the simulation
realism with non perfect synchronized clocks.

REFERENCES

[1] IEC Technical Committee 65 and IEEE Standards Association (IEEE-
SA) Standards Board, “IEEE Standard for a precision clock synchro-
nization protocol for networked measurement and control systems,” IEC
61588:2009(E) IEEE Std. 1588(E)-2008, pp. C1–274, Feb 2009.

[2] Y. Huang, Y. Yang, T. Li, and X. Dai, “An Open Source Simulator
for IEEE 1588 Time Synchronization over 802.11 Networks,” in Proc.,
IEEE European Modelling Symposium, pp. 560–565, 2013.

[3] N. Simanic, R. Exel, P. Loschmidt, T. Bigler, N. Kerö, “Compensation
of Asymmetrical Latency for Ethernet Clock Synchronization,” in Proc.,
IEEE Symposium on Precision Clock Synchronization for Measurement
Control and Communication (ISPCS), pp. 19–24, 2011.

[4] D. M. E. Ingram, P. Schaub, D. A. Campbell, and R. R. Taylor,
“Evaluation of Precision Time Synchronisation Methods for Substation
Applications,” in Proc., IEEE Symposium on Precision Clock Synchro-
nization for Measurement Control and Communication (ISPCS), pp. 1–6,
2012.

Proceedings of the “OMNeT++ Community Summit 2015”

4

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90

S
y
n

c
h
ro

n
iz

a
ti
o
n

 e
rr

o
r

(µ
s
)

Upstream load (Mbps)

 w/o class probing

 w/ class probing

Fig. 5: Improvement of the synchronization accuracy by using
a class probing mechanism.

[5] D. Latremouille, K. Harper, and R. Subrahmanyan, “An Architecture for
Embedded IEEE 1588 Support,” in Proc., IEEE Symposium on Precision
Clock Synchronization for Measurement Control and Communication
(ISPCS), pp. 128–133, 2007.

[6] D. Rosselot, “Simple, Accurate Time Synchronization in an Ethernet
Physical Layer Device,” in Proc., IEEE Symposium on Precision Clock
Synchronization for Measurement Control and Communication (ISPCS),
pp. 123–127, 2007.

[7] R. Zarick, M. Hagen, and R. Bartos, “The Impact of Network Latency on
the Synchronization of Real-World IEEE 1588-2008 Devices,” in Proc.,
IEEE Symposium on Precision Clock Synchronization for Measurement
Control and Communication (ISPCS), pp. 135–140, 2010.

[8] J. Steinhauser, “A PTP Implementation in OMNET++, Treitlstr. 3/3/182-
1, 1040 Vienna, Austria Technische Universität Wien, Institut für Tech-
nische Informatik,” 2012.

[9] F. Ferrari, A. Meier, and L. Thiele, “Accurate Clock Models for
Simulating Wireless Sensor Networks,” in Proc., 3rd International
ICST Conference on Simulation Tools and Techniques (SIMUTools’10),
pp. 21:1–21:4, 2010.

[10] S. Lee, “An Enhanced IEEE 1588 Time Synchronization Algorithm
for Asymmetric Communication Link using Block Burst Transmission,”
IEEE Communications Letters, vol. 12, pp. 687–689, Sept. 2008.

[11] S. Lv, Y. Lu, and Y. Ji, “An Enhanced IEEE 1588 Time Synchronization
for Asymmetric Communication Link in Packet Transport Network,”
IEEE Communications Letters, vol. 14, pp. 764–766, Aug. 2010.

[12] S. Uludag, K.-S. Lui, and K. Nahrstedt, “Secure and Scalable Data Col-
lection With Time Minimization in the Smart Grid,” IEEE Transactions
on Smart Grid (Early Access).

Proceedings of the “OMNeT++ Community Summit 2015”

5

