12 research outputs found

    Molecular characterization of poxviruses associated with tattoo skin lesions in UK cetaceans.

    Get PDF
    There is increasing concern for the well-being of cetacean populations around the UK. Tattoo skin disease (characterised by irregular, grey, black or yellowish, stippled cutaneous lesions) caused by poxvirus infection is a potential health indicatora potential health indicator for cetaceans. Limited sequence data indicates that cetacean poxviruses (CPVs) belong to an unassigned genus of the Chordopoxvirinae. To obtain further insight into the phylogenetic relationships between CPV and other Chordopoxvirinae members we partially characterized viral DNA originating from tattoo lesions collected in Delphinidae and Phocoenidae stranded along the UK coastline in 1998-2008. We also evaluated the presence of CPV in skin lesions other than tattoos to examine specificity and sensitivity of visual diagnosis. After DNA extraction, regions of the DNA polymerase and DNA topoisomerase I genes were amplified by PCR, sequenced and compared with other isolates. The presence of CPV DNA was demonstrated in tattoos from one striped dolphin (Stenella coeruleoalba), eight harbour porpoises (Phocoena phocoena) and one short-beaked common dolphin (Delphinus delphis) and in one 'dubious tattoo' lesion detected in one other porpoise. Seventeen of the 18 PCR positive skin lesions had been visually identified as tattoos and one as a dubious tattoo. None of the other skin lesions were PCR positive. Thus, visual identification had a 94.4% sensitivity and 100% specificity. The DNA polymerase PCR was most effective in detecting CPV DNA. Limited sequence phylogeny grouped the UK samples within the odontocete poxviruses (CPV group 1) and indicated that two different poxvirus lineages infect the Phocoenidae and the Delphinidae. The phylogenetic tree had three major branches: one with the UK Phocoenidae viruses, one with the Delphinidae isolates and one for the mysticete poxvirus (CPV group 2). This implies a radiation of poxviruses according to the host suborder and the families within these suborders

    Proton beam therapy for pediatric tumors of the central nervous system — experiences of clinical outcome and feasibility from the KiProReg Study

    Get PDF
    Simple Summary Radiation therapy is an important cornerstone of the treatment of many different types of brain tumors occurring in childhood. Proton beam therapy offers the opportunity to reduce doses outside of the target volume due to its physical characteristics. By sparing a large volume of the brain from radiation doses, proton beam therapy aims at reducing long-term side effects and preserving cognitive function. Our study aims at better understanding side effects and therefore contributing to better treatment decisions in this vulnerable group of patients. Therefore, the study analyses outcome and side effects including imaging changes in a large cohort of children with brain tumors from a prospective registry. Abstract As radiotherapy is an important part of the treatment in a variety of pediatric tumors of the central nervous system (CNS), proton beam therapy (PBT) plays an evolving role due to its potential benefits attributable to the unique dose distribution, with the possibility to deliver high doses to the target volume while sparing surrounding tissue. Children receiving PBT for an intracranial tumor between August 2013 and October 2017 were enrolled in the prospective registry study KiProReg. Patient’s clinical data including treatment, outcome, and follow-up were analyzed using descriptive statistics, Kaplan–Meier, and Cox regression analysis. Adverse events were scored according to the Common Terminology Criteria for Adverse Events (CTCAE) 4.0 before, during, and after PBT. Written reports of follow-up imaging were screened for newly emerged evidence of imaging changes, according to a list of predefined keywords for the first 14 months after PBT. Two hundred and ninety-four patients were enrolled in this study. The 3-year overall survival of the whole cohort was 82.7%, 3-year progression-free survival was 67.3%, and 3-year local control was 79.5%. Seventeen patients developed grade 3 adverse events of the CNS during long-term follow-up (new adverse event n = 7; deterioration n = 10). Two patients developed vision loss (CTCAE 4°). This analysis demonstrates good general outcomes after PBT

    Molecular characterization of poxviruses associated with tattoo skin lesions in UK cetaceans.

    Get PDF
    There is increasing concern for the well-being of cetacean populations around the UK. Tattoo skin disease (characterised by irregular, grey, black or yellowish, stippled cutaneous lesions) caused by poxvirus infection is a potential health indicatora potential health indicator for cetaceans. Limited sequence data indicates that cetacean poxviruses (CPVs) belong to an unassigned genus of the Chordopoxvirinae. To obtain further insight into the phylogenetic relationships between CPV and other Chordopoxvirinae members we partially characterized viral DNA originating from tattoo lesions collected in Delphinidae and Phocoenidae stranded along the UK coastline in 1998-2008. We also evaluated the presence of CPV in skin lesions other than tattoos to examine specificity and sensitivity of visual diagnosis. After DNA extraction, regions of the DNA polymerase and DNA topoisomerase I genes were amplified by PCR, sequenced and compared with other isolates. The presence of CPV DNA was demonstrated in tattoos from one striped dolphin (Stenella coeruleoalba), eight harbour porpoises (Phocoena phocoena) and one short-beaked common dolphin (Delphinus delphis) and in one 'dubious tattoo' lesion detected in one other porpoise. Seventeen of the 18 PCR positive skin lesions had been visually identified as tattoos and one as a dubious tattoo. None of the other skin lesions were PCR positive. Thus, visual identification had a 94.4% sensitivity and 100% specificity. The DNA polymerase PCR was most effective in detecting CPV DNA. Limited sequence phylogeny grouped the UK samples within the odontocete poxviruses (CPV group 1) and indicated that two different poxvirus lineages infect the Phocoenidae and the Delphinidae. The phylogenetic tree had three major branches: one with the UK Phocoenidae viruses, one with the Delphinidae isolates and one for the mysticete poxvirus (CPV group 2). This implies a radiation of poxviruses according to the host suborder and the families within these suborders

    Orthopox and parapox virus specific PCR assay results.

    No full text
    <p>Representative agarose gel electrophoresis of products from PCR assays to detect orthopox or parapox viral DNA. Assays used 50 ng of template from one representative skin sample and appropriate controls. Tracks: M - 1 kbp ladder; 1, 5, 9 - no template control; 2, 6, 10 - sample 41; 3, 7, 11 - vaccinia virus; 4, 8, 12 - sealpox virus. PCR products from the OPV-HA assay (tracks 1–4, predicted size 1138 bp), the PPV-DNApol assay (tracks 5–8, predicted size 536 bp) and the PPV-up/do assay (tracks 9–12, predicted size 84 bp).</p

    DNA polymerase and DNA topoisomerase I PCR assay results.

    No full text
    <p>Representative agarose gels of PCR products from reactions using 50 ng DNA. <b>A</b>) DNA polymerase assay (predicted product size 543 bp); <b>B</b>) DNA topoisomerase I assay (predicted product size 344 bp). M - 100 bp ladder; track numbers are for sample numbers; 1–25 skin samples; 26 vaccinia virus; 27 sealpox virus; 28 no template control.</p

    Images of cetacean tattoo skin disease.

    No full text
    <p>Tattoo lesions from <b>A</b>) <i>S. coeruleoalba</i> 2000/4; <b>B</b>) <i>P. phocoena</i> 2003/271; <b>C</b>) <i>P. phocoena,</i> 2003/312; and dubious tattoo lesion from <b>D</b>) <i>P. phocoena</i> 2001/127. The arrow in panel A indicates the tattoo lesion. The scale bars shown are in cm.</p

    Transmission electron micrograph of a cetacean skin lesion.

    No full text
    <p>A transmission electron micrograph of sample 4 (<i>Stenella coeruleoalba</i> 2000/4) skin lesion. The box in micrograph <b>A</b>) has been shown at higher magnification in <b>B</b>). Magnification a) 12000×, bar = 1 um and b) 50 000×, bar = 0.4 um.</p

    Phylogram of concatenated DNA polymerase and DNA topoisomerase I poxvirus sequences.

    No full text
    <p>Using published sequences and those from this study, the regions of DNA polymerase and DNA topoisomerase I amplified by PCR (without the primer sequences) were concatenated, aligned and a PhyML phylogram generated. Bootstrap values of branches have been shown if greater than 50. Cetacean samples with 100% nucleotide identity have been shown as one tip. The <i>Chordopoxvirinae</i> genera are shown with the proposed new cetacean genus.</p

    PCR results of cetacean skin samples.

    No full text
    <p>Species: <i>P. phocoena -</i> harbour porpoise (<i>Phocoena phocoena</i>), <i>S. coeruleoalba</i> - striped dolphin (<i>Stenella coeruleoalba</i>), <i>D. delphis</i> – short-beaked common dolphin (<i>Delphinus delphis</i>); Sex: F - Female, M - Male; Age: A - Adult, SA - Sub-adult, J – Juvenile, estimated by length; (T) – tattoo lesion; (? T)- dubious tattoo lesion; (old T) - old tattoo lesion; PPV – parapoxvirus; OPV – orthopoxvirus;</p>*<p>10 ng DNA used as template;</p>#<p>50 ng DNA used as template;</p>§<p>number of+indicates relative amount of PCR product; ND - not done; NA – not applicable.</p

    Relapsed medulloblastoma in pre-irradiated patients: Current practice for diagnostics and treatment

    Get PDF
    Relapsed medulloblastoma (rMB) accounts for a considerable, and disproportionate amount of childhood cancer deaths. Recent advances have gone someway to characterising disease biology at relapse including second malignancies that often cannot be distinguished from relapse on imaging alone. Furthermore, there are now multiple international early-phase trials exploring drug–target matches across a range of high-risk/relapsed paediatric tumours. Despite these advances, treatment at relapse in pre-irradiated patients is typically non-curative and focuses on providing life-prolonging and symptom-modifying care that is tailored to the needs and wishes of the individual and their family. Here, we describe the current understanding of prognostic factors at disease relapse such as principal molecular group, adverse molecular biology, and timing of relapse. We provide an overview of the clinical diagnostic process including signs and symptoms, staging investigations, and molecular pathology, followed by a summary of treatment modalities and considerations. Finally, we summarise future directions to progress understanding of treatment resistance and the biological mechanisms underpinning early therapy-refractory and relapsed disease. These initiatives include development of comprehensive and collaborative molecular profiling approaches at relapse, liquid biopsies such as cerebrospinal fluid (CSF) as a biomarker of minimal residual disease (MRD), modelling strategies, and the use of primary tumour material for real-time drug screening approaches
    corecore