12 research outputs found

    Comparative Metabolite Extraction Protocols from Breast Cancer Mouse Lung Tissue for LC-MS/MS Analysis

    Get PDF
    Triple-negative breast cancer (TNBC) stands out for its heightened invasiveness, leading to distant metastasis in nearly 46% of cases, with common targets being the brain, lungs, and bones. This subtype is associated with significantly shorter median survival compared to other breast cancer types. Analyzing metabolic compounds in lung tissues affected by breast cancer metastasis provides valuable insights into biological information and regulatory processes. Despite the recognized severity of TNBC spreading to other sites, there are limited reported studies investigating metabolome information in distant organ tissues, particularly the lungs. Therefore, accurately quantifying the abundance of metabolites requires careful extraction procedures. This study aims to investigate and compare extraction protocols for lung tissue metabolites in TNBC mice using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Left lung tissues were collected from mice xenografted with breast cancer. Three different extraction methods were evaluated to assess their metabolite coverage and biochemical compound classes. Our findings revealed distinct differences in metabolite compositions among the three methods. The extraction solvent comprising isopropanol, acetonitrile, and water in a 3:2:2 ratio proved most suitable for studying breast cancer metastasis to lung tissues. This extraction solvent could serve as a protocol for future studies analyzing the lung cancer metabolome in mice

    Few Differences in Metabolic Network Use Found Between Salmonella enterica Colonization of Plants and Typhoidal Mice

    No full text
    The human enteric pathogen Salmonella enterica leads a cross-kingdom lifestyle, actively colonizing and persisting on plants in between animal hosts. One of the questions that arises from this dual lifestyle is how S. enterica is able to adapt to such divergent hosts. Metabolic pathways required for S. enterica animal colonization and virulence have been previously identified, but the metabolism of this bacterium on plants is poorly understood. To determine the requirements for plant colonization by S. enterica, we first screened a library of metabolic mutants, previously examined in a systemic mouse typhoidal model, for competitive plant colonization fitness on alfalfa seedlings. By comparing our results to those reported in S. enterica-infected murine spleens, we found that the presence of individual nutrients differed between the two host niches. Yet, similar metabolic pathways contributed to S. enterica colonization of both plants and animals, such as the biosynthesis of amino acids, purines, and vitamins and the catabolism of glycerol and glucose. However, utilization of at least three metabolic networks differed during the bacterium's plant- and animal-associated lifestyles. Whereas both fatty acid biosynthesis and degradation contributed to S. enterica animal colonization, only fatty acid biosynthesis was required during plant colonization. Though serine biosynthesis was required in both hosts, S. enterica used different pathways within the serine metabolic network to achieve this outcome. Lastly, the metabolic network surrounding manA played different roles during colonization of each host. In animal models of infection, O-antigen production downstream of manA facilitates immune evasion. We discovered that manA contributed to S. enterica attachment, to seeds and germinated seedlings, and was essential for growth in early seedling exudates, when mannose is limited. However, only seedling attachment was linked to O-antigen production, indicating that manA played additional roles critical for plant colonization that were independent of surface polysaccharide production. The integrated view of S. enterica metabolism throughout its life cycle presented here provides insight on how metabolic versatility and adaption of known physiological pathways for alternate functions enable a zoonotic pathogen to thrive in niches spanning across multiple kingdoms of life

    De Novo

    No full text

    Table_2_Few Differences in Metabolic Network Use Found Between Salmonella enterica Colonization of Plants and Typhoidal Mice.DOCX

    No full text
    <p>The human enteric pathogen Salmonella enterica leads a cross-kingdom lifestyle, actively colonizing and persisting on plants in between animal hosts. One of the questions that arises from this dual lifestyle is how S. enterica is able to adapt to such divergent hosts. Metabolic pathways required for S. enterica animal colonization and virulence have been previously identified, but the metabolism of this bacterium on plants is poorly understood. To determine the requirements for plant colonization by S. enterica, we first screened a library of metabolic mutants, previously examined in a systemic mouse typhoidal model, for competitive plant colonization fitness on alfalfa seedlings. By comparing our results to those reported in S. enterica-infected murine spleens, we found that the presence of individual nutrients differed between the two host niches. Yet, similar metabolic pathways contributed to S. enterica colonization of both plants and animals, such as the biosynthesis of amino acids, purines, and vitamins and the catabolism of glycerol and glucose. However, utilization of at least three metabolic networks differed during the bacterium's plant- and animal-associated lifestyles. Whereas both fatty acid biosynthesis and degradation contributed to S. enterica animal colonization, only fatty acid biosynthesis was required during plant colonization. Though serine biosynthesis was required in both hosts, S. enterica used different pathways within the serine metabolic network to achieve this outcome. Lastly, the metabolic network surrounding manA played different roles during colonization of each host. In animal models of infection, O-antigen production downstream of manA facilitates immune evasion. We discovered that manA contributed to S. enterica attachment, to seeds and germinated seedlings, and was essential for growth in early seedling exudates, when mannose is limited. However, only seedling attachment was linked to O-antigen production, indicating that manA played additional roles critical for plant colonization that were independent of surface polysaccharide production. The integrated view of S. enterica metabolism throughout its life cycle presented here provides insight on how metabolic versatility and adaption of known physiological pathways for alternate functions enable a zoonotic pathogen to thrive in niches spanning across multiple kingdoms of life.</p

    Table_1_Few Differences in Metabolic Network Use Found Between Salmonella enterica Colonization of Plants and Typhoidal Mice.DOCX

    No full text
    <p>The human enteric pathogen Salmonella enterica leads a cross-kingdom lifestyle, actively colonizing and persisting on plants in between animal hosts. One of the questions that arises from this dual lifestyle is how S. enterica is able to adapt to such divergent hosts. Metabolic pathways required for S. enterica animal colonization and virulence have been previously identified, but the metabolism of this bacterium on plants is poorly understood. To determine the requirements for plant colonization by S. enterica, we first screened a library of metabolic mutants, previously examined in a systemic mouse typhoidal model, for competitive plant colonization fitness on alfalfa seedlings. By comparing our results to those reported in S. enterica-infected murine spleens, we found that the presence of individual nutrients differed between the two host niches. Yet, similar metabolic pathways contributed to S. enterica colonization of both plants and animals, such as the biosynthesis of amino acids, purines, and vitamins and the catabolism of glycerol and glucose. However, utilization of at least three metabolic networks differed during the bacterium's plant- and animal-associated lifestyles. Whereas both fatty acid biosynthesis and degradation contributed to S. enterica animal colonization, only fatty acid biosynthesis was required during plant colonization. Though serine biosynthesis was required in both hosts, S. enterica used different pathways within the serine metabolic network to achieve this outcome. Lastly, the metabolic network surrounding manA played different roles during colonization of each host. In animal models of infection, O-antigen production downstream of manA facilitates immune evasion. We discovered that manA contributed to S. enterica attachment, to seeds and germinated seedlings, and was essential for growth in early seedling exudates, when mannose is limited. However, only seedling attachment was linked to O-antigen production, indicating that manA played additional roles critical for plant colonization that were independent of surface polysaccharide production. The integrated view of S. enterica metabolism throughout its life cycle presented here provides insight on how metabolic versatility and adaption of known physiological pathways for alternate functions enable a zoonotic pathogen to thrive in niches spanning across multiple kingdoms of life.</p

    Metabolic Remodeling during Biofilm Development of Bacillus subtilis

    No full text
    Bacterial biofilms are ubiquitous in natural environments and play an important role in many clinical, industrial, and ecological settings. Although much is known about the transcriptional regulatory networks that control biofilm formation in model bacteria such as Bacillus subtilis, very little is known about the role of metabolism in this complex developmental process. To address this important knowledge gap, we performed a time-resolved analysis of the metabolic changes associated with bacterial biofilm development in B. subtilis by combining metabolomic, transcriptomic, and proteomic analyses. Here, we report a widespread and dynamic remodeling of metabolism affecting central carbon metabolism, primary biosynthetic pathways, fermentation pathways, and secondary metabolism. This report serves as a unique hypothesis-generating resource for future studies on bacterial biofilm physiology. Outside the biofilm research area, this work should also prove relevant to any investigators interested in microbial physiology and metabolism.Biofilms are structured communities of tightly associated cells that constitute the predominant state of bacterial growth in natural and human-made environments. Although the core genetic circuitry that controls biofilm formation in model bacteria such as Bacillus subtilis has been well characterized, little is known about the role that metabolism plays in this complex developmental process. Here, we performed a time-resolved analysis of the metabolic changes associated with pellicle biofilm formation and development in B. subtilis by combining metabolomic, transcriptomic, and proteomic analyses. We report surprisingly widespread and dynamic remodeling of metabolism affecting central carbon metabolism, primary biosynthetic pathways, fermentation pathways, and secondary metabolism. Most of these metabolic alterations were hitherto unrecognized as biofilm associated. For example, we observed increased activity of the tricarboxylic acid (TCA) cycle during early biofilm growth, a shift from fatty acid biosynthesis to fatty acid degradation, reorganization of iron metabolism and transport, and a switch from acetate to acetoin fermentation. Close agreement between metabolomic, transcriptomic, and proteomic measurements indicated that remodeling of metabolism during biofilm development was largely controlled at the transcriptional level. Our results also provide insights into the transcription factors and regulatory networks involved in this complex metabolic remodeling. Following upon these results, we demonstrated that acetoin production via acetolactate synthase is essential for robust biofilm growth and has the dual role of conserving redox balance and maintaining extracellular pH. This report represents a comprehensive systems-level investigation of the metabolic remodeling occurring during B. subtilis biofilm development that will serve as a useful road map for future studies on biofilm physiology

    Rapid Phenotypic and Genotypic Diversification After Exposure to the Oral Host Niche in Candida albicans.

    No full text
    In vitro studies suggest that stress may generate random standing variation and that different cellular and ploidy states may evolve more rapidly under stress. Yet this idea has not been tested with pathogenic fungi growing within their host niche in vivo Here, we analyzed the generation of both genotypic and phenotypic diversity during exposure of Candida albicans to the mouse oral cavity. Ploidy, aneuploidy, loss of heterozygosity (LOH), and recombination were determined using flow cytometry and double digest restriction site-associated DNA sequencing. Colony phenotypic changes in size and filamentous growth were evident without selection and were enriched among colonies selected for LOH of the GAL1 marker. Aneuploidy and LOH occurred on all chromosomes (Chrs), with aneuploidy more frequent for smaller Chrs and whole Chr LOH more frequent for larger Chrs. Large genome shifts in ploidy to haploidy often maintained one or more heterozygous disomic Chrs, consistent with random Chr missegregation events. Most isolates displayed several different types of genomic changes, suggesting that the oral environment rapidly generates diversity de novo In sharp contrast, following in vitro propagation, isolates were not enriched for multiple LOH events, except in those that underwent haploidization and/or had high levels of Chr loss. The frequency of events was overall 100 times higher for C. albicans populations following in vivo passage compared with in vitro These hyper-diverse in vivo isolates likely provide C. albicans with the ability to adapt rapidly to the diversity of stress environments it encounters inside the host

    Supplemental Material for Forche et al., 2018

    No full text
    Figure S1 provides detailed overview of experiment. Supplemental figure 2 shows <i>GAL1</i> LOH frequencies <br>Supplemental figure 3 shows examples of single and double aneuploidies<br>Supplemental figure 4 shows frequency of whole Chr LOH<br>Supplemental figure 5 shows a map with LOH breaks along Chr1<br>Supplemental figure 6 shows frequency of recurrent missegregation events <br><div>Table S1 contains strains, primers and plasmids for construction of strain YJB9318<br>Table S2 contains overview of ploidy and colony phenotypes<br>Table S3 provides summary of all detected events<br>Table S4 shows position and frequency of break regions<br>Table S5 shows frequency of recurrent missegregation events<br>Table S6 shows summary of multiple event frequency by mouse</div><div>File S1 is the custom R script<br></div

    A metabolic pathway for catabolizing levulinic acid in bacteria.

    No full text
    Microorganisms can catabolize a wide range of organic compounds and therefore have the potential to perform many industrially relevant bioconversions. One barrier to realizing the potential of biorefining strategies lies in our incomplete knowledge of metabolic pathways, including those that can be used to assimilate naturally abundant or easily generated feedstocks. For instance, levulinic acid (LA) is a carbon source that is readily obtainable as a dehydration product of lignocellulosic biomass and can serve as the sole carbon source for some bacteria. Yet, the genetics and structure of LA catabolism have remained unknown. Here, we report the identification and characterization of a seven-gene operon that enables LA catabolism in Pseudomonas putida KT2440. When the pathway was reconstituted with purified proteins, we observed the formation of four acyl-CoA intermediates, including a unique 4-phosphovaleryl-CoA and the previously observed 3-hydroxyvaleryl-CoA product. Using adaptive evolution, we obtained a mutant of Escherichia coli LS5218 with functional deletions of fadE and atoC that was capable of robust growth on LA when it expressed the five enzymes from the P. putida operon. This discovery will enable more efficient use of biomass hydrolysates and metabolic engineering to develop bioconversions using LA as a feedstock
    corecore