4 research outputs found

    Sudden Cardiac Death Prediction in Arrhythmogenic Right Ventricular Cardiomyopathy: A Multinational Collaboration

    Get PDF
    BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is associated with ventricular arrhythmias (VA) and sudden cardiac death (SCD). A model was recently developed to predict incident sustained VA in patients with ARVC. However, since this outcome may overestimate the risk for SCD, we aimed to specifically predict life-threatening VA (LTVA) as a closer surrogate for SCD. METHODS: We assembled a retrospective cohort of definite ARVC cases from 15 centers in North America and Europe. Association of 8 prespecified clinical predictors with LTVA (SCD, aborted SCD, sustained, or implantable cardioverter-defibrillator treated ventricular tachycardia >250 beats per minute) in follow-up was assessed by Cox regression with backward selection. Candidate variables included age, sex, prior sustained VA (≥30s, hemodynamically unstable, or implantable cardioverter-defibrillator treated ventricular tachycardia; or aborted SCD), syncope, 24-hour premature ventricular complexes count, the number of anterior and inferior leads with T-wave inversion, left and right ventricular ejection fraction. The resulting model was internally validated using bootstrapping. RESULTS: A total of 864 patients with definite ARVC (40±16 years; 53% male) were included. Over 5.75 years (interquartile range, 2.77-10.58) of follow-up, 93 (10.8%) patients experienced LTVA including 15 with SCD/aborted SCD (1.7%). Of the 8 prespecified clinical predictors, only 4 (younger age, male sex, premature ventricular complex count, and number of leads with T-wave inversion) were associated with LTVA. Notably, prior sustained VA did not predict subsequent LTVA (P=0.850). A model including only these 4 predictors had an optimism-corrected C-index of 0.74 (95% CI, 0.69-0.80) and calibration slope of 0.95 (95% CI, 0.94-0.98) indicating minimal over-optimism. CONCLUSIO

    A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy

    Get PDF
    AIMS: Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC) is characterized by ventricular arrhythmias (VAs) and sudden cardiac death (SCD). We aimed to develop a model for individualized prediction of incident VA/SCD in ARVC patients. METHODS AND RESULTS: Five hundred and twenty-eight patients with a definite diagnosis and no history of sustained VAs/SCD at baseline, aged 38.2 ± 15.5 years, 44.7% male, were enrolled from five registries in North America and Europe. Over 4.83 (interquartile range 2.44-9.33) years of follow-up, 146 (27.7%) experienced sustained VA, defined as SCD, aborted SCD, sustained ventricular tachycardia, or appropriate implantable cardioverter-defibrillator (ICD) therapy. A prediction model estimating annual VA risk was developed using Cox regression with internal validation. Eight potential predictors were pre-specified: age, sex, cardiac syncope in the prior 6 months, non-sustained ventricular tachycardia, number of premature ventricular complexes in 24 h, number of leads with T-wave inversion, and right and left ventricular ejection fractions (LVEFs). All except LVEF were retained in the final model. The model accurately distinguished patients with and without events, with an optimism-corrected C-index of 0.77 [95% confidence interval (CI) 0.73-0.81] and minimal over-optimism [calibration slope of 0.93 (95% CI 0.92-0.95)]. By decision curve analysis, the clinical benefit of the model was superior to a current consensus-based ICD placement algorithm with a 20.6% reduction of ICD placements with the same proportion of protected patients (P < 0.001). CONCLUSION: Using the largest cohort of patients with ARVC and no prior VA, a prediction model using readily available clinical parameters was devised to estimate VA risk and guide decisions regarding primary prevention ICDs (www.arvcrisk.com)

    KBTBD13 is a novel cardiomyopathy gene

    Get PDF
    KBTBD13 variants cause nemaline myopathy type 6 (NEM6). The majority of NEM6 patients harbors the Dutch founder variant, c.1222C>T, p.Arg408Cys (KBTBD13 p.R408C). Although KBTBD13 is expressed in cardiac muscle, cardiac involvement in NEM6 is unknown. Here, we constructed pedigrees of three families with the KBTBD13 p.R408C variant. In 65 evaluated patients, 12% presented with left ventricle dilatation, 29% with left ventricular ejection fraction< 50%, 8% with atrial fibrillation, 9% with ventricular tachycardia, and 20% with repolarization abnormalities. Five patients received an implantable cardioverter defibrillator, three cases of sudden cardiac death were reported. Linkage analysis confirmed cosegregation of the KBTBD13 p.R408C variant with the cardiac phenotype. Mouse studies revealed that (1) mice harboring the Kbtbd13 p.R408C variant display mild diastolic dysfunction; (2) Kbtbd13-deficient mice have systolic dysfunction. Hence, (1) KBTBD13 is associated with cardiac dysfunction and cardiomyopathy; (2) KBTBD13 should be added to the cardiomyopathy gene panel; (3) NEM6 patients should be referred to the cardiologist

    Arrhythmogenic right ventricular dysplasia/cardiomyopathy: Pathogenic desmosome mutations in index-patients predict outcome of family screening: Dutch arrhythmogenic right ventricular dysplasia/cardiomyopathy genotype-phenotype follow-up study

    No full text
    Background-: Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an autosomal dominant inherited disease with incomplete penetrance and variable expression. Causative mutations in genes encoding 5 desmosomal proteins are found in ≈50% of ARVD/C index patients. Previous genotype-phenotype relation studies involved mainly overt ARVD/C index patients, so follow-up data on relatives are scarce. Methods and Results-: One hundred forty-nine ARVD/C index patients (111 male patients; age, 49±13 years) according to 2010 Task Force criteria and 302 relatives from 93 families (282 asymptomatic; 135 male patients; age, 44±13 years) were clinically and genetically characterized. DNA analysis comprised sequencing of plakophilin-2 (PKP2), desmocollin-2, desmoglein-2, desmoplakin, and plakoglobin and multiplex ligation-dependent probe amplification to identify large deletions in PKP2. Pathogenic mutations were found in 87 index patients (58%), mainly truncating PKP2 mutations, including 3 cases with multiple mutations. Multiplex ligation-dependent probe amplification revealed 3 PKP2 exon deletions. ARVD/C was diagnosed in 31% of initially asymptomatic mutation-carrying relatives and 5% of initially asymptomatic relatives of index patients without mutation. Prolonged terminal activation duration was observed more than negative T waves in V1 to V3, especially in mutation-carrying relatives <20 years of age. In 45% of screened families, ≥1 affected relatives were identified (90% with mutations). Conclusions-: Pathogenic desmosomal gene mutations, mainly truncating PKP2 mutations, underlie ARVD/C in the majority (58%) of Dutch index patients and even 90% of familial cases. Additional multiplex ligation-dependent probe amplification analysis contributed to discovering pathogenic mutations underlying ARVD/C. Discovering pathogenic mutations in index patients enables those relatives who have a 6-fold increased risk of ARVD/C diagnosis to be identified. Prolonged terminal activation duration seems to be a first sign of ARVD/C in young asymptomatic relatives
    corecore