1,030 research outputs found

    Consequences of a Change in the Galactic Environment of the Sun

    Get PDF
    The interaction of the heliosphere with interstellar clouds has attracted interest since the late 1920's, both with a view to explaining apparent quasi-periodic climate "catastrophes" as well as periodic mass extinctions. Until recently, however, models describing the solar wind - local interstellar medium (LISM) interaction self-consistently had not been developed. Here, we describe the results of a two-dimensional (2D) simulation of the interaction between the heliosphere and an interstellar cloud with the same properties as currently, except that the neutral H density is increased from the present value of n(H) ~ 0.2 cm^-3 to 10 cm^-3. The mutual interaction of interstellar neutral hydrogen and plasma is included. The heliospheric cavity is reduced considerably in size (approximately 10 - 14 AU to the termination shock in the upstream direction) and is highly dynamical. The interplanetary environment at the orbit of the Earth changes markedly, with the density of interstellar H increasing to ~2 cm^-3. The termination shock itself experiences periods where it disappears, reforms and disappears again. Considerable mixing of the shocked solar wind and LISM occurs due to Rayleigh-Taylor-like instabilities at the nose, driven by ion-neutral friction. Implications for two anomalously high concentrations of 10Be found in Antarctic ice cores 33 kya and 60 kya, and the absence of prior similar events, are discussed in terms of density enhancements in the surrounding interstellar cloud. The calculation presented here supports past speculation that the galactic environment of the Sun moderates the interplanetary environment at the orbit of the Earth, and possibly also the terrestrial climate.Comment: 23 pages, 2 color plates (jpg), 3 figures (eps

    Halos of Spiral Galaxies. III. Metallicity Distributions

    Full text link
    (Abriged) We report results of a campaign to image the stellar populations in the halos of highly inclined spiral galaxies, with the fields roughly 10 kpc (projected) from the nuclei. We use the F814W (I) and F606W (V) filters in the Wide Field Planetary Camera 2, on board the Hubble Space telescope. Extended halo populations are detected in all galaxies. The color-magnitude diagrams appear to be completely dominated by giant-branch stars, with no evidence for the presence of young stellar populations in any of the fields. We find that the metallicity distribution functions are dominated by metal-rich populations, with a tail extending toward the metal poor end. To first order, the overall shapes of the metallicity distribution functions are similar to what is predicted by simple, single-component model of chemical evolution with the effective yields increasing with galaxy luminosity. However, metallicity distributions significantly narrower than the simple model are observed for a few of the most luminous galaxies in the sample. It appears clear that more luminous spiral galaxies also have more metal-rich stellar halos. The increasingly significant departures from the closed-box model for the more luminous galaxies indicate that a parameter in addition to a single yield is required to describe chemical evolution. This parameter, which could be related to gas infall or outflow either in situ or in progenitor dwarf galaxies that later merge to form the stellar halo, tends to act to make the metallicity distributions narrower at high metallicity.Comment: 20 pages, 8 figures (ApJ, in press

    Chemical Evolution of the Galaxy Based on the Oscillatory Star Formation History

    Get PDF
    We model the star formation history (SFH) and the chemical evolution of the Galactic disk by combining an infall model and a limit-cycle model of the interstellar medium (ISM). Recent observations have shown that the SFH of the Galactic disk violently variates or oscillates. We model the oscillatory SFH based on the limit-cycle behavior of the fractional masses of three components of the ISM. The observed period of the oscillation (∼1\sim 1 Gyr) is reproduced within the natural parameter range. This means that we can interpret the oscillatory SFH as the limit-cycle behavior of the ISM. We then test the chemical evolution of stars and gas in the framework of the limit-cycle model, since the oscillatory behavior of the SFH may cause an oscillatory evolution of the metallicity. We find however that the oscillatory behavior of metallicity is not prominent because the metallicity reflects the past integrated SFH. This indicates that the metallicity cannot be used to distinguish an oscillatory SFH from one without oscillations.Comment: 21 pages LaTeX, to appear in Ap

    GAS CHROMATOGRAPHIC ANALYSIS FOR TRACE AMOUNTS OF WATER IN SILICONES.

    Get PDF

    The stellar populations of spiral disks.II Measuring and modeling the radial distribution of absorption spectral indices

    Get PDF
    The radial distributions of the Mg2 and Fe5270 Lick spectral indices have been measured to large radial distances on the disks of NGC 4303 and NGC 4535 using an imaging technique based on interference filters. These data, added to those of NGC 4321 previously published in Paper I of this series are used to constraint chemical (multiphase) evolutionary models for these galaxies. Because the integrated light of a stellar disk is a time average over the history of the galaxy weighted by the star formation rate, these constraints complement the information on chemical gradients provided by the study of HII regions which, by themselves, can only provide the alpha-elements abundance accumulate over the life of the galaxy. The agreement between the observations and the model predictions shown here lends confidence to the models which are then used to describe the time evolution of galaxy parameters such as star formation rates, chemical gradients, and gradients in the mean age of the stellar population.Comment: to be published in Astrophysical Journa

    XMM-Newton observation of PSR B2224+65 and its jet

    Full text link
    We have investigated the pulsar PSR B2224+65 and its X-ray jet with XMM-Newton. Apart from the long X-ray jet which is almost perpendicular to the direction of proper motion, a putative extended feature at the pulsar position, which oriented in the opposite direction of the proper motion, is also suggested by this deep X-ray imaging. Non-detection of any coherent X-ray pulsation disfavors the magnetospheric origin of the X-rays observed from the position of PSR B2224+65 and hence suggest that the interpretation of pulsar wind nebula is more viable. We have also probed the origin of PSR B2224+65 and identified a runaway star, which possibly originated from the Cygnus OB9 association, as a candidate for the former binary companion of the neutron star's progenitor.Comment: 24 pages, 8 figures, 3 tables, accepted for publication in Ap

    Lambda-Cold Dark Matter, Stellar Feedback, and the Galactic Halo Abundance Pattern

    Get PDF
    (Abridged) The hierarchical formation scenario for the stellar halo requires the accretion and disruption of dwarf galaxies, yet low-metallicity halo stars are enriched in alpha-elements compared to similar, low-metallicity stars in dwarf spheroidal (dSph) galaxies. We address this primary challenge for the hierarchical formation scenario for the stellar halo by combining chemical evolution modelling with cosmologically-motivated mass accretion histories for the Milky Way dark halo and its satellites. We demonstrate that stellar halo and dwarf galaxy abundance patterns can be explained naturally within the LCDM framework. Our solution relies fundamentally on the LCDM model prediction that the majority of the stars in the stellar halo were formed within a few relatively massive, ~5 x 10^10 Msun, dwarf irregular (dIrr)-size dark matter halos, which were accreted and destroyed ~10 Gyr in the past. These systems necessarily have short-lived, rapid star formation histories, are enriched primarily by Type II supernovae, and host stars with enhanced [a/Fe] abundances. In contrast, dwarf spheroidal galaxies exist within low-mass dark matter hosts of ~10^9 Msun, where supernovae winds are important in setting the intermediate [a/Fe] ratios observed. Our model includes enrichment from Type Ia and Type II supernovae as well as stellar winds, and includes a physically-motivated supernovae feedback prescription calibrated to reproduce the local dwarf galaxy stellar mass - metallicity relation. We use representative examples of the type of dark matter halos we expect to host a destroyed ``stellar halo progenitor'' dwarf, a surviving dIrr, and a surviving dSph galaxy, and show that their derived abundance patterns, stellar masses, and gas masses are consistent with those observed for each type of system.Comment: 10 pages, 3 figures, version accepted by Ap

    Galactic chemical evolution : Carbon through zinc

    Get PDF
    Copyright © 2006. The American Astronomical Society. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the final published version of the work, which was originally published at https://doi.org/10.1086/508914We calculate the evolution of heavy-element abundances from C to Zn in the solar neighborhood, adopting our new nucleosynthesis yields. Our yields are calculated for wide ranges of metallicity (Z = 0-Z circle dot) and the explosion energy (normal supernovae and hypernovae), based on the light-curve and spectra fitting of individual supernovae. The elemental abundance ratios are in good agreement with observations. Among the alpha-elements, O, Mg, Si, S, and Ca show a plateau at [Fe/H] <= -1, while Ti is underabundant overall. The observed abundance of Zn ([Zn/Fe] similar to 0) can be explained only by the high-energy explosion models, as it requires a large contribution of hypernovae. The observed decrease in the odd-Z elements (Na, Al, and Cu) toward low [Fe/H] is reproduced by the metallicity effect on nucleosynthesis. The iron-peak elements (Cr, Mn, Co, and Ni) are consistent with the observed mean values at -2.5 less than or similar to [Fe/H] less than or similar to -1, and the observed trend at the lower metallicity can be explained by the energy effect. We also show the abundance ratios and the metallicity distribution functions of the Galactic bulge, halo, and thick disk. Our results suggest that the formation timescale of the thick disk is similar to 1-3 Gyr.Peer reviewe

    Corotation: its influence on the chemical abundance pattern of the Galaxy

    Full text link
    A simple theory for the chemical enrichment of the Galaxy which takes into account the effects of spiral arms on heavy elements output was developed. In the framework of the model with the corotation close to the position of the Sun in the Galaxy the observed abundance features are explained.Comment: LaTeX, 6 pages, 5 jpg figures, uses aastex.sty, submitted to ApJ Let
    • …
    corecore