19 research outputs found

    ABDOMINAL PRESSURIZATION AND MUSCLE ACTIVATION DURING SUPINE TRUNK CURLS

    Get PDF
    Trunk curls are common exercises in sports training. A multitude of practical recommendations exist on how to best perform this type of exercise to reach a specific effect. Since abdominal muscles can contribute to breathing, it was thought of interest to study the effects of systematic variations in breathing on the pattern of abdominal muscle activation during trunk curls. Of particular interest was the influence of fluctuations in the intra-abdominal pressure (IAP), since changes in IAP have been shown to be coupled to the activation of the innermost abdominal muscle, the Transversus abdominis (TrA), and also to be able to contribute to an extensor moment of the trunk

    CONTRIBUTIONS TO CLUB VELOCITY IN GOLF SWINGS TO SUBMAXIMAL AND MAXIMAL SHOT DISTANCES

    Get PDF
    The contribution of joint rotations to endpoint velocity was investigated in golf shots to submaximal and maximal shot distances using a 41degrees of freedom (DOF) kinematic model. A subset of 16 DOFs was found to explain 97%-99% of endpoint velocity regulation at club–ball contact. The largest contributors, for both groups at every shot condition, were pelvis and torso twist rotation among the most proximal DOFs, elbow pronation/supination and wrist flexion/extension among DOFs in the left arm, and shoulder internal/external rotation and wrist flexion/extension among DOFs in the right arm. The contributions from pelvis obliquity, left wrist flexion/extension, left wrist ulnar/radial deviation and right shoulder flexion/extension differed significantly between the advanced and intermediate group

    ANALYSIS OF ELITE GOLFERS’ KINEMATIC SEQUENCE IN FULL-SWING AND PARTIAL SWING SHOTS

    Get PDF
    INTRODUCTION: Proximal-to-distal sequencing (PDS) has been observed in full-swing golf shots as in most throwing and striking skills, where the main goal is to maximize speed in the most distal segment of an open-link system (Zheng et al., 2007). Although PDS primarily is associated with mechanical advantage when the speed requirement is high, this temporal order has also been found and ascribed various merits in relatively slow multi-joint movements (Furuya & Kinoshita, 2007). However, no research to date has examined the sequencing pattern in partial golf shots to submaximal distances. The purpose here was to investigate whether PDS is a common characteristic also in partial swing shots of skilled golf players. METHODS: A total of 47 golfers were investigated, 11 male tournament professionals, 23 male amateurs (HCP 0 ± 2 strokes), and 13 female amateurs (HCP -2 ± 2 strokes) performed partial shots with a wedge to targets at three discrete distances (40, 55 and 70 m), and full-swing shots with a five iron as well as a driver in the same direction for maximal distance. Pelvis, upper torso, and hand movement were recorded in 3D with an electromagnetic tracking system (Polhemus) at 240 Hz. The magnitude of the resultant angular velocity vector of each segment was used to examine the sequencing pattern and the angular speed of segment motions. Movement onset, peak amplitude and time for peak amplitude were analyzed in separate repeated-measure ANOVAs with pre-planned Bonferroni corrected pairwise comparisons. Significance level was set at P < 0.05. RESULTS: This study showed a significant proximal-to-distal temporal relationship of movement onset and maximum angular speed at the pelvis, upper torso and hand segments in the golf swing. The same temporal structure was evident in all test conditions, as well as among different genders and levels of expertise. However, the increment in angular speed from the upper torso to hand were significantly larger for male professionals than for female amateurs at all shot conditions and significantly larger for male amateurs than for female amateurs at full-swing shots. DISCUSSION AND CONCLUSION: While there exists a body of evidence in support for PDS providing mechanical advantages when the highest possible ball speed is to be achieved, merits of PDS in partial golf shots are less evident. However, it has been proposed that a given torque or force can be more accurately generated by a stronger muscle than a weaker muscle (Hamilton et al., 2004) and a potential role of the observed sequencing pattern in partial shots of skilled golf players could be to improve accuracy and minimize the speed-accuracy tradeoff. REFERENCES: Zheng N., Barrentine S.W., Fleizig G.S., Andrews J.R. (2008). Kinematic analysis of swing in pro and amateur golfers, International Journal of Sports Medicine, 6, 487-493. Furuya S., Kinoshita H. (2007). Roles of proximal-to-distal sequential organization of the upper limb segments in striking the keys by expert pianists, Neuroscience Letters, 421, 264-269. Hamilton A., Jones K.E., Wolpert D.M. (2004). The scaling of motor noise with muscle strength and motor unit number in humans, Experimental Brain Research, 157, 417-430

    Bimanual movement control : insights from golf ball striking

    No full text
    The aim of this thesis was to gain insight into the control of complex bimanual movements that are both fast and accurate. For this, skilled golf ball striking was used as a model in two experimental studies (I and III). The thesis also includes two methodological studies (II and IV), intended to assist in present and future investigation on bimanual movement control. Study I shows a common kinematic proximal-to-distal sequencing (PDS) pattern and speed-summation effect in skilled golf players of both genders. Using a common PDS movement strategy in golf ball striking at various endpoint speeds appears beneficial from mechanical and control points of view and could serve the purpose of providing both high speed and accuracy. In Study II a general expression for mobility was derived, which can be applied for extending the theory of mobility to double-handed grasping and manipulation. Study III found that kinematic contributions to endpoint velocity at slow, medium and fast test conditions were provided by the same subset of possible joint rotations. However, the specific subset differed between levels of expertise. The inertial behavior of the linkage arms-hands-club promoted movement parallel to and resisted movement orthogonal to the club path close to ball impact, at all endpoint speeds investigated. These findings extend previous knowledge regarding endpoint control in single-limb movements. Moreover, results regarding movement organization in Study I together with results in Study III regarding inertial behavior suggest the existence of limb configurations able to simultaneously exploit intersegmental dynamics and endpoint mobility in a proficient manner. To make the control of intersegmental dynamics in bimanual striking transparent, however, torques originating from segmental in teractions should be determined. However, when hands are placed next to each other or are overlapping it becomes challenging to find placements for standard force sensors which allow separation of right and left hand forces without altering normal behavior. As partially explored in Study IV, pressure mapping of the right hand together with inverse dynamics calculations for the golf club can potentially provide an adequate solution

    Analysis of elite golfers' kinematic sequence in full and partial shots

    No full text
    AimThe purposes of the present study were, to determine if partial and full-swing shots performed by skilled golfers were organized in a proximal-to-distal sequencing (PDS) pattern and to examine the speed-summation effect at pelvis, upper torso and hand segments. MethodThree-dimensional kinematic recordings of pelvis, upper torso, and hand were made while forty-seven skilled golfers stroke three different clubs a range of submaximal and maximal shot distances. ResultsThis study showed a clear proximal-to-distal temporal relationship of movement onset and peak angular speed at the pelvis, upper torso and hand segments in the golf swing. The same temporal structure was evident at all test conditions, among different gender and level of expertise. Further, results revealed a summation effect of angular velocity from proximal-to-distal, with each succeeding segment generating a larger rotational speed than the proximal segment. However, the increment in speed from proximal-to-distal was different among gender and level of expertise. Conclusions The temporal relation of segment kinematics suggests a common PDS organization in partial and full-swing shots for skilled golfers. A speed-summation effect of segmental angular speed indicates that participants did utilize interaction torques in a proximal-to-distal manner. The role of the observed PDS organization and speed-summation effect in partial shots might be to improve accuracy and, potentially, golfers should concentrate on speed initially in learning the golf swing

    Bimanual movement control : insights from golf ball striking

    Get PDF
    The aim of this thesis was to gain insight into the control of complex bimanual movements that are both fast and accurate. For this, skilled golf ball striking was used as a model in two experimental studies (I and III). The thesis also includes two methodological studies (II and IV), intended to assist in present and future investigation on bimanual movement control. Study I shows a common kinematic proximal-to-distal sequencing (PDS) pattern and speed-summation effect in skilled golf players of both genders. Using a common PDS movement strategy in golf ball striking at various endpoint speeds appears beneficial from mechanical and control points of view and could serve the purpose of providing both high speed and accuracy. In Study II a general expression for mobility was derived, which can be applied for extending the theory of mobility to double-handed grasping and manipulation. Study III found that kinematic contributions to endpoint velocity at slow, medium and fast test conditions were provided by the same subset of possible joint rotations. However, the specific subset differed between levels of expertise. The inertial behavior of the linkage arms-hands-club promoted movement parallel to and resisted movement orthogonal to the club path close to ball impact, at all endpoint speeds investigated. These findings extend previous knowledge regarding endpoint control in single-limb movements. Moreover, results regarding movement organization in Study I together with results in Study III regarding inertial behavior suggest the existence of limb configurations able to simultaneously exploit intersegmental dynamics and endpoint mobility in a proficient manner. To make the control of intersegmental dynamics in bimanual striking transparent, however, torques originating from segmental in teractions should be determined. However, when hands are placed next to each other or are overlapping it becomes challenging to find placements for standard force sensors which allow separation of right and left hand forces without altering normal behavior. As partially explored in Study IV, pressure mapping of the right hand together with inverse dynamics calculations for the golf club can potentially provide an adequate solution

    Effects of different recovery periods following a very intense interval training session on strength and explosive performance during a power training session in elite female ice hockey players

    No full text
    This study investigates how different recovery periods after high-intensity interval training (HIIT) affects strength and explosive performance during a power training (PT) session. Fifteen female elite ice hockey players (22.5 ± 5.2 years) performed PT, including 6 sets of 2 repetitions (reps) of isometric leg press (ILP) and 6 sets of 3 reps of countermovement jump (CMJ), following a rested state and 10 minutes, 6 hours, or 24 hours after HIIT (3 sets of 8 × 20 seconds at 115% of power output at maximal oxygen consumption on a cycle ergometer). Peak force (PF) and peak rate of force development (pRFD) were measured during the ILP. Peak jump height (PJH), concentric phase duration (ConDur), eccentric phase duration, total duration, peak power (PP), velocity at peak power (V@PP), and force at peak power were measured during CMJ. The following variables were significantly reduced when only a 10-minute recovery period was allowed between HIIT and PT: PF was reduced by 7% (p &lt; 0.001), pRFD by 17% (p &lt; 0.001), PJH by 4% (p &lt; 0.001), ConDur by 4% (p = 0.018), PP by 2% (p = 0.016), and V@PP by 2% (p = 0.007). None of the measured variables were reduced when PT was performed 6 and 24 hours after HIIT. We conclude that strength and explosive performance of elite female ice hockey players is reduced 10 minutes after HIIT but not negatively affected if a rest period of at least 6 hours is provided between HIIT and PT.At the time of Henrik Petré's dissertation this was an accepted manuscript, awaiting publication in the Journal of Strength and Conditioning Research.</p
    corecore