3,499 research outputs found
Where do "red and dead" early-type void galaxies come from?
Void regions of the Universe offer a special environment for studying
cosmology and galaxy formation, which may expose weaknesses in our
understanding of these phenomena. Although galaxies in voids are observed to be
predominately gas rich, star forming and blue, a sub-population of bright red
void galaxies can also be found, whose star formation was shut down long ago.
Are the same processes that quench star formation in denser regions of the
Universe also at work in voids?
We compare the luminosity function of void galaxies in the 2dF Galaxy
Redshift Survey, to those from a galaxy formation model built on the Millennium
Simulation. We show that a global star formation suppression mechanism in the
form of low luminosity "radio mode" AGN heating is sufficient to reproduce the
observed population of void early-types. Radio mode heating is environment
independent other than its dependence on dark matter halo mass, where, above a
critical mass threshold of approximately M_vir~10^12.5 M_sun, gas cooling onto
the galaxy is suppressed and star formation subsequently fades. In the
Millennium Simulation, the void halo mass function is shifted with respect to
denser environments, but still maintains a high mass tail above this critical
threshold. In such void halos, radio mode heating remains efficient and red
galaxies are found; collectively these galaxies match the observed space
density without any modification to the model. Consequently, galaxies living in
vastly different large-scale environments but hosted by halos of similar mass
are predicted to have similar properties, consistent with observations.Comment: 6 pages, 3 figures, accepted MNRA
Remodelling sheltered housing and residential care homes to extra care housing: advice to housing and care providers
Cosmic Voids and Galaxy Bias in the Halo Occupation Framework
(Abridged) We investigate the power of void statistics to constrain galaxy
bias and the amplitude of dark matter fluctuations. We use the halo occupation
distribution (HOD) framework to describe the relation between galaxies and dark
matter. After choosing HOD parameters that reproduce the mean space density
n_gal and projected correlation function w_p measured for galaxy samples with
M_r<-19 and M_r<-21 from the Sloan Digital Sky Survey (SDSS), we predict the
void probability function (VPF) and underdensity probability function (UPF) of
these samples by populating the halos of a large, high-resolution N-body
simulation. If we make the conventional assumption that the HOD is independent
of large scale environment at fixed halo mass, then models constrained to match
n_gal and w_p predict nearly identical void statistics, independent of the
scatter between halo mass and central galaxy luminosity or uncertainties in HOD
parameters. Models with sigma_8=0.7 and sigma_8=0.9 also predict very similar
void statistics. However, the VPF and UPF are sensitive to environmental
variations of the HOD in a regime where these variations have little impact on
w_p. For example, doubling the minimum host halo mass in regions with large
scale (5 Mpc/h) density contrast delta<-0.65 has a readily detectable impact on
void probabilities of M_r<-19 galaxies, and a similar change for delta<-0.2
alters the void probabilities of M_r<-21 galaxies at a detectable level. The
VPF and UPF provide complementary information about the onset and magnitude of
density- dependence in the HOD. By detecting or ruling out HOD changes in low
density regions, void statistics can reduce systematic uncertainties in the
cosmological constraints derived from HOD modeling, and, more importantly,
reveal connections between halo formation history and galaxy properties.Comment: emulateapj, 16 pages, 13 figure
The Abacus Cosmos: A Suite of Cosmological N-body Simulations
We present a public data release of halo catalogs from a suite of 125
cosmological -body simulations from the Abacus project. The simulations span
40 CDM cosmologies centered on the Planck 2015 cosmology at two mass
resolutions, and , in and
boxes, respectively. The boxes are phase-matched to
suppress sample variance and isolate cosmology dependence. Additional volume is
available via 16 boxes of fixed cosmology and varied phase; a few boxes of
single-parameter excursions from Planck 2015 are also provided. Catalogs
spanning to are available for friends-of-friends and Rockstar
halo finders and include particle subsamples. All data products are available
at https://lgarrison.github.io/AbacusCosmosComment: 13 pages, 9 figures, 3 tables. Additional figures added for mass
resolution convergence tests, and additional redshifts added for existing
tests. Matches ApJS accepted versio
Angular Momentum Evolution of Stars in the Orion Nebula Cluster
(Abridged) We present theoretical models of stellar angular momentum
evolution from the Orion Nebula Cluster (ONC) to the Pleiades and the Hyades.
We demonstrate that observations of the Pleiades and Hyades place tight
constraints on the angular momentum loss rate from stellar winds. The observed
periods, masses and ages of ONC stars in the range 0.2--0.5 M, and the
loss properties inferred from the Pleiades and Hyades stars, are then used to
test the initial conditions for stellar evolution models. We use these models
to estimate the distribution of rotational velocities for the ONC stars at the
age of the Pleiades (120 Myr). The modeled ONC and observed Pleiades
distributions of rotation rates are not consistent if only stellar winds are
included. In order to reconcile the observed loss of angu lar momentum between
these two clusters, an extrinsic loss mechanism such as protostar-accretion
disk interaction is required. Our model, which evolves the ONC stars with a
mass dependent saturation threshold normalized such that at 0.5 \m, and which includes a distribution of disk lifetimes
that is uniform over the range 0--6 Myr, is consistent with the Pleiades. This
model for disk-locking lifetimes is also consistent with inferred disk
lifetimes from the percentage of stars with infrared excesses observed in young
clusters. Different models, using a variety of initial period distributions and
different maximum disk lifetimes, are also compared to the Pleiades. For
disk-locking models that use a uniform distribution of disk lifetimes over the
range 0 to , the acceptable range of the maximum lifetime is Myr.Comment: 21 pages, 7 figures, submitted to Ap
Halo-model Analysis of the Clustering of Photometrically Selected Galaxies from SDSS
We measure the angular 2-point correlation functions of galaxies in a volume
limited, photometrically selected galaxy sample from the fifth data release of
the Sloan Digital Sky Survey. We split the sample both by luminosity and galaxy
type and use a halo-model analysis to find halo-occupation distributions that
can simultaneously model the clustering of all, early-, and late-type galaxies
in a given sample. Our results for the full galaxy sample are generally
consistent with previous results using the SDSS spectroscopic sample, taking
the differences between the median redshifts of the photometric and
spectroscopic samples into account. We find that our early- and late- type
measurements cannot be fit by a model that allows early- and late-type galaxies
to be well-mixed within halos. Instead, we introduce a new model that
segregates early- and late-type galaxies into separate halos to the maximum
allowed extent. We determine that, in all cases, it provides a good fit to our
data and thus provides a new statistical description of the manner in which
early- and late-type galaxies occupy halos.Comment: Accepted to MNRAS 11 pages, 6 figure
Evolution of the Clustering of Photometrically Selected SDSS Galaxies
We measure the angular auto-correlation functions (w) of SDSS galaxies
selected to have photometric redshifts 0.1 < z < 0.4 and absolute r-band
magnitudes Mr < -21.2. We split these galaxies into five overlapping redshift
shells of width 0.1 and measure w in each subsample in order to investigate the
evolution of SDSS galaxies. We find that the bias increases substantially with
redshift - much more so than one would expect for a passively evolving sample.
We use halo-model analysis to determine the best-fit
halo-occupation-distribution (HOD) for each subsample, and the best-fit models
allow us to interpret the change in bias physically. In order to properly
interpret our best-fit HODs, we convert each halo mass to its z = 0 passively
evolved bias (bo), enabling a direct comparison of the best-fit HODs at
different redshifts. We find that the minimum halo bo required to host a galaxy
decreases as the redshift decreases, suggesting that galaxies with Mr < -21.2
are forming in halos at the low-mass end of the HODs over our redshift range.
We use the best-fit HODs to determine the change in occupation number divided
by the change in mass of halos with constant bo and we find a sharp peak at bo
~ 0.9 - corresponding to an average halo mass of ~ 10^12Msol/h. We thus present
the following scenario: the bias of galaxies with Mr < -21.2 decreases as the
Universe evolves because these galaxies form in halos of mass ~ 10^12Msol/h
(independent of redshift), and the bias of these halos naturally decreases as
the Universe evolves.Comment: 17 pages, 14 figures, matches version accepted for publication in
MNRA
A Stellar Mass Threshold for Quenching of Field Galaxies
We demonstrate that dwarf galaxies (10^7 < M_stellar < 10^9 Msun) with no
active star formation are extremely rare (<0.06%) in the field. Our sample is
based on the NASA-Sloan Atlas which is a re-analysis of the Sloan Digital Sky
Survey Data Release 8. We examine the relative number of quenched versus star
forming dwarf galaxies, defining quenched galaxies as having no Halpha emission
(EW_Halpha < 2 AA) and a strong 4000AA-break. The fraction of quenched dwarf
galaxies decreases rapidly with increasing distance from a massive host,
leveling off for distances beyond 1.5 Mpc. We define galaxies beyond 1.5 Mpc of
a massive host galaxy to be in the field. We demonstrate that there is a
stellar mass threshold of M_stellar < 1.0x10^9 Msun below which quenched
galaxies do not exist in the field. Below this threshold, we find that none of
the 2951 field dwarf galaxies are quenched; all field dwarf galaxies show
evidence for recent star formation. Correcting for volume effects, this
corresponds to a 1-sigma upper limit on the quenched fraction of 0.06%. In more
dense environments, quenched galaxies account for 23% of the dwarf population
over the same stellar mass range. The majority of quenched dwarf galaxies
(often classified as dwarf elliptical galaxies) are within 2 virial radii of a
massive galaxy, and only a few percent of quenched dwarf galaxies exist beyond
4 virial radii. Thus, for galaxies with stellar mass less than 1.0x10^9 Msun,
ending star-formation requires the presence of a more massive neighbor,
providing a stringent constraint on models of star formation feedback.Comment: 9 pages, 6 figures, accepted to Ap
Redshift space 21 cm power spectra from reionization
We construct a simple but self-consistent analytic ionization model for rapid
exploration of 21cm power spectrum observables in redshift space. It is fully
described by the average ionization fraction and HII patch size
and has the flexibility to accommodate various reionization scenarios. The
model associates ionization regions with dark matter halos of the number
density required to recover and treats redshift space distortions
self-consistently with the virial velocity of such halos. Based on this model,
we study the line-of-sight structures in the brightness fluctuations since they
are the most immune to foreground contamination. We explore the degeneracy
between the HII patch size and nonlinear redshift space distortion in the one
dimensional power spectrum. We also discuss the limitations experimental
frequency and angular resolutions place on their distinguishability. Angular
resolution dilutes even the radial signal and will be a serious limitation for
resolving small bubbles before the end of reionization. Nonlinear redshift
space distortions suggest that a resolution of order 1 -- 10\arcsec and a
frequency resolution of 10kHz will ultimately be desirable to extract the full
information in the radial field at . First generation instruments
such as LOFAR and MWA can potentially measure radial HII patches of a few
comoving Mpc and larger at the end of reionization and are unlikely to be
affected by nonlinear redshift space distortions.Comment: 13 pages, 10 figures. Revised version. Includes minor changes. Adds
appendix on accomodating a distribution of radii for the HII regions.
Accepted for publication in Ap
- …
