600 research outputs found

    Population Dynamics and Clonal Comparisons of Cowpea Aphid (Homoptera: Aphididae) on Resistant and Susceptible Cowpea Cultivars

    Get PDF
    Survivorship, growth, and reproductive performance of cowpea aphid, Aphis craccivora Koch, were studied on whole plants and excised plant tissues of aphid-resistant (‘ICV-12') and aphid-susceptible (‘ICV-1') cultivars of cowpea, Vigna unguiculata (L.) Walp. In a greenhouse study, clonal populations derived from individuals that were originally collected from 5 different locations were studied on plants of the 2 cultivars to assess possible development of aphid biotypes. In the laboratory, performance of 1 clone was studied on excised leaves, flowers, and pods to assess tissue localization and effect of injury on ICV-12 resistance. Aphid life table parameters measured included survivorship, reproductive period, intrinsic rate of increase, net rate of reproduction, number of generations and generation time. Aphid reproductive performance and life table parameters were significantly reduced on seedlings and excised tissues of ICV-12 plants compared with ICV-1. Survivorship, intrinsic rate of increase and net rate of reproduction of populations were most adversely affected. Antibiosis appeared to contribute to aphid resistance in ICV-12. Effects of excised ICV-12 foliage were stronger than those of flowers or pods. Thus, the resistant factor in ICV-12 apparently was based in seedling foliage. However, there were no differences among excised tissues of ICV-1. Trends in the results indicated that there was no variability among the different populations in their demographic statistics on each cultivar. Thus, there did not seem to be biotype development or breakdown of ICV-12 resistance in any of the A. craccivora population

    Effects of infestation by cowpea aphid (Homoptera: Aphididae) on different growth stages of resistant and susceptible cowpea cultivars

    Get PDF
    Field studies were conducted to characterise the effects of infestations by adult and nymphal stages of cowpea aphid, Aphis craccivora Koch, on the growth and yield of cowpea, Vigna unguiculata (L.) Walp. Seedling, flowering, and podding stage plants of aphid-resistant (cv. ICV-12) and aphid-susceptible (cv. ICV-1) cowpea cultivars were used in the studies. Four treatments (consisting of infestations with adult and nymphal aphids, caged controls and uncaged controls) were administered on plants for 22 days post-treatment. Eight parameters of crop success were measured: extended leaf heights (ELH); plant mortality; incidence of sooty mould; incidence and abundance of natural enemy species; crop growth parameters (net assimilation rate, [NAR] in g/ dm2/day, and crop growth rate [CGR] in g/dm2 land surface/day); and plant yields (seeds per pod, weight per seed). Data were analysed using analysis of variance (ANOVA), orthogonal contrasts and 95% confidence intervals (C.I.). There were no significant (P > 0.05) differences between adult and nymphal infestations or between caged and uncaged controls, so the respective sets of data were combined for comparisons of aphid infestations with control treatments. Infestations caused severe plant stunting and other growth deformities, drastic yield reductions, higher plant mortality, greater incidence of natural enemies and abundance of Cheilomenes spp. on cv. ICV-1 than on cv. ICV-12, and on infested and uninfested plants. Aphid infestations did not significantly affect the incidence of sooty mould on plants of cv. ICV-12 or cv. ICV-

    Pattern and rate of within-field dispersal and bionomics of the cowpea aphid, Aphis craccivora (Aphididae), on selected cowpea cultivars

    Get PDF
    Comparative field studies were conducted during the rainy and dry seasons at the Mbita Point Field Station of ICIPE in southwestern Kenya, to investigate the pattern and rate of dispersal of Aphis craccivora on aphid-resistant (ICV-12) and aphid-susceptible (ICV-1) cowpea cultivars in relation to key weather factors. The effects of the dispersal trends on crop performance and aphid population dynamics were analysed. Treatments consisted of initial aphid releases at the north, south, west, east and centre of test plots and uninfested controls maintained on plants for 22 days. Parameters recorded included: pattern (direction of spread of aphids) and rate (number of aphid-infested plants at a given time) in test plots; crop growth and yields and associated factors such as incidence of sooty mould and plant mortality, and aphid density and associated factors, including the incidence of natural enemy species, particularly coccinellids. Dispersal was fastest when releases were made in the west, north and centre of plots, and resulted in adveVse effects on ICV-1 growth and yields. Infestations of ICV-12 did not significantly affect crop performance. There was an apparent direct, positive relationship between wind direction and pattern of spread of aphid infestations, but this pattern was more apparent during the rainy season, when wind speeds were higher, than during the dry season. The incidence of natural enemy species correlated with the spread of aphid infestations, while the abundance of coccinellids correlated with aphid densit

    Phytotoxicity of Air Pollutants

    Full text link

    Stylet Penetration Activities by Aphis craccivora (Homoptera: Aphididae) on Plants and Excised Plant Parts of Resistant and Susceptible Cultivars of Cowpea (Leguminosae)

    Get PDF
    Direct current electrical penetration graphs (DC-EPGs) were used to analyze the stylet penetration activities of cowpea aphid, Aphis craccivora Koch, on plants of aphid-resistant (ICV-12) and aphid-susceptible (ICV-1) cultivars of cowpea, Vigna unguiculata (L.) Walpers. Aphid stylet penetration on whole plants at seedling, flowering, and podding stages were studied in one experiment, and in another experiment excised leaves from seedling plants, excised flowers, and excised pods were tested. Electrical signals depicting the aphid stylet penetration activities on their host plants were amplified, recorded onto a paper chart recorder, and scored for specific waveform patterns. Compared with similar tissues of ICV-1, intact leaves and excised seedling foliage of ICV-12 plants caused severe disruption of aphid stylet penetration activities. This was manifested in frequent penetration attempts that were abruptly terminated or unsustained, and in shorter penetration times, signifying antixenosis resistance in ICV-12. There was reduced occurrence of E waveforms, which represent stylet activity in plant vascular tissues. Also, prior exposure of test aphids to plants of one cultivar did not significantly influence the expected stylet penetration activities on plants of the other cultivar. Overall, ICV-12 exhibited high levels of resistance against A. craccivor

    Performance of a North American Field Population and a Laboratory Colony of the Potato Tuberworm, Phthorimaea operculella, on Foliage of Resistant and Susceptible Potato Clones

    Get PDF
    Foliar resistance of two potato clones was tested against a Columbia Basin field population (CBFP) and a Colorado laboratory colony (COLC) of the potato tuberworm, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). The first clone was a cross of a cultivated potato, Solanum tuberosum L. (Solanales: Solanaceae), and a wild potato, Solanum berthaultii Hawkes (Q 174-2); the second clone was cv. Allegany, S. tuberosum L.. In no-choice assays, defoliation by P. operculella larvae of COLC and CBFP did not differ on Allegany and Q174-2. Larval weight and production of COLC and CBFP colonies were similarly reduced on Q174-2 compared to cv. Allegany, although larval weights and production of the CBFP population were slightly less affected by the host. Larval production by the COLC on Allegany was greater than that on Q174-2, while that of the CBFP on Allegany and Q174-2 did not differ. However, production of P. operculella larvae by the CBFP on Q174-2 during no-choice assays was greater than that in choice tests, indicating reduced host preference. Most of the larvae recovered from either host were fourth instars, followed by third instars. Although the levels of resistance expressed by Q174-2 potato clone to the two P. operculella populations differed in magnitude, nearly all of P. operculella performance criteria measured in this study were adversely affected by Q174-2 foliage compared to the commercial potato cultivar, cv. Allegany

    Compressional and extensional tectonics in low-medium pressure granulites from the Larsemann Hills, east Antarctica

    Get PDF
    AbstractMeta-sediments in the Larsemann Hills that preserve a coherent stratigraphy, form a cover sequence deposited upon basement of mafic–felsic granulite. Their outcrop pattern defines a 10 kilometre wide east–west trending synclinal trough structure in which basement–cover contacts differ in the north and the south, suggesting tectonic interleaving during a prograde, D1 thickening event. Subsequent conditions reached low-medium pressure granulite grade, and structures can be divided into two groups, D2 and D3, each defined by a unique lineation direction and shear sense. D2 structures which are associated with the dominant gneissic foliation in much of the Larsemann Hills, contain a moderately east-plunging lineation indicative of west-directed thrusting. D2 comprises a colinear fold sequence that evolved from early intrafolial folds to late upright folds. D3 structures are associated with a high-strain zone, to the south of the Larsemann Hills, where S3 is the dominant gneissic layering and folds sequences resemble D2 folding. Outside the D3 high-strain zone occurs a low-strain D3 window, preserving low-strain D3 structures (minor shear bands and upright folds) that partly re-orient D2 structures. All structures are truncated by a series of planar pegmatites and parallel D4 mylonite zones, recording extensional dextral displacements.D2 assemblages include coexisting garnet–orthopyroxene pairs recording peak conditions of ∼ 7 kbar and ∼ 780°C. Subsequent retrograde decompression textures partly evolved during both D2 and D3 when conditions of ∼ 4–5 kbar and ∼ 750°C were attained. This is followed by D4 shear zones which formed around 3 kbar and ∼ 550°C.It is tempting to combine D2–4 structures in one tectonic cycle involving prograde thrusting and thickening followed by retrograde extension and uplift. The available geochronological data, however, present a number of interpretations. For example, D2 was possibly associated with a clockwise P–T path at medium pressures around ∼ 1000 Ma, by correlation with similar structures developed in the Rauer Group, whilst D3 and D4 events occurred in response to extension and heating at low pressures at ∼ 550 Ma, associated with the emplacement of numerous granitoid bodies. Thus, decompression textures typical for the Larsemann Hills granulites maybe the combined effect of two separate events.C. J. Carson, P. G. H. M. Dirks, M. Hand, J. P. Sims & C. J. L. Wilso

    Complex regulation by Apetala2 domain-containing transcription factors revealed through analysis of the stress-responsive TdCor410b promoter from durum wheat

    Get PDF
    Expression of the wheat dehydrin gene Cor410b is induced several fold above its non-stressed levels upon exposure to stresses such as cold, drought and wounding. Deletion analysis of the TdCor410b promoter revealed a single functional C-repeat (CRT) element. Seven transcription factors (TFs) were shown to bind to this CRT element using yeast one-hybrid screens of wheat and barley cDNA libraries, of which only one belonged to the DREB class of TFs. The remaining six encoded ethylene response factors (ERFs) belong to three separate subfamilies. Analysis of binding selectivity of these TFs indicated that all seven could bind to the CRT element (GCCGAC), and that three of the six ERFs could bind both to the CRT element and the ethylene-responsive GCC-box (GCCGCC). The TaERF4 subfamily members specifically bound the CRT element, and did not bind either the GCC-box or DRE element (ACCGAC). Molecular modeling and site-directed mutagenesis identified a single residue Pro42 in the Apetala2 (AP2) domain of TaERF4-like proteins that is conserved in monocotyledonous plants and is responsible for the recognition selectivity of this subfamily. We suggest that both DREB and ERF proteins regulate expression of the Cor410b gene through a single, critical CRT element. Members of the TaERF4 subfamily are specific, positive regulators of Cor410b gene expression.Omid Eini, Nannan Yang, Tatiana Pyvovarenko, Katherine Pillman, Natalia Bazanova, Natalia Tikhomirov, Serik Eliby, Neil Shirley, Shoba Sivasankar, Scott Tingey, Peter Langridge, Maria Hrmova, Sergiy Lopat
    • …
    corecore