36 research outputs found

    A review of the development of interventional devices for mitral valve repair with the implantation of artificial chords

    Get PDF
    Mitral regurgitation (MR) was the most common heart valve disease. Surgical repair with artificial chordal replacement had become one of the standard treatments for mitral regurgitation. Expanded polytetrafluoroethylene (ePTFE) was currently the most commonly used artificial chordae material due to its unique physicochemical and biocompatible properties. Interventional artificial chordal implantation techniques had emerged as an alternative treatment option for physicians and patients in treating mitral regurgitation. Using either a transapical or a transcatheter approach with interventional devices, a chordal replacement could be performed transcatheter in the beating heart without cardiopulmonary bypass, and the acute effect on the resolution of mitral regurgitation could be monitored in real-time by transesophageal echo imaging during the procedure. Despite the in vitro durability of the expanded polytetrafluoroethylene material, artificial chordal rupture occasionally occurred. In this article, we reviewed the development and therapeutic results of interventional devices for chordal implantation and discuss the possible clinical factors responsible for the rupture of the artificial chordal material

    High-grade serous papillary ovarian carcinoma combined with nonkeratinizing squamous cell carcinoma of the cervix: a case report

    Get PDF
    Multiple primary malignant neoplasms are a rare gynecologic malignancy; particularly, cases originating from the heterologous organs, such as the ovary and cervix. Here, we report a case of two primary malignant neoplasms in a patient who had undergone laparoscopic radical hysterectomy + bilateral salpingo-oophorectomy + pelvic lymph node dissection + para-aortic lymphadenectomy + appendectomy + omentectomy + metastasectomy under general anesthesia. The patient experienced complete remission after six courses of postoperative chemotherapy with a standard Taxol and Carboplatin regimen. Genetic testing was performed to detect BRCA2 mutations, and poly (ADP-ribose) polymerase (PARP) inhibitors were used for maintenance therapy

    Nonlinear-Optical and Fluorescent Properties of Ag Aqueous Colloid Prepared by Silver Nitrate Reduction

    Get PDF
    The nonlinear-optical properties of metal Ag colloidal solutions, which were prepared by the reduction of silver nitrate, were investigated using Z-scan method. Under picosecond 532 nm excitation, the Ag colloidal solution exhibited negative nonlinear refractive index (n2=−5.17×10−4 cm2/W) and reverse saturable absorption coefficient (β=4.32 cm/GW). The data fitting result of optical limiting (OL) response of metal Ag colloidal solution indicated that the nonlinear absorption was attributed to two-photon absorption effect at 532 nm. Moreover, the fluorescence emission spectra of Ag colloidal solution were recorded under excitations at both 280 nm and 350 nm. Two fluorescence peaks, 336 nm and 543 nm for 280 nm excitation, while 544 nm and 694 nm for 350 nm excitation, were observed

    Impact of Orifice-to-Pipe Diameter Ratio on Leakage Flow: An Experimental Study

    No full text
    The traditional orifice discharge formula used to estimate the flow rate through a leak opening at a pipe wall often produces inaccurate results. This paper reports an original experimental study in which the influence of orifice-to-pipe diameter ratio on leakage flow rate was investigated for several internal/external flow conditions and orifice holes with different shapes. The results revealed that orifice-to-pipe diameter ratio (or pipe wall curvature) indeed influenced the leakage flow, with the discharge coefficient ( C d ) presenting a wide variation (0.60–0.85). As the orifice-to-pipe diameter ratio decreased, the values of C d systematically decreased from about 12% to 3%. Overall, the values of C d also decreased with β (ratio of pressure head differential at the orifice to wall thickness), as observed in previous studies. On the other hand, orifice shape, main pipe flow velocity, and external medium (water or air) all had a secondary effect on C d . The results obtained in the present study not only demonstrated that orifice-to-pipe diameter ratio affects the outflow, but also that real scale pipes may exhibit a relevant deviation of C d from the classical range (0.61–0.67) reported in the literature

    Enhanced optical nonlinearity in noncovalently functionalized amphiphilic graphene composites

    No full text
    The good solubility of graphene-based materials in various solvents without sacrificing their intrinsic properties is a prerequisite for their further applications. In particular, it is important for application as a practical optical limiter. A comprehensive study was conducted on the nonlinear optical property of a rationally designed amphiphilic graphene composite (PEG-OPE-rGO). By taking advantages of the unique energy diagram of this graphene composite, the optical limiting (OL) performances of PEG-OPE-rGO, which is either dissolved in solvents with moderate polarity or fabricated into thin solid films, are beyond the reported results for other graphene composites. Importantly, the main factors for the enhanced OL response of PEG-OPE-rGO are the multiphoton absorption and Förster resonance energy transfer process, instead of the nonlinear scattering mechanism observed for common nanostructured materials. The excellent OL response of PEG-OPE-rGO allows it to be one of the best candidates in practical optical limiters. Moreover, the mechanism analysis provides the deep insight for further optimization of the design of promising OL materials

    Impact of Main Pipe Flow Velocity on Leakage and Intrusion Flow: An Experimental Study

    Get PDF
    The classic orifice equation is commonly used to calculate the leakage and intrusion rate for pressurized pipelines with cracks on the pipe wall. The conventional orifice equation does not consider the effect of the flow velocity in the main pipe, and there is a lack of studies on this matter. For this technical note, the influence of the main pipe flow velocity on the outflow and inflow through a crack on the pipe wall was studied in the laboratory. The experimental results show that the impact of the main pipe flow velocity can be significant. When the pressure difference across the orifice was constant, with the increase of the main pipe flow velocity, the outflow velocity increased, but the contraction area of the jet and the outflow discharge coefficient decreased. By comparing orifices with different shapes, it was found that the discharge from the circumferential crack was most sensitive to the main pipe flow velocity. In addition, the main pipe flow promoted the orifice inflow. When the pressure difference across the orifice was constant, with the increase of the main pipe flow velocity, the inflow discharge coefficient increased, which is the opposite pattern to that of the orifice outflow

    Third-order nonlinear optical response of silicon nanostructures dispersed in organic solvent under 1064 nm and 532 nm laser excitations

    No full text
    Silicon nanostructures are dispersed into an organic solvent and the third order optical properties of the system are studied by z-scan technique under 1064 nm and 532 nm excitations. The experiment results show that the silicon nanostructures exhibit self-focus and saturable absorption with both excitation wavelengths. Nonlinear absorption results suggest that a new optical bleaching band exists under 532 nm excitation, and a two-step mechanism is tentatively put forward to explain the saturable absorption under 1064 nm excitation. (c) 2006 Elsevier B.V. All rights reserved
    corecore