50 research outputs found

    Extracting spectral density function of a binary composite without a-priori assumption

    Full text link
    The spectral representation separates the contributions of geometrical arrangement (topology) and intrinsic constituent properties in a composite. The aim of paper is to present a numerical algorithm based on the Monte Carlo integration and contrainted-least-squares methods to resolve the spectral density function for a given system. The numerical method is verified by comparing the results with those of Maxwell-Garnett effective permittivity expression. Later, it is applied to a well-studied rock-and-brine system to instruct its utility. The presented method yields significant microstructural information in improving our understanding how microstructure influences the macroscopic behaviour of composites without any intricate mathematics.Comment: 4 pages, 5 figures and 1 tabl

    Overview of telematics-based prognostics and health management systems for commercial vehicles

    Get PDF
    Prognostics and Health Management/Monitoring (PHM) are methods to assess the health condition and reliability of systems for the purpose of maximising operational reliability and safety. Recently, PHM systems are emerging in the automotive industry. In the commercial vehicle sector, reducing the maintenance cost and downtime while also improving the reliability of vehicle components can have a major impact on fleet performance and hence business competitiveness. Nowadays, telematics and GPS are used mainly for fleet tracking and diagnostics purposes. Increased numbers of sensors installed on commercial vehicles, advancement of data analytics and computational intelligence methods, increased capabilities for on-board data processing as well as in the cloud, are creating an opportunity for PHM systems to be deployed on commercial vehicles and hence improve the overall operational efficiency

    Intraoperative Multispectral Fluorescence Imaging for the Detection of the Sentinel Lymph Node in Cervical Cancer: A Novel Concept

    Get PDF
    PURPOSE: Real-time intraoperative near-infrared fluorescence (NIRF) imaging is a promising technique for lymphatic mapping and sentinel lymph node (SLN) detection. The purpose of this technical feasibility pilot study was to evaluate the applicability of NIRF imaging with indocyanin green (ICG) for the detection of the SLN in cervical cancer. PROCEDURES: In ten patients with early stage cervical cancer, a mixture of patent blue and ICG was injected into the cervix uteri during surgery. Real-time color and fluorescence videos and images were acquired using a custom-made multispectral fluorescence camera system. RESULTS: Real-time fluorescence lymphatic mapping was observed in vivo in six patients; a total of nine SLNs were detected, of which one (11%) contained metastases. Ex vivo fluorescence imaging revealed the remaining fluorescent signal in 11 of 197 non-sentinel LNs (5%), of which one contained metastatic tumor tissue. None of the non-fluorescent LNs contained metastases. CONCLUSIONS: We conclude that lymphatic mapping and detection of the SLN in cervical cancer using intraoperative NIRF imaging is technically feasible. However, the technique needs to be refined for full applicability in cervical cancer in terms of sensitivity and specificity

    Developmental Transcriptomic Features of the Carcinogenic Liver Fluke, Clonorchis sinensis

    Get PDF
    Clonorchis sinensis is the causative agent of the life-threatening disease endemic to China, Korea, and Vietnam. It is estimated that about 15 million people are infected with this fluke. C. sinensis provokes inflammation, epithelial hyperplasia, and periductal fibrosis in bile ducts, and may cause cholangiocarcinoma in chronically infected individuals. Accumulation of a large amount of biological information about the adult stage of this liver fluke in recent years has advanced our understanding of the pathological interplay between this parasite and its hosts. However, no developmental gene expression profiles of C. sinensis have been published. In this study, we generated gene expression profiles of three developmental stages of C. sinensis by analyzing expressed sequence tags (ESTs). Complementary DNA libraries were constructed from the adult, metacercaria, and egg developmental stages of C. sinensis. A total of 52,745 ESTs were generated and assembled into 12,830 C. sinensis assembled EST sequences, and then these assemblies were further categorized into groups according to biological functions and developmental stages. Most of the genes that were differentially expressed in the different stages were consistent with the biological and physical features of the particular developmental stage; high energy metabolism, motility and reproduction genes were differentially expressed in adults, minimal metabolism and final host adaptation genes were differentially expressed in metacercariae, and embryonic genes were differentially expressed in eggs. The higher expression of glucose transporters, proteases, and antioxidant enzymes in the adults accounts for active uptake of nutrients and defense against host immune attacks. The types of ion channels present in C. sinensis are consistent with its parasitic nature and phylogenetic placement in the tree of life. We anticipate that the transcriptomic information on essential regulators of development, bile chemotaxis, and physico-metabolic pathways in C. sinensis that presented in this study will guide further studies to identify novel drug targets and diagnostic antigens

    Application of a multiscale constitutive framework to real gas turbine components

    No full text
    Abstract. A multiscale constitutive framework for Ni-base superalloys has been developed, in which an efficient unit cell is adopted to describe the Îł/Îł' microstructure morphology. The framework enables the prediction of the deformation and the creep and fatigue damage accumulation in CMSX-4 for a range of temperatures and stress levels. Moreover, the material microstructural degradation due to rafting and isotropic coarsening can be simulated, and the effects of this degradation on the alloy mechanical response can be quantified. The present paper focuses on the application of the model to real gas turbine components. A high pressure turbine blade finite element model is used to demonstrate the computational efficiency of the multiscale framework. Moreover, the location of critical regions and the life time are shown to differ from the results obtained from classical models that neglect the microstructure evolution
    corecore