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The aim of the work was to examine the degradation phenomena taking place in the microstructure of the
as-cast IN 713C superalloy after stress rupture tests, performed at T = 980 �C under a tensile stress of
150 MPa. A directional growth of c¢ phase (rafting) and decomposition of the NbC primary carbides
accompanied by the precipitation of M23C6 secondary carbides rich in chromium and of c¢ phase were
observed. It was also indicated that the decomposition of the NbC primary carbides may be accompanied
by the precipitation of M3B2 borides rich in Mo.
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1. Introduction

IN 713C nickel superalloy was developed by the Interna-
tional Nickel Company in the 1950s (Ref 1). It was initially
designed for air melting and casting under the protection of
inert gases. However, relatively soon, it was discovered that the
maximum of mechanical properties was reached when the casts
were manufactured with the use of vacuum casting techniques.
The alloy proved to possess a very good castability, good
mechanical properties at elevated temperatures, and a high
stability of the microstructure while being available at an
acceptable price (Ref 1-9). The cost which is a very significant
aspect (from the economical point of view) derives from the
fact that the alloy does not contain the expensive cobalt.

Despite the passage of time, IN 713C is still commonly
employed in the aircraft industry for the production of engine
turbine parts, mainly in the low pressure section (LPT). For
example, the designers of the large aircraft turbofan engine
GP7200 selected this alloy for the production of LPT blades and
LPT vane clusters. These complicated castings must meet all the

quality requirements, which, in this case, are highly strict. Every
IN 713C superalloy master ingot has to undergo tests concerning
the chemical composition (investigating the content of the main
alloying elements and the trace elements). Moreover, each ingot
needs to withstand the analysis of the mechanical properties of
static tensile test at elevated temperature and stress rupture tests.
The stress rupture tests are carried out at 980 �C, which
significantly exceed the in-service requirements of the cast.
Thus, the aim of the present studywas to examine the phenomena
of microstructural degradation of the as-cast IN 713C superalloy,
taking place during stress rupture tests.

2. Material for Investigations and Experimental
Procedure

The tested material was the IN 713C nickel superalloy with
the chemical composition as shown in Table 1. The as-received
material was melted and investment cast under the following
conditions: melt pouring temperature Tm = 1500 �C, shell mold
preheat temperature, Ts = 1200 �C, vacuum level 10�3 mbar.
The cast bar blanks were machined into cylindrical geometry
specimens. The geometry of the sample for the stress rupture
tests is presented in Fig. 1. Stress rupture tests were performed
in accordance with ASTM E139 standard under 980 �C/
150 MPa in air. The results for all tested samples confirmed that
time to rupture is longer than 25 h (average t = 26.5± 1 h),
and the elongation till rupture equaled A = 5%; therefore, the
outcome meets the requirements of the industrial standards.

Microstructure observations and analyses of the as-cast IN
713C and IN 713C after the stress rupture tests were carried out
by scanning (SEM) and transmission electron microscopy
(TEM). The SEM specimens were prepared using a standard
procedure for metallographic preparation. Plasma cleaning was
carried out prior to loading the sample into the SEM
microscope in order to protect carbon contamination. The
specimens were analyzed by FE SEM Hitachi SU70 field
emission microscope equipped with energy dispersive x-ray
spectroscopy (EDS). For the imaging and EDS analyses, a
15 kV accelerating voltage was used.
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Samples for TEM observations were prepared using a single
focused ion beam (FIB) system (Hitachi FB-2100) and lift-out
preparation technique. TEM microstructure investigations were
performed using a Jeol JEM 1200EX II (operating at 120 kV)
microscope equipped with the EDS device.

3. Results

Figure 2 and 3 show the typical SEM images of the IN 713C
superalloy microstructure, in the as-cast state and after the
stress rupture test. Figure 2(a) presents the typical cubic
morphology of c¢- Ni3(Al,Ti) phase in the c phase matrix
(nickel-based solid solution) for the as-cast IN 713C superalloy
(Ref 1), whereas Fig. 2(b) shows the directional morphology
(rafting) of c¢ phase (Ref 10-12) in the IN 713C superalloy after
the stress rupture tests.

Figure 3(a) and (e) presents SEM images of MC primary
carbides rich in Nb (chemical composition shown in Fig. 4a)
(Ref 2, 3) in the IN 713C superalloy in the as-cast state and
after the stress rupture test. The NbC primary carbides
precipitate in the interdendritic areas of the as-cast state occur
in forms of irregular particles, Chinese script forms, and (c/
NbC) eutectic, as shown in Fig. 3(a), (b), and (f), respectively.
After the stress rupture test, the density and size of the MC
carbides in the interdendritic areas are significantly lower.

Moreover, interdendritic areas free of NbC are observed, which
prove their dissolution. At a large magnification (Fig. 3f and g),
in the NbC dissolution areas, the presence of a phase rich in Cr
was detected (spectrogram in Fig. 4b), as well as a phase rich in
Mo (spectrogram in Fig. 4c) and c¢ phase. A phase rich in Mo
was also observed in the eutectic pools shown in Fig. 3(b), (d),
and (h). In the eutectic, the phase rich in Ni and Zr
(spectrogram in Fig. 4d) and c phase were found. The typical
primary (coarse) c¢ phase (Ref 13) and (c/c¢) eutectic (Ref 2),
precipitated in the interdendritic areas, were also observed, as
shown in Fig. 3(c) and (d), respectively.

Figure 5(a) and 6(a) show TEM images of the IN 713C
superalloy microstructure after the stress rupture tests, in the
area of the dissolution of the primary carbide, with marked
electron diffraction analysis areas. The obtained electron
diffraction patterns are shown in Fig. 5(b) and 6(b) and
compiled in Table 2. The patterns prove the presence of the
following phases: primary carbide MC rich in Nb, c and c¢
phases, and M23C6 secondary carbides (rich in Cr). All those
phases exhibit the commonly observed ‘‘cube-cube’’ crystallo-
graphic relationship (Ref 14), presented in Fig. 5(b) and 6(b).

Figure 7 shows the microstructure (TEM image) of the
eutectic area, with marked electron diffraction analysis areas.
The results of the obtained electronograms are compiled in
Table 2. On their basis, it can be stated that the phase rich in
Mo is a M3B2 boride, whereas the phase rich in Ni and Zr is
Ni7Zr2. It was also proven that the crystallographic directions
[010]M3B2 and [21�1]Ni7Zr2 are parallel—see Fig. 8g. One
should also emphasize the good agreement of the measure of
values of the interplanar spacings for phases c, c¢, M23C6, NbC,
Ni7Zr2, and M3B2 with the data included in the powder
diffraction files (PDF).

4. Discussion of the Results

The phenomenon of a directional growth (rafting) of c¢ phase
is often observed in the nickel superalloys at temperatures overFig. 1 Geometry of the sample for stress rupture tests (mm)

Table 1 Chemical composition of IN 713C superalloy

Element C Si B Al Ti Nb Mo Cr Fe Zr Ni

wt.% 0.096 0.010 0.010 6.080 0.840 2.160 4.210 13.580 0.090 0.060 Remainder

Fig. 2 The morphology of c¢ phase IN 713C superalloy in the as-cast state (a) and after the stress rupture tests (b)
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Fig. 3 SEM images in BSE electron contrast of the microstructure of superalloy IN 713C in the as-cast (a-d) and after stress rupture test (e-h),
massive samples
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900 �C under the external stress. The process of a directional
growth of phase c¢ is governed by (a) the value and the direction
of the applied external stress, (b) the value and sign of the c and c¢
lattice misfit (defined as d = 2(ac¢� ac)/(ac¢ + ac)), where ac¢
and ac are lattices constant c¢ and c, respectively), and (c) the
elastic constants of c and c¢ phases (Ref 10-12).

From the experimental observations (Ref 10-12) (in the case
when c and c¢ lattice misfits possess a negative misfit, the
sample is tensile by the external stress), it can be concluded that
the rafting is a sequential process. At first, a plastic deformation
of the superalloy matrix occurs, which causes a loss of
coherency at the c and c¢ interfaces and a subsequent reduction
of the misfit stress. All the internal stress components combine
to yield one specific value for the hydrostatic stress. Tensile
stresses act in the c¢ precipitates parallel to the c-channels.
These forces are balanced by compressive stresses in the c-
channels surfaces which are much higher than low tensile stress
components which act perpendicularly to the channels. Per-
pendicular to the external stress axis, internal stresses change
due to the different Poisson numbers of c and c¢ phases.
Therefore, the effective stress in the perpendicular c channels is
greater than in the parallel channels. This promotes diffusion
processes as well as creep dislocation motion in the perpen-
dicular channels and relaxes the internal stresses in these
channels thus stabilizing the microstructure. The result is the
rafting perpendicular to the external tensile c¢.

The lattice constants of c¢ and c given in PDF 18-0872 and
PDF 47-1417 (the best fit for the phases in the examined alloy)
equal ac¢ = 3.5810 Å and ac = 3.5975 Å, respectively. This
implies that d is negative as for most nickel superalloys (equals
�0.005). The observed directional growth of c¢ phase is of the
N-type, in which the lamellae of c¢ phase are perpendicular to
the tensile stress direction, and lattice misfit is negative. The
P-type directional growth of c¢ phase (the lamellae of phase c¢

are perpendicular to the direction of force operation) occurs
when external stresses are compressive, or the c¢ and c lattice
misfits have a positive value (Ref 10-12).

The SEM and TEM observations performed in the degra-
dation area of the MC primary carbides suggest that, at the test
temperature of 980 �C, the carbides are unstable and undergo
decomposition. The most commonly observed mechanism of
MC carbide degradation is described by reactions (Ref 15, 16):

MCþ c�!T ;t M23C6þ c0; in our study : Nb;Tið ÞC
þ Ni;Mo;Cr; Ti; Alð Þ! Cr;Moð Þ23C6þNi3 Al;Tið ÞþNb

ðEq 1Þ

and

MCþ c�!T ;t M6Cþ c0; which was not observed in our study

ðEq 2Þ

As a result of reaction 1, we observed c¢ phase as well as the
formation of M23C6 secondary carbides (rich in Cr). Addi-
tionally, the solid solution c phase is enriched with Nb in the
area of the NbC decomposition.

In reaction 2, in many nickel superalloys, M6C secondary
carbides are formed, rich in Mo, W, Co, Cr and Fe, which were
not observed in this study. However, on the basis of the electron
microscopic observations, it was proven that the phase rich in
Mo, existing both in the area of NbC carbides dissolution and
in the eutectic, is a M3B2 boride.

The present results indicate that the eutectic of the alloy
consisted of c, M3B2, and a phase rich in Ni-Zr. From the
analysis of the phase equilibrium system (Ref 17) of the binary
alloy Ni-Zr, it can be clearly stated that only one eutectic
reaction occurs at 1170 �C, in which L fi c + Ni5Zr. This
stands in clear contrast with our observations.

Fig. 4 Typical spectrograms for NbC (a), Ni7Zr2 (b), M3B2 (c), and M23C6 (d)
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According to the equilibrium system, Ni7Zr2 phase is
formed directly from the liquid at 1420 �C. Next, at 1300 and
1180 �C, two peritectic reactions take place as follows:
L + Ni7Zr2 fi Ni5Zr and L + Ni7Zr2 fi Ni21Zr8. It can be
concluded that, at ambient temperature, no Ni7Zr2 phase occurs
in the alloy eutectics. This phase might be present in the
microstructure but not in the eutectic.

In order to explain the presence of phase Ni7Zr2 in the
eutectic, we referred to the equilibrium systems of multi-
element alloys. The results of the examinations of alloy Ni-
7.9Al-7.7Cr-1.4Mo-1.7Zr-0.008B in (Ref 18) show that the

microsegregation of the alloying elements during the solidifi-
cation essentially changes the solidification path in the final
stage. On the basis of our own research and the literature data
(Ref 18-20), we conclude that in the first stage of solidification,
c phase crystals are formed. Next, with the decrease of
temperature, the solubility of alloying elements (such as: Nb,
Mo, Ti, C and B) in c phase is reduced, which is manifested by
their segregation at the c phase dendrite—interdendritic liquid
interface. Favorable conditions for the precipitation of primary
carbides like NbC occur (according to the typical reaction
L fi c + MC) in interdendritic areas. These areas offer some

Fig. 5 TEM images in bright field of the microstructure of superalloy IN 713C in the area of NbC primary carbide dissolution (a) and the cor-
responding electron diffraction patterns (b)
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solubility of other carbide-forming elements, such as Ti, Mo, or
Cr. The precipitation of the MC interdendritic liquid depletes
these elements and enriches them with Al and Ti—the elements
which are c¢ formers.

In the final stage of solidification, we can thus observe a
eutectic reaction L fi c + c¢ in the areas where the interden-
dritic liquid is enriched with Al and Ti. The solubility of Zr and
B in c and c¢ is extremely low, and thus, the latter segregates
into the boundary eutectic (c/c¢)—residual liquid interface. The
residual liquid rich in Zr reacts with the eutectic c¢ phase

according to the peritectic reaction L + c¢ fi c + Ni7Zr2
discussed in (Ref 18). This is followed by a eutectic reaction
according to the formula L fi c + Ni7Zr2 + Ni5Zr. However,
based on our own research, we did not confirm the presence of
phase Ni5Zr in the eutectic while the presence of borides M3B2

was proven. The research of Babu et al. (Ref 21) proved that, in
the final stage of the alloy solidification, during the precipita-
tion of c/c¢ eutectic, another reaction can occur, in which in the
residual liquid enriched with Zr and B, a ternary eutectic is
formed according to the reaction: L fi c + Ni7Zr2 + M3B2.

Fig. 6 TEM images in bright field of the microstructure of superalloy IN 713C in the area of M23C6 secondary carbide precipitation (a) and the
corresponding electron diffraction patterns (b)
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These results are in accordance with our observations. The
c/Ni7Zr2/M3B2 eutectic was observed both in the as-cast
samples and after the stress rupture tests.

The presence of fine precipitations of M3B2 borides (which
are not part of the eutectic mixture) and M23C6 secondary
carbides observed after the stress rupture test can also be
explained by the low solubility of B and C in the c phase. In the
austenitic steel of the 18Cr-15Ni type, at 1000 �C, the solubility
of B in c equals 0.004 wt.%, whereas at 800 �C, this value
exceeds 0.002 wt.% (Ref 22). On the basis of the results
presented in (Ref 23), it can be stated that, in the austenitic steel
of the 18Cr-8Ni type, at 1000 �C, the solubility of C in c equals
0.180 wt.%, and at 800 �C—it is 0.020 wt.% During the stress
rupture test, the primary carbides undergo transformation, and
thus, in the area of their decomposition, the c phase solid
solution becomes enriched with carbon. In connection with the
fact that C has a lower atomic radius (76 pm) than B (84 pm),
in the c phase, it may dissolve in larger amounts than B. Thus,
it reduces the solubility of B in c, and at the ambient
temperature, both borides and secondary carbides are precip-
itated. It has been shown in (Ref 24, 25) that borides (M3B2 and
M5B3) and secondary carbides (M23C6 and M6C) most often
precipitate at the grain boundaries and phase interfaces.

Superalloys generally experience various microstructural
changes during their service life, including c¢ coarsening
(rafting), the precipitation of secondary carbides and borides,

the topologically close-packed (TCP) phase formation, and the
MC carbide degeneration (Ref 26-28). These processes remove
many of strengthening elements from the c matrix (e.g., Mo
and Cr in the IN713C superalloy) and significantly degrade the
properties of the superalloys, such as mechanical properties
(tensile strength and creep resistance), corrosion resistance, and
service life. Most of these features, such as c¢ coarsening/
rafting, the precipitation of secondary carbides or borides, and
TCP phases� formation, are reversible in the sense that, through
heat treatments, one may restore microstructures and alloy
properties to a practically ‘‘as-new’’ condition (Ref 26).
However, primary MC decomposition is irreversible and might
affect the aging process after the rejuvenated turbine parts are
returned to service. Thus, in order to understand the MC
degeneration better and to further upgrade the properties of
superalloys, an extensive study in the field should be
conducted.

5. Conclusions

On the basis of the obtained results, it can be concluded that
the IN 713C superalloy undergoes significant degradation in the
creep test at 980 �C under 150 MPa. The as-cast FCC matrix (c
phase solid solution, lattice constant a = 3.598 Å) is precipi-
tation strengthened by coherent, ordered, and cubic Ni3(Al,Ti)
c¢ phase (FCC ordered L12 crystal structure). In the interden-
dritic areas, there are precipitations of the NbC primary
carbides (FCC with lattice constant a = 4.400 Å) and three
eutectics: (c/NbC), (c/c¢), and (c/Ni7Zr2/M3B2). Phase Ni7Zr2
has a monoclinic crystal structure (type of: mC36, C2/m12)
with the lattice constants: a = 4.698 Å, b = 8.235 Å,
c = 12.193 Å and the angle b = 95.93�. M3B2 borides possess
tetragonal unit cells (type of: tP10, F4/mbm) with the lattice
constants a = b = 5.775 Å and c = 3.145 Å.

After the creep test, we observed a directional growth
(rafting) of c¢ phase in the matrix as well as decomposition of
NbC carbides. As a result of MC decomposition, secondary
carbides rich in Cr, M23C6 were precipitated (FCC unite cell
with lattice constant a = 10.660 Å) as well as the c¢ phase. It
was also shown that the process of secondary carbide
precipitation can be accompanied by the precipitation of
M3B2 borides rich in Mo.

Table 2 Comparison of the experimental d(hkl) spacing with the values from powder diffraction files, where: (a)PDF 47-
1417; (b)PDF 18-0872; (c)PDF 74-1222; (d)PDF 85-1281; (e)PDF 18-0839; and (f)PDF 71-0543

(hkl)
c c¢ MC M23C6

(hkl)
M3B2

(hkl)
Ni7Zr2

d(hkl), Å d(hkl), Å d(hkl), Å

(111) 2.08 2.08(a) 2.08 2.06(b) 2.52 2.54(c) 6.13 6.15(d) (001) 3.15 3.14(e) (020) 4.05 4.12(f)
(100) … 3.55 3.58(b) … … (201) 2.14 2.13(e) (�202) 2.28 2.26(f)
(110) … 2.56 2.53(b) … … (200) 2.90 2.87(e) (�111) 3.98 3.95(f)
(200) 1.78 1.80(a) 1.78 1.79(b) 2.18 2.20(c) 5.33 5.33(d) (211) 2.01 1.99(e) (022) 3.37 3.41(f)
(220) 1.28 1.27(a) 1.28 1.27(b) 1.53 1.56(c) 3.83 3.77(d) (010) 5.70 5.74(e) (1�11) 3.79 3.76(f)
(311) 1.10 1.09(a) 1.10 1.08(b) 1.35 1.33(c) 3.26 3.21(d) (310) 1.83 1.82(e) (131) 2.32 2.34(f)

Fig. 7 Microstructure of superalloy IN 713C in the (c/Ni7Zr2/
M3B2) eutectic area
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Fig. 8 Electron diffraction patterns corresponding to the analysis areas shown in Fig. 7, where (a-c) is area 3; (d-f) is area 4; and (g) is area 5
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