62 research outputs found

    Notch Signaling During T Helper 2 Cell-Mediated Inflammation in Allergic Asthma

    Get PDF
    Enhanced activation of T helper-2 (Th2) cells producing Th2-cytokines (IL-4/IL-5/IL-13) explains many hallmarks of allergic asthma, including eosinophilic airway inflammation and bronchial hyperreactivity. Th2 cell differentiation is thought to be instructed by interaction of Notch on the T cell surface with its ligand Jagged on dendritic cells (DCs). Therefore, we studied the role of Notch signaling in allergic airway inflammation in vivo. In acute and chronic mouse models of house dust mite (HDM)-mediated allergic asthma, we found that expression of Notch and its nuclear effector RBPJκ in T cells is essential for disease development. Our findings suggest that Notch signaling is involved in migration of Th2 cells into the lung. Transgenic overexpression of the key Th2 transcription factor Gata3 in the absence of Notch was not sufficient to induce allergic inflammation, indicating that Notch signaling has additional downstream targets next to Gata3. Mice lacking Jagged1/2 on DCs, T cells or lymph node stromal cells still developed HDM-driven airway inflammation. Importantly, hallmarks of asthma could be suppressed by the Notch inhibitory peptide SAHM1 – which interferes with RBPJκ function - but not by a control peptide. Finally, we obs

    Data-driven power system operation: Exploring the balance between cost and risk

    Get PDF
    Supervised machine learning has been successfully used in the past to infer a system's security boundary by training classifiers (also referred to as security rules) on a large number of simulated operating conditions. Although significant research has been carried out on using classifiers for the detection of critical operating points, using classifiers for the subsequent identification of suitable preventive/corrective control actions remains underdeveloped. This paper focuses on addressing the challenges that arise when utilizing security rules for control purposes. The inherent trade-off between operating cost and security risk is explored in detail. To optimally navigate this trade-off, a novel approach is proposed that uses an ensemble learning method (AdaBoost) to infer a probabilistic description of a system's security boundary and Platt Calibration to correct the introduced bias. Subsequently, a general-purpose framework for building probabilistic and disjunctive security rules of a system's secure operating domain is developed that can be embedded within classic operation formulations. Through case studies on the IEEE 39-bus system, it is showcased how security rules can be efficiently utilized to optimally operate the system under multiple uncertainties while respecting a user-defined cost-risk balance. This is a fundamental step towards embedding data-driven models within classic optimisation approaches

    Notch signaling in T cells is essential for allergic airway inflammation, but expression of the Notch ligands Jagged 1 and Jagged 2 on dendritic cells is dispensable

    Get PDF
    __Background:__ Allergic asthma is characterized by a TH2 response induced by dendritic cells (DCs) that present inhaled allergen. Although the mechanisms by which they instruct TH2 differentiation are still poorly understood, expression of the Notch ligand Jagged on DCs has been implicated in this process. __Objective:__ We sought to establish whether Notch signaling induced by DCs is critical for house dust mite (HDM)-driven allergic airway inflammation (AAI) in vivo. __Methods:__ The induction of Notch ligand expression on DC subsets by HDM was quantified by using quantitative real-time PCR. We used an HDM-driven asthma mouse model to compare the capacity of Jagged 1 and Jagged 2 single- and double-deficient DCs to induce AAI. In addition, we studied AAI in mice with a T cell-specific deletion of recombination signal-binding protein for immunoglobulin Jκ region (RBPJκ), a downstream effector of Notch signaling. __Results:__ HDM exposure promoted expression of Jagged 1, but not Jagged 2, on DCs. In agreement with published findings, in vitro-differentiated and HDM-pulsed Jagged 1 and Jagged 2 double-deficient DCs lacked the capacity to induce AAI. However, after in vivo intranasal sensitization and challenge with HDM, DC-specific Jagged 1 or Jagged 2 single- or double-deficient mice had eosinophilic airway inflammation and a TH2 cell activation phenotype that was not different from that in control littermates. In contrast, RBPJκ-def

    Imaging corticospinal tract connectivity in injured rat spinal cord using manganese-enhanced MRI

    Get PDF
    BACKGROUND: Manganese-enhanced MRI (MEI) offers a novel neuroimaging modality to trace corticospinal tract (CST) in live animals. This paper expands this capability further and tests the utility of MEI to image axonal fiber connectivity in CST of injured spinal cord (SC). METHODS: A rat was injured at the thoracic T4 level of the SC. The CST was labeled with manganese (Mn) injected intracortically at two weeks post injury. Next day, the injured SC was imaged using MEI and diffusion tensor imaging (DTI) modalities. RESULTS: In vivo MEI data obtained from cervical SC confirmed that CST was successfully labeled with Mn. Ex vivo MEI data obtained from excised SC depicted Mn labeling of the CST in SC sections caudal to the lesion, which meant that Mn was transported through the injury, possibly mediated by viable CST fibers present at the injury site. Examining the ex vivo data from the injury epicenter closely revealed a thin strip of signal enhancement located ventrally between the dorsal horns. This enhancement was presumably associated with the Mn accumulation in these intact fibers projecting caudally as part of the CST. Additional measurements with DTI supported this view. CONCLUSION: Combining these preliminary results collectively demonstrated the feasibility of imaging fiber connectivity in experimentally injured SC using MEI. This approach may play important role in future investigations aimed at understanding the neuroplasticity in experimental SCI research

    International prospective observational study investigating the disease course and heterogeneity of paediatric-onset inflammatory bowel disease: the protocol of the PIBD-SETQuality inception cohort study

    Get PDF
    INTRODUCTION: Patients with paediatric-onset inflammatory bowel disease (PIBD) may develop a complicated disease course, including growth failure, bowel resection at young age and treatment-related adverse events, all of which can have significant and lasting effects on the patient's development and quality of life. Unfortunately, we are still not able to fully explain the heterogeneity between patients and their disease course and predict which patients will respond to certain therapies or are most at risk of developing a more complicated disease course. To investigate this, large prospective studies with long-term follow-up are needed. Currently, no such European or Asian international cohorts exist. In this international cohort, we aim to evaluate disease course and which patients are most at risk of therapy non-response or development of complicated disease based on patient and disease characteristics, immune pathology and environmental and socioeconomic factors. METHODS AND ANALYSIS: In this international prospective observational study, which is part of the PIBD Network for Safety, Efficacy, Treatment and Quality improvement of care (PIBD-SETQuality), children diagnosed with inflammatory bowel disease <18 years are included at diagnosis. The follow-up schedule is in line with standard PIBD care and is intended to continue up to 20 years. Patient and disease characteristics, as well as results of investigations, are collected at baseline and during follow-up. In addition, environmental factors are being assessed (eg, parent's smoking behaviour, dietary factors and antibiotic use). In specific centres with the ability to perform extensive immunological analyses, blood samples and intestinal biopsies are being collected and analysed (flow cytometry, plasma proteomics, mRNA expression and immunohistochemistry) in therapy-naïve patients and during follow-up. ETHICS AND DISSEMINATION: Medical ethical approval has been obtained prior to patient recruitment for all sites. The results will be disseminated through peer-reviewed scientific publications. TRIAL REGISTRATION NUMBER: NCT03571373

    Possible origins of macroscopic left-right asymmetry in organisms

    Full text link
    I consider the microscopic mechanisms by which a particular left-right (L/R) asymmetry is generated at the organism level from the microscopic handedness of cytoskeletal molecules. In light of a fundamental symmetry principle, the typical pattern-formation mechanisms of diffusion plus regulation cannot implement the "right-hand rule"; at the microscopic level, the cell's cytoskeleton of chiral filaments seems always to be involved, usually in collective states driven by polymerization forces or molecular motors. It seems particularly easy for handedness to emerge in a shear or rotation in the background of an effectively two-dimensional system, such as the cell membrane or a layer of cells, as this requires no pre-existing axis apart from the layer normal. I detail a scenario involving actin/myosin layers in snails and in C. elegans, and also one about the microtubule layer in plant cells. I also survey the other examples that I am aware of, such as the emergence of handedness such as the emergence of handedness in neurons, in eukaryote cell motility, and in non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue. Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec

    Neural Correlates of Behavioural Olfactory Sensitivity Changes Seasonally in European Starlings

    Get PDF
    Possibly due to the small size of the olfactory bulb (OB) as compared to rodents, it was generally believed that songbirds lack a well-developed sense of smell. This belief was recently revised by several studies showing that various bird species, including passerines, use olfaction in many respects of life. During courtship and nest building, male European starlings (Sturnus vulgaris) incorporate aromatic herbs that are rich in volatile compounds (e.g., milfoil, Achillea millefolium) into the nests and they use olfactory cues to identify these plants. Interestingly, European starlings show seasonal differences in their ability to respond to odour cues: odour sensitivity peaks during nest-building in the spring, but is almost non-existent during the non-breeding season.This study used repeated in vivo Manganese-enhanced MRI to quantify for the first time possible seasonal changes in the anatomy and activity of the OB in starling brains. We demonstrated that the OB of the starling exhibits a functional seasonal plasticity of certain plant odour specificity and that the OB is only able to detect milfoil odour during the breeding season. Volumetric analysis showed that this seasonal change in activity is not linked to a change in OB volume. By subsequently experimentally elevating testosterone (T) in half of the males during the non-breeding season we showed that the OB volume was increased compared to controls.By investigating the neural substrate of seasonal olfactory sensitivity changes we show that the starlings' OB loses its ability during the non-breeding season to detect a natural odour of a plant preferred as green nest material by male starlings. We found that testosterone, applied during the non-breeding season, does not restore the discriminatory ability of the OB but has an influence on its size

    A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis

    Get PDF
    It is well known that the parallel order of microtubules in the plant cell cortex defines the direction of cell expansion, yet it remains unclear how microtubule orientation is controlled, especially on a cell-wide basis. Here we show through 4D imaging and computational modelling that plant cell polyhedral geometry provides spatial input that determines array orientation and heterogeneity. Microtubules depolymerize when encountering sharp cell edges head-on, whereas those oriented parallel to those sharp edges remain. Edge-induced microtubule depolymerization, however, is overcome by the microtubule-associated protein CLASP, which accumulates at specific cell edges, enables microtubule growth around sharp edges and promotes formation of microtubule bundles that span adjacent cell faces. By computationally modelling dynamic 'microtubules on a cube' with edges differentially permissive to microtubule passage, we show that the CLASP-edge complex is a 'tuneable' microtubule organizer, with the inherent flexibility to generate the numerous cortical array patterns observed in nature
    • …
    corecore