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Abstract—Supervised machine learning has been successfully
used in the past to infer a system’s security boundary by training
classifiers (also referred to as security rules) on a large number
of simulated operating conditions. Although significant research
has been carried out on using classifiers for the detection of
critical operating points, using classifiers for the subsequent
identification of suitable preventive/corrective control actions
remains underdeveloped. This paper focuses on addressing the
challenges that arise when utilizing security rules for control
purposes. Illustrative examples and case studies are used to show
how even very accurate security rules can lead to prohibitively
high risk exposure when used to identify optimal control actions.
Subsequently, the inherent trade-off between operating cost and
security risk is explored in detail.

To optimally navigate this trade-off, a novel approach is
proposed that uses an ensemble learning method (AdaBoost) to
infer a probabilistic description of a system’s security boundary.
Bias in predictions is compensated by the Platt Calibration
method. Subsequently, a general-purpose framework for building
probabilistic and disjunctive security rules of a system’s secure
operating domain is developed that can be embedded within
classic operation formulations. Through case studies on the IEEE
39-bus system, it is showcased how security rules derived from
supervised learning can be efficiently utilized to optimally operate
the system under multiple uncertainties while respecting a user-
defined balance between cost and risk. This is a fundamental
step towards embedding data-driven models within classic opti-
misation approaches.

Index Terms—Supervised Machine Learning, AdaBoost, Power
Systems Operation, Security Rules, Dynamic Stability

I. INTRODUCTION

The increasing complexity of power systems as well as the
growing uncertainty that surrounds operation, introduced by
renewable sources of energy and changing demand patterns,
has rendered critical the use of advanced operation tools
for ensuring system stability [1], also known as operational
reliability [2]. Under this new reality, a new breed of security
assessment approaches has emerged, combining data-driven
statistical inference and machine learning within a Monte
Carlo framework.

A. Existing approaches

In general, data-driven work-flows follow three main steps:
(i) Generate a population of possible operating points that
may arise in the next hours/days by sampling from statistical
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models fitted to past historical data. (ii) For each sampled
operating point, perform a simulation for each credible con-
tingency scenario and determine post-fault security. (iii) Using
the system’s pre-fault state variables as features and the post-
fault security status as a label, construct classifiers (also known
as security rules) using standard machine learning algorithms
such as Decision Trees (DTs). The principal idea is that a
Transmission System Operator (TSO) or Distribution System
Operator (DSO) can carry out the above training procedure
in a periodic and offline manner and construct classifiers
that can be used as predictors to infer the post-fault security
status of unseen operating points. Subsequently, at each control
period, the TSO or DSO can generate a very large number of
possible operating points and rapidly classify them as safe or
unsafe without performing time-consuming simulations. Such
an analysis can identify critical operating points that could
lead to security problems, providing insight to operators and
flagging them up for further analysis.

In general, the aim of such work-flows is to provide a
scalable way of managing uncertainty and system complexity
within the tight constraints of real-time operation in an effort
to improve the TSO’s and DSO’s situational awareness. As
such, most research efforts until now have focused on studying
the computational performance of such platforms [3] as well
exploring the statistical model for generating operating points
in a multivariate setting (e.g. [4], [5]) and machine learning
approaches for building useful security rules [1].

Currently, the security rules are primarily used to identify
problematic operating points that may arise in the near future.
The next natural step is to use these security rules to determine
what kind of control actions should be performed by the TSO
and DSO to bring the system back to the secure domain.
In other words, instead of limiting the use of security rules
to classification purposes, it is possible to use security rules
as a guide for steering the system back to a safe operating
domain using a suitable control framework, as illustrated in
Fig. 1. Much less work has been carried out on this latter
topic. We begin by presenting the two control approaches that
have been investigated in the literature and then highlight the
open questions we aim to address.

The first type of approaches used in the past is based on
a heuristic analysis of the obtained security rules, so as to
derive re-dispatch rules for preventive or corrective control.
For example, authors in [6], [7] construct security rules in
the form of Decision Trees (DTs). Following DT training, an
operating point that is classified as unsafe can be brought back
to safety by changing the variables present in the parent nodes
of the DT node in question (each DT node is associated with
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Fig. 1: Data-driven work-flows for classification (dashed lines) and the
proposed control purpose (straight lines).

a particular feature and threshold value).
The second type makes use of optimization, where security

rules are embedded within an Optimal Power Flow (OPF)
problem. The idea is that security rules partition the pre-
fault operating space into regions of post-fault security and
regions of post-fault insecurity. The aim is to ensure that
all operating points that may arise within the next hour (or
another adopted control time frame) can be guided towards one
of the safe regions using some preventive/corrective control
action. In the case of DTs, these constraints can be included
in the OPF formulation in the form of inequality expressions.
For example, in [8], [9]) one OPF problem is formulated for
each secure terminal node of the trained DT. All problems
are solved and the solution resulting in the smallest operating
cost can be adopted as the most cost-effective way to ensure
post-fault security. Authors in [10] take a different approach,
where post-fault security is ensured by conservatively adjust-
ing the bounds of generators found to be potentially lead to
insecurity. The most cost-effective trajectory is identified by
constraining operation within a decision surface that respects
power balance and all other relevant scheduling constraints.
Instead of adjusting generator bounds, line flow limits are
considered as features in [11], where the authors propose
a Mixed Integer Linear Programming (MILP) approach to
embed the entire DT in a single problem. Also an MILP is
used in [12] and an offline-learned single safety margin is used
to deal with potential insecurity. Although such approaches
are promising and a natural step towards fully automated
and comprehensive control frameworks under uncertainty, they
face several challenges.

B. Challenges of Data-driven operation

The first challenge refers to the fact that a classifier’s
accuracy when applied to a classification task can be radically
different to the same classifier’s accuracy when applied to

a control task. This is because the population of operating
points used to train a security rule is fundamentally different
to the population of operating points that arise as a result of
an optimal control process.

As explained in detail later, although this may appear to
be a subtle point, it is crucial since there can be cases
where a 99.9 % accurate security rule (i.e. extremely good
in identifying critical points) results in 0 % accuracy when
used to derive optimal control actions (i.e. the system is
erroneously guided to an unsafe region believed to be safe).
The implications of this issue, which has not been studied in
detail in the existing literature, can be problematic.

The second challenge has to do with the fact that since
the trained classifiers are by definition imperfect, this inadver-
tently raises the issue of managing the risk that arises while
also being cost-optimal i.e. tackling the risk-cost balance.
The impact of imperfections in security classifiers has been
investigated in isolation, for example in [13]. To deal with
the risk of imperfect classifiers researches have proposed
several methods to learn risk-averse security rules. For ex-
ample, [10] and [11] propose to asymmetrically adjust the
weights (asym. weighting) of safe and unsafe operating points
during training. By increasing the weight of insecure training
samples, the boundary is approximated more conservatively.
However, apart from several other drawbacks, such conser-
vative approaches can have a detrimental effect on operating
cost. Other authors introduce bias after training. For example,
[6] and [7] verify the validity of identified control actions
by executing simulations; this procedure is repeated until a
certificate of security can be obtained for the new operating
point. However, such approaches require a large number of
simulations in the control period, resulting in a prohibitively
large computational load and cost inefficiencies. To avoid cost
inefficiencies, researchers have been balancing risk and cost
in non-data-driven approaches; e.g, [14] employs a particle-
swarm optimization, [15] a multi-objective optimization, and
[16] a chance-constrained and multi-objective (stochastic) op-
timization. However, the challenge to describe and balance the
risk in data-driven approaches caused by the imperfection of
the classifiers remains unaddressed.

The third challenge has to do with the applicability of
security rules to unseen operating conditions. In the past,
researchers have developed heuristics that are able to improve
performance when dealing with unseen operating conditions.
However such methods entail large realtime computational
load since they require knowledge of the specific operating
point so as to modify the base case control scheme accordingly
(e.g., [6], [7], [10]). In this paper we investigate generalizable
ways to improve control scheme robustness.

C. Present work

In this paper, two approaches are proposed to address
the aforementioned challenges in different ways. The first
approach addresses the first two aforementioned challenges
by showing how to learn operation safety margins so as to
conservatively approximate the region of safe operation subject
to a user-specified tolerance. Instead of generalizing a single
safety margin across all security rules, as has been done in the
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past [10], [12], condition-specific safety margins are tailored
to each individual condition of the security rules, resulting in
cost savings; consequently the approach improves the risk/cost
balance indirectly by learning those condition-specific safety
margins.

The second approach proposes a novel risk-averse method-
ology to address all three aforementioned challenges. The
concept is to balance the pre-fault operating cost and ex-
pected probability of operating within an acceptable region
via a multi-objective optimization framework. This entails a
fundamental shift from deterministic to probabilistic treatment
of security which is enabled by moving from the use of DTs,
which have traditionally been used in the past, to ensemble
methods such as AdaBoost [17]. Starting with uniformly
weighted training samples, AdaBoost can iteratively train
base DT estimators by adapting the sample weights in each
iteration. The final ensemble (consisting of all trained base
estimators) can be used to provide probability estimates re-
garding the post-fault security of a particular operation region
based on the individual votes of the base estimators. We
also show how those estimates must be calibrated using Platt
Calibration [18] to deal with the bias typically introduced
by boosting algorithms. The bias is reduced by fitting a
sigmoid function to the probability estimates and the posterior
probabilities. To embed the security rules in the optimization
problem, both approaches involve Generalized Disjunctive
Programming (GDP) [19]. GDP uses binary and continuous
variables to exploit the inherent logic structure of the security
rules in order to reduce the combinatorics. The formulation of
GDP enables solvers to make use of branch-and-bound search
in order to achieve superior computational performance. We
show how the developed methods result in computationally
efficient approaches, rendering them suitable for real-time
deployment in large systems.

To study the proposed approaches, an IEEE 39-bus case
study is used. First, we show that existing approaches, pri-
marily focused at training classifiers for predicting safe/unsafe
labels for unseen operating points, are inherently ill-suited for
the task of identifying suitable control actions. We proceed
by showing that both proposed approaches are able to drive
system operation much closer to the global optimum than
existing approaches, while also abiding to the user-defined
risk tolerance level. Moreover, we show that the proposed risk-
averse approach is capable of identifying cost-effective control
actions under a large range of unseen operation conditions.

The rest of the paper is structured as follows. In Section
II, we present in detail the challenges of inferring suitable
control actions on the basis of data-driven proxies of security.
Thereafter, in Section III, the approach to learn condition-
specific safety margins is introduced. Subsequently, the risk-
averse approach is proposed in Section IV and the case study
is presented in Section V. Finally, Section VI is the conclusion.

II. DATA-DRIVEN SECURITY RULES

A. Security rules for classification

We first consider supervised classification methods that can
predict the security of an operating point. For such a task,
the usual approach is to use a binary class label (acceptable
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Fig. 2: Pre-fault feature space in R2: the true boundary (for Y , dotted black)
is estimated by a DT using acceptable (green circles) and unacceptable (red
circles) training samples; the estimated boundary (for Ŷ , blue line) devides
the space into acceptable (green) and unacceptable (red) regions. Wrong
estimations (shaded) can be critical (red X).

or unacceptable) corresponding to the post-fault state of the
system subject to a user-specified binary criterion (e.g. line
overloads, over-voltages, transient stability etc.). To train and
assess the performance of a classifier, two data sets are
usually distinguished: the training data (X,Y ) and the test data
(Xt, Y t). The population of pre-fault operating points X and
Xt can, for example, be obtained by sampling an underlying
statistical model fitted to historical data, while the population
of labels Y and Y t is obtained via simulation Y : X 7→ Y
(see [3], [20] and [21] for details). A classifier is trained on
data (X,Y ) containing N samples (xi, yi), i = 1, . . .N of
operating points, where xi ∈ Rp is a vector of p features (pre-
fault state variables, such as line flows, power of generators
and loads) and yi ∈ {0, 1} is the corresponding class label
with yi = 1 and yi = 0 signifying acceptable and unacceptable
post-fault operation, respectively. In this paper we focus on
training binary DTs using the Classification And Regression
Trees (CART) algorithm [22]. A typical DT, as illustrated in
Fig. 2 for p = 2, divides the entire pre-fault operating space in
regions of unacceptable (red) and acceptable (green) post-fault
behaviour with class label {0, 1}. Each region corresponds to
a terminal node n ∈ ΩT that are associated with one of the
class labels {0, 1} denoted by Ω0

T and Ω1
T , respectively. This

notation corresponds to Ω0
T = {n1,n4} and Ω1

T = {n3} in
the Fig. 2. This association is determined based on the fraction
of training points (X,Y ) in each terminal node that have the
class label {0, 1}. This fraction also provides a probability
estimate of the prediction P̂0(xt), P̂1(xt). Consequently, the
prediction of an unseen operating point xt is obtained by the
predominating probability estimate, such as

Ŷ(xt) =

{
0 if P̂0(xt) > P̂1(xt)

1 if P̂0(xt) ≤ P̂1(xt).
(1)

However, due to the limiting nature of the DT (i.e. linear
conditions) and/or insufficient training, the predicted class ŷt

may be wrong ŷt 6= yt (since Ŷ is an approximation of
Y). For example, the DT in Fig. 2 is approximating the true
boundary (dotted black line) which is non-linear and thus
cannot be perfectly inferred. This is evidenced by the fact that
terminal node n3 is not pure, but contains mixed class labels.
Furthermore, wrong predictions may occur when the DT has
been trained on an insufficiently large number of samples,
or if the training and testing populations differ [3], e.g. due
to the respective underlying model to generate the samples,
such as in a topological change in the power system (e.g.,
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as studied in [13]). Such misclassifications are unavoidable
when constructing a classifier, and for this reason quantifying
the quality of the classifier is important.

One typical measure of a classifier’s quality is the test error
rate (e.g., used in [8], [10], [11]), denoted ζ. The test error rate
is calculated based on data (Xt, Y t) containing N t samples
that were unseen in the training procedure Xt ∩ X = ∅ and
the population of predicted class labels Ŷ t (obtained from
Ŷ : Xt 7→ Ŷ t), such that ζ = |Y t 6=Ŷ t|

N t , where | · | denotes
cardinality. However, in this paper we show that although
metrics such as ζ can be useful in quantifying classification
performance, they cannot predict a rule’s performance when
used for inferring suitable mitigation control actions.

B. Security rules for control

As mentioned in the introduction, the natural step after
obtaining a set of security rules is to develop an optimization
framework that identifies control actions so that the system
is contained within one of the prescribed safe operating
regions while achieving minimum operating cost. This can be
formulated as the following optimization problem:

min
x∗

f(x∗)

s.t. h(x∗) = 0

g(x∗) ≤ 0

q(X,Y )(x
∗) ≤ 0,

(2)

where f(x∗) is the operation cost and g(x∗) and h(x∗) denote
the inequality and equality constraints of the power system
respectively and x∗ is the vector of operational decision
variables such as generator injections, line flows etc. The
embedded security rules are denoted as q(X,Y ) and bound
variables x∗ in the regions of acceptable operation.

Due to the non-perfect nature of q(X,Y ), there will be cases
where optimization problem (2) drives operation to regions
of the feature space that turn out to be unacceptable i.e.
the operation vector x∗ is classified as safe according to the
security rules (i.e. Ŷ(x∗) = 1), but found to be unsafe when
the contingency is simulated (i.e. Y(x∗) = 0). As such, when
analysing a population of N ∗ optimised operating points X∗

by predicting Ŷ : X∗ 7→ Ŷ ∗ and computing the true labels
Y : X∗ 7→ Y ∗, the control error k ∈ [0, 1] can be expressed
as the ratio of incorrectly classified points k = |Ŷ ∗ 6=Y ∗|

N∗ .
Note that control error k is very different to the classification

error ζ since it refers to a fundamentally different population of
operating points. Whereas the population Xt used to compute
ζ is drawn from the same distribution as the training data
X , the population X∗ that determines k results from an
optimization procedure that favors cost-minimizing regions
(see [8], [9], [11]), where the security rules endogenously
restrict the problem’s feasible region according to q(X,Y ). As a
result, if the optimization is linear, then X∗ accumulates upon
the binding hyperplanes, since, according to the fundamental
theorem of linear programming [23], the optimal solution
always lies either on one of the vertices of the feasible region
or on a connecting line of two optimal vertices. This is
especially critical if we consider the fact that unacceptable
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Fig. 3: Different approaches to obtain data-driven security rules for control
(based on Fig. 2): (a) asym.-weighting, (b) single-ε, (c) condition-specific-ε
and (d) risk-averse. The approach-specific modifications are shown as yellow
lines.

operating regions can be less costly than acceptable regions
since the latter may entail some preventive/corrective measures
entailing an increase in cost. For example, referring back to
Fig. 2, if there is a low-cost point that has been included in
the set of acceptable terminal nodes (denoted by red X marks)
then it is possible to obtain a control error k >> ζ and as high
as 1. One intuitive approach to address this problem is the
asymmetric weighting approach to conservatively approximate
the boundary with the idea of shifting the binding hyperplanes
towards the acceptable region (as done in [10], [11]). However,
this shift is not straightforward to control and still results in a
control error k � ζ, as illustrated in Fig 3a (denoted by the
red X marks).

In response, we investigate two strategies to achieve low k:
1) Under-estimate the acceptable operation regions by in-

troducing some safety margin ε.
2) Provide an explicit term in the objective function of

optimization problem (2) so as to penalize operation in
regions with non-zero ζ.

We present the first condition-specific-ε approach in Section
III and the second risk-averse approach in Section IV.

III. COMPUTING CONDITION-SPECIFIC SAFETY MARGINS

Modifying security rules with a safety margin in order to
increase control robustness has been proposed in the past
[10], [12]. Nevertheless, the existing literature has exclusively
focused on cases using a safety margin in an iterative online
search (e.g., [10]) dealing with a single contingency and
largely ignored the economic implications of introducing such
a margin. In this paper, in an effort to develop a scalable
data-driven framework, we focus on cases involving multiple
contingencies and computing margins outside the control time
frame. In such a case, two approaches can be adopted to reduce
k. The first approach is to apply a single safety margin ε
to all conditions of all rules, as shown in Fig. 3b. As can
be seen, this approach can lead to the unnecessary shrinkage
of the estimated acceptable operating region, thus potentially
leading to increased cost. The second approach is to compute
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a condition-specific-ε for each individual condition of each DT
rule, as shown in Fig. 3c. Inaccurate conditions are identified,
and a safety margin ε is iteratively added so as to shift the
estimated boundary towards the actual acceptable region. This
shift is biased by the set of conditions that are identified
as shortcomings of the classifier and get improved. With
respect to this bias, the complete elimination of inaccuracies
of conditions cannot be guaranteed, as exemplified by the red
X in Fig. 3c.

A. Mathematical formulation

In this section we build upon optimization problem (2). We
adopt the standard DC Optimal Power Flow (OPF) formulation
and modify it so as to include security rules with a safety
margin. GDP [19] is used to transform the DT to a set
of inequality constraints q(X,Y )(x) that can be embedded in
the optimization. The logic is that each terminal node of
the DT labelled as acceptable n ∈ Ω1

T corresponds to the
disjunction of all parent branching nodes. To formulate such
a disjunction, a convex-hull reformulation [24] or big-M
reformulation [19] can be used. In this application, we adopt
the big-M reformulation which results in fewer constraints
and variables. The reformulation of the constraints in iteration
j (the safety margin ε changes at each iteration) is

aᵀmx ≤ (sm − εjn,m)bn + aᵀmM1(1− bn) (3)

∀n ∈ Ω1
T and ∀m ∈ ΩL

A(n), where ΩL
A(n) ∈ ΩB are all

ancestor branch nodes that provide a left (≤) condition on
the path from the initial node n0 to the terminal node n.
Accordingly, ΩR

A(n) is the set of all ancestor branch nodes
providing a right (>) condition

aᵀmx > (sm + εjn,m)bn + aᵀmM2(1− bn) (4)

∀n ∈ Ω1
T and ∀m ∈ ΩR

A(n). The original conditions obtained
from the DT learning algorithm are the feature threshold sm
and am = eh(m) for each branch node ∀m ∈ ΩB , where
eh(m) is the hth standard basis vector in the p-dimensional
space. bn = {0, 1} is a binary variable for each of the
disjunct n ∈ Ω1

T ; if bn = 1, operation in terminal node n is
selected. Exactly one disjunction must be selected according
to

∑
n∈Ω1

T

bn = 1. Note that strict inequalities cannot be

modelled in optimizations, therefore a small β ∈ R>0 can be
added to the right-hand-side of Eq. (4).

The big-M constants have vector form M1 ∈ Rp and
M2 ∈ Rp, where p are the features. In order to speed-up the
computations, it is critical to use small big-M values; large
enough to ensure the desired behaviour but not unnecessarily
large so as to increase the problem’s feasible region.

M1 = max{amsm + amx
L : m ∪

n∈Ω1
T

ΩL
A(n)} (5a)

M2 = min{amsm + amx
U : m ∪

n∈Ω1
T

ΩR
A(n)}, (5b)

where max and min are operators to compare element-wise
the vector entries, am = 1 − am is the negation of am and
it is assumed that all linear (feature) variables are bounded
xL ≤ x ≤ xU . As illustrated in Fig. 3c, the safety margins
εjn,m are iteratively increased for the conditions of the branch

nodes m of each rule from initial node n0 to the terminal
node n. The corresponding safety margins to be increased from
iteration j to j+1 are identified in an offline search procedure.
Initially, all safety margins are ε0

n,m = 0∀n ∈ Ω1
T , ∀m ∈

ΩL
A(n)∪ΩR

A(n). Then, in each j, the critical conditions ΩC,j

are searched by taking a test set of optimized operating points
(X∗), where the dispatch decisions were computed using the
proposed optimization accounting for the corresponding εjn,m.
Subsequently, for each optimized operating point x∗ ∈ X∗,
the true class label is computed through the true function
(e.g., via simulations) y∗ = Y(x∗) and the critical conditions
(n,m) are those on which the unacceptable operating points
(y∗ = 0) accumulate. For each unacceptable point x∗ ∈ (X∗),
the conditions (n,m) are identified if the following condition
R(n,m, x∗) holds:

R =

{
|aᵀmx∗ − (sm + εjn,m)| ≤ δ if m ∈ ΩR

A(n)

|aᵀmx∗ − (sm − εjn,m)| ≤ δ if m ∈ ΩL
A(n),

(6)

where x∗ is located in terminal node n and δ is a tolerance
parameter. If this holds, (n,m) is added to the set of critical
conditions ΩC,j = ΩC,j + (n,m). After those conditions
(n,m) are identified ∀x∗ ∈ (X∗), the corresponding safety
margins are increased εj+1

n,m = εjn,m + ∆ε ∀(n,m) ∈ ΩC,j

by a user-specified step ∆ε.

IV. DATA-DRIVEN RISK-AVERSE OPERATION

As discussed previously, the second strategy for achieving
a low control error k is to introduce an explicit term to the
objective function (2) which penalizes risk exposure. In this
section we achieve this by using DT ensembles. We begin
by introducing ensemble learning techniques with a focus
on AdaBoost and Platt calibration. We then introduce the
risk–averse formulation that enables a user-defined trade-off
between operational cost and risk exposure.

A. DT Ensembles
Ensembles are classifiers combining the classification output

of a set of simple classifiers ΩL into one single classification
output [25]. For instance, the diverse outputs of 6 simple
classifiers (DTs), each with two terminal nodes are shown in
Fig. 3d, where each simple classifier’s decision boundary is
a yellow line. The final output can be obtained as probability
estimates (probability estimates for the acceptable class are in
the figure) by combining the votes of the simple classifiers.
This reduces the risk of wrong classification [25] and has been
shown to result in a better approximation Ŷ(x) of the true
function to compute the label Y(x), where x is the feature
vector of the operating point. This better result requires that
the individual classifiers are diverse and more accurate than
random [26]. Two different concepts exist for computing the
predicted label: Majority and Soft Voting. In Majority Voting,
each base estimator l ∈ ΩL provides a class label Ŷl(x), while
in Soft Voting each l provides a probability estimate P̂0

l (x)
and P̂1

l (x) for each class label {0, 1} [27]. In Soft Voting,
the probability estimate that an unseen operating point xt, for
instance, belongs to the acceptable class is computed as

P̂1
E(xt) =

1

|ΩL|

∑
l∈ΩL

P̂1
l (xt). (7)
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The predicted class label can be obtained by using those
probability estimates in Eq. (1). Overall, many algorithms exist
to learn a DT ensemble. In this paper, and after extensive
testing not shown here, we choose to use the AdaBoost.
In AdaBoost, at each iteration of the training process, the
weight of each training sample is adjusted proportionally
to the current misclassification error. AdaBoost by default
employs Majority Voting. The extension to Soft Voting, called
SAMME.R was introduced in [28], where it was shown to
outperform other approaches in terms of convergence time and
test error. However, since the re-weighting of boosting algo-
rithms biases the probability estimates, calibration is required.

B. Calibration

Boosting methods, such as AdaBoost, tend to push the
predicted probabilities away from 0 and 1, resulting in a dis-
tortion in the estimated probabilities [29]. Calibration is used
to correct this distortion by mapping the probability estimates
to the posterior probabilities. Two methods are typically used
for calibration, differing in the mapping function. Isotonic
Regression [30] uses a free-form monotonically increasing
line, while Platt Calibration [18] uses a sigmoid function.
The sigmoid function P 1

E is fitted using maximum likelihood
estimates of a new training dataset (Xc, Y c) (e.g., as plotted in
Fig. 4). In this paper, Platt calibration is used, since according
to the literature it yields the best probability estimates when
combined with the AdaBoost algorithm [29]. In addition, as
we show below, the sigmoid function can be linearised and
embedded within a MILP problem.

C. Mathematical formulation

The balance between cost and risk optimization has been
widely researched. Here, we show how two approaches could
be used to account for the risk of unacceptable operation.
Whereas both consider the same specific constraints q(X,Y )(x),
they differ in the way they account for k(x). In the first
approach, the standard OPF formulation is constrained by
k(x) ≤ γ, where γ is a user-specified parameter to limit
k(x) ∈ [0, 1]. In this paper, we study and propose the
second approach, where k(x) is accounted for in the objective
function,

(1− α)f ′(x) + αk(x), (8)

of a multi-objective optimization with linear scalarization. The
control error k(x) and the normalized operating cost f ′(x) ∈

[0, 1] are weighted using the trade-off factor α. By increasing
the parameter α ∈ [0, 1], the user can select more risk-averse
operation. To compute the normalized operating cost f ′(x) ∈
[0, 1], the standard DCOPF linear cost function is averaged
over all generators and scaled to the minimal and maximal
generator costs.

To implement k(x), the constraints from Section III are
modified and new constraints are taken into account. The
probability estimated of the base estimators are

P̂1
l =

∑
n∈ΩT,l

P̂
1
n,l bn,l ∀l ∈ ΩL, (9)

where P̂1
n,l is the probability estimate for acceptable operation

in the terminal node n and is obtained by computing the ratio
of acceptable training operating points in each terminal node
n. As in Section III, the binary variable bn,l corresponds to
the terminal node n to be selected for operation (bn,l = 1). To
extend the disjunctive formulation to a DT ensemble, some
modifications are undertaken: all remaining inequality and
equality constraints are extended for each base learner l ∈ ΩL

as follows:

aᵀm,lx ≤ sm,lbn,l + aᵀm,lM1,l(1− bn,l) (10)

∀n ∈ ΩT,l and ∀m ∈ ΩL
A,l(n). Note, all terminal nodes ΩT,l

are considered and all parameters, such as am,l, sm,l, M1,l,
as well as the sets ΩT,l, ΩL

A,l are extended by the index l.
Accordingly, the right branch nodes ΩR

A,l are considered in

aᵀm,lx ≥ sm,lbn,l + β + aᵀm,lM2,l(1− bn,l) (11)

∀n ∈ ΩT,l and ∀m ∈ ΩR
A,l(n) with the big-M value M2,l.

Exactly one disjunction must be selected for each l ∈ ΩL

according to
∑

n∈ΩT,l

bn,l = 1. The optimal big-M values
∀l ∈ ΩL are calculated as follows:

M1,l = max{am,lsm,l + am,lx
L : m ∪

n∈ΩT,l

ΩL
A,l(n)} (12a)

M2,l = min{am,lsm,l + am,lx
U : m ∪

n∈ΩT,l

ΩR
A,l(n)} (12b)

In order to include the non-linear sigmoid function P 1
E

within our MILP problem, piece-wise linearization is em-
ployed to obtain the approximation P̂ 1

E . We approximate this
function by using |ΩW | line segments. For P1

E ≥ 0.5, we
can avoid introducing a binary variable, since ∂2P 1

E

∂(P̂1
E)2
≤ 0.

However, to approximate for P̂1
E < 0.5, we introduce one

single binary variable b′ = {0, 1} to account for an initial line
segment w = 0. The linear approximation P̂ 1

E is illustrated in
Fig. 4 and formulated using the following constraints:

P̂ 1
E =

∑
w∈ΩW

mwδw (13a)

P̂1
E = b′δ0 +

∑
w∈ΩW \{0}

δw (13b)

0 ≤ δ0 ≤ b′δU0 (13c)

b′δUw ≤ δw ≤ δUw , ∀w ∈ ΩW \{0} (13d)

where mw is declining (m1 ≥ m2 ≥ m3 · · · ) for w ≥ 1 and
m0 = 0. Consequently, k(x) = P̂ 0

E = 1 − P̂ 1
E . Note, in the
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absence of calibration, k(x) = 1− P̂1
E and Eq. (13) becomes

redundant.

V. CASE STUDY

A number of studies have been undertaken to provide
insights in the theory being discussed and to provide evidence
for the efficacy of the proposed approaches. After stating the
case study assumptions, we show the mismatch in quantifying
the rule-quality when used for classification and for computing
control actions. Subsequently, we show the performance of the
proposed approaches with respect to balancing cost and risk of
unacceptable operation and the sensitivity of this balance. We
continue by providing the result of a study on the applicability
to unseen operating conditions and finish with discussing the
scalability of the approaches.

A. Test system and assumptions

The IEEE 39 bus system was used: all data was taken from
[31] and modified (as in [12], including post-fault redispatch-
ing of generator power levels by ±100 MW) to ensure N-
1 SCOPF feasibility for all samples. The acceptability class
label is computed by proving if the energy balance can be
maintained after a fault. If this was the case for all line outages,
the pre-fault operating point x was considered as acceptable
Y(x) = 1 and otherwise unacceptable Y(x) = 0. This allowed
to compare the approaches against a reference, the optimal
acceptable operation (obtained from the N-1 SCOPF dispatch).

In order to create the training data (X,Y ), loads were
assumed to be distributed within ±25 % of the nominal
loads. The samples were drawn from a multivariate Gaus-
sian distribution (with a Pearson’s correlation coefficient of
0.75 between all load pairs) and converted to a marginal
Kumaraswamy(1.6,2.8) distribution by the inverse transforma-
tion method. The generator powers were randomly dispatched
in their respective operation limits, such that the total load and
total generator power are matching. The final (X,Y ) consisted
of 500000 samples with p = 65 features including load levels,
pre-fault generation levels and line flows and the binary label,
the acceptable/unacceptable operation.

To study the asym. weighting, single-ε and condition-
specific-ε approaches, a DT was learned via CART [22] by
using the package scikit-klearn 0.18.1 [32] in Python 3.5.2;
default settings were used (e.g., minimizing the gini impurity)
except the weighting of probabilities of the samples. Whereas
in the single-ε and condition-specific-ε approaches, we used
balanced weights, we varied the weights in [0, 1] for the
asym. weighting approach. Under and over–fitting was handled
by grid-searching for the hyper–parameters (i) maximal tree
depth {5, 6, · · · 20} and (ii) maximal number of terminal nodes
{20, 40, · · · 100, 200, · · · 500} involving 5-fold cross validation
and ’f1’ score as criterion. The MILP was implemented in
Pyomo 5.1.1 [33] and the solver was Gurobi 7.02 [34]. The
MILP uses a new operating point (defined by the distribution
of loads) and makes decisions for all state variables, such as
generator power dispatches, including corrective actions and
line flows. Further parameters were β = 0.001, δ = 0.01 MW
and ∆ε = 5 MW. For the condition-specific-ε approach, the
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Fig. 5: Cost-risk balance of the discussed approaches: In (a) and (b) is the
’risk’ represented as control error and in (c) and (d) is the corresponding
relative cost based on exclusively comparing the acceptable samples. The
shaded regions in (c) and (d) correspond to the 10th and 90th percentiles of
the relative cost.

optimization was solved in each iteration for 1000 samples
(X∗).

To study the risk-averse approach, we used the AdaBoost
algorithm SAMME.R [28] with the default parameters of
scikit-klearn (maximal base estimators |ΩL| = 10, learning
rate = 1). Platt Calibration was applied by using 100000
samples (Xc, Y c), 5-fold cross validation and was linearized
by using |ΩW | = 62 line segments with δw = 0.01 (for
w > 1 if P1

E ≥ 0.5). The trade-off coefficient was varied
in α = {0, 0.02, 0.04, . . . , 1}.

B. Data-driven security rules: classification versus control

We start with showcasing the inappropriateness of the test
error rate ζ for assessing the suitability of identifying control
actions from security rules. As discussed, the control error k
yields a more appropriate metric. To demonstrate the mismatch
between the two metrics, an unmodified DT (as illustrated in
Fig. 2) with balanced sample weights was used. N t = 100000
out-of-sample points were used to compute the test error,
which was ζ ≤ 0.1 %. By applying the unmodified security
rules N ∗ = 100000 optimized operating points were obtained
and the control error k = 70 % was calculated. Even though
the test error ζ ≤ 0.1 % suggests that the DT is capable of
achieving high performance predictions, the DT-based security
rules are inappropriate for identifying control actions. This
demonstrates, as discussed in Section II, the test error is
unsuitable to quantifying security rules for control since the
optimization drives operation to unacceptable regions.
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C. Balancing cost and risk

The discussed approaches (illustrated in Fig. 3) were as-
sessed under the lens of the inherent trade-off between risk
and cost when using security rules for control. Unless stated
otherwise, we computed the control error k and the average
pre-fault operating cost f̄r (relative to the optimal reference)
with the use of 1000 out-of-sample points (X∗). The cost
f̄r was computed by exclusively comparing the acceptable
dispatched samples (y∗ = 1) against the sample-specific
optimal references (SCOPF solution).

By tuning the weights of the samples with respect to the
class labels in the asym. weighting approach, the lowest control
error k = 41 % has been found at the weight 0.99999 for
the acceptable class; the relative cost difference was roughly
f̄r = 0.06 %. Increasing further the weight for the acceptable
class resulted in an empty feasible region. The approach was
not capable to obtain a k close to zero.

The results of the single-ε and condition-specific-ε ap-
proaches are presented in Fig. 5a and Fig. 5c. Without any
adjustments ε = 0 MW, a reference solution (f̄r = 0 %) was
identified for 30 % of the samples (and unacceptable solutions
otherwise). By increasing the safety margin ε, the control error
k was reduced and the relative cost f̄r increased. As discussed,
this behaviour is because the estimated decision boundary is
shifted to the actual acceptable region (as illustrated in Fig. 3).
Both approaches were capable of obtaining k ≤ 0.1 %. Since
the proposed condition-specific-ε approach tailors separately
the safety margin to each condition what results in estimating
the acceptable region less conservative, lower operating costs
were obtained than in the single-ε approach. In fact, for
k ≤ 0.1 %, the result was a reduction in f̄r of more than
60 % in comparison of using a single-ε.

The results of the risk-averse approach with and without
calibration are presented in Fig. 5b and Fig. 5d. The study
included varying the trade-off coefficient α. By increasing α,
a more risk-averse focus is entailed and the optimized solution
is shifted towards regions with higher probability estimates of
acceptable operation (to a greener region in Fig. 3d). At α = 0
(running a standard DCOPF), the control error k is 100 %. By
increasing the coefficient α, a low control error k < 0.2 % can
be achieved for α > 0.25 and the relative cost f̄r increased.
For 0.25 ≤ α ≤ 0.8, the relative cost f̄r remains constant for
both the uncalibrated and calibrated case. Consequently, for
instance α = 0.6 is an appropriate value to balance cost and
risk. The main difference between uncalibrated and calibrated
case is the cost-sensitivity to high values of α.

D. Sensitivity of cost-risk balance

The balance of cost and risk moved along the curves
presented in Fig. 6. A typical risk-averse operator aims to
achieve low control errors k. When the parameters ε or
α were selected to reduce k, the cost f̄r increased for all
approaches. However, this cost sensitivity varies. The single-ε
and uncalibrated risk-averse approaches particular showed a
large increase in cost f̂r when k → 0. At each iteration in
the single-ε approach, fewer conditions require improvement.
Consequently, the cost increases more rapidly than k reduces.

high cost-sensitivity
when uncalibrated

low cost-sensitivty
when calibrated

0 25 50 75 100
0
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2.5

k[%]
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Fig. 6: Sensitivity of the cost-risk balance for the approaches: single-ε
( ), condition-specific-ε ( ), risk-averse uncalibrated ( ) and risk-averse
calibrated ( ).

In the procedure to train the ensemble for the risk-averse
approach, the uncalibrated probability estimates were pushed
away from 0 and 1, with many regions having values around
0.5. Although this nonlinear distortion does not impact the
accuracy of classifications, it results in wrong probability
estimates. The nonlinearity of the distortion is in conflict with
the nature of the linear scalarization in the multi-objective
optimization (8). In other words, the nonlinear distortion of
probability estimates results in more difficulties in tuning α
and leads to higher cost-sensitivities when k → 0. Both
proposed approaches, the calibrated risk-averse (cal.) approach
and the condition-specific-ε, showed a reduced increase of
f̄r, when k → 0. In terms of balancing cost and risk, both
proposed approaches outperform approaches of the current
literature and resulted in roughly f̄r = 0.5 % with k ≤ 0.1 %.

E. Applicability to unseen operating conditions

As discussed, the approaches deal differently with the trade-
off between cost and risk as illustrated in Fig. 3. Even after
approach-specific improvements, critical regions might remain
unacceptable (marked with X in the figure). Consequently,
those approaches would not be applicable to unseen operating
conditions. To validate the performance under unseen operat-
ing conditions of the approaches, the following study was un-
dertaken: the approach-specific improvements were finalized
and α and ε with the lowest f̄r for k ≤ 0.1 % were selected.
The unseen operating conditions were simulated by drawing
the generator costs from an uncorrelated uniform distribution
in the generator-individual operating limits. Consequently, a
very different population of optimized operating points (X∗)
was obtained and used to calculate the control error k. 1000
different operating conditions were simulated and the results
are shown in Table I. As assumed, the risk-averse and single-
ε approaches were applicable with k ≤ 0.1 % to unseen
operating conditions since the improvement does not focus on
regions biased in the optimization. As discussed, the asym.
weighting was not suitable for seen operating conditions,
consequently the same counts for unseen operating condi-
tions. The condition-specific-ε approach improves iteratively
boundaries in regions where the optimized operating points
(X∗) accumulate; all other decision boundaries are non-
improved. Consequently, changing the operating conditions in
the optimization drives the operation onto those non-improved
decision boundaries resulting in high k = 45 %.
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TABLE I: Control error k for seen and unseen operating conditions.

asym. weighting single-ε condition-specific-ε risk-averse (cal.)

seen 41 % ≤ 0.1 % ≤ 0.1 % ≤ 0.1 %

unseen 56 % ≤ 0.1 % 45 % ≤ 0.1 %

TABLE II: Complexity of the MILP to be solved per control time frame.

#constraints #continuous variables #binary variables

single-ε / condition-specific-ε 775 88 82

risk-averse 147 150 20

risk-averse (cal.) 250 251 21

F. Computational feasibility

To finally judge the applicability, we discuss the com-
putational feasibility. In all discussed approaches, 500, 000
generated samples were used to train the classifiers; however,
it is possible that a much smaller number of simulations
is required when combining the proposed work-flow with
importance sampling techniques to maximise information gain.

The offline identification of the safety margin ε (that satisfies
a control error k ≤ 0.1 % with lowest cost) required 4000 and
21000 computations of the class labels in the single-ε and in
the condition-specific-ε approach, respectively. In the single-
ε approach, a simple half-interval search was applied and in
the condition-specific-ε approach 21 iterations were needed to
reach a control error k ≤ 0.1 %. Since the DT had |Ω1

T | = 82
and |Ω0

T | = 118 terminal nodes, the MILP involved 82 binary
variables; the full size of the optimization problem is given
in Table II. To solve this optimization problem using Gurobi
7.02 [34] needed a pure solver time of less than 0.1 s on a
standard laptop for each operating point that was studied.

In the proposed risk-averse approach, the trade-off coeffi-
cient α = 0.62 that results in a control error k ≤ 0.1 % with
lowest cost was identified offline using a half-interval search
after 3 steps and involved 3000 computations of the class label.
The ensemble had |ΩL| = 10 DTs and the MILP involved 21
binary variables in the calibrated case. The pure solver time
was less than 0.1 s for each studied operating point.

The problem increases in complexity for larger and more
realistic power systems. A large number of samples is required
to learn accurate classifiers [3]. However, we estimate the
increase in the complexity of the optimization problem will
be only moderately higher than the increase in an equivalent
OPF problem. Note, all of the aforementioned approaches
require a single DT/DT ensemble independent of the number
of contingencies considered. Consequently, even if many more
contingencies have to be taken into account in a larger system,
still only a single DT/DT ensemble is trained and accounted
for in the optimization.

G. Discussion

The key advantage of the proposed approaches over cur-
rent approaches is the ability to shift computations from the
control time frame to the offline time frame (as discussed in
the introduction and shown in Figure 1). In both proposed

approaches, the condition-specific-ε and the risk-averse ap-
proach, the computation in the control time frame was less
than 0.1 s, consisting purely out of the solver time for the
single optimization problem. No additional computations are
required as all approaches are directly applied to the expected
operating point. Both approaches outperformed current data-
driven approaches in better balancing cost and risk. Finally, the
calibrated risk-averse approach performs well for a wide range
of values for α and is robust to unseen operating conditions.

The proposed work-flow generalizes to the operation of
power systems where a risk of instability and operation cost
must be balanced under operational uncertainty, and is appli-
cable to distribution and transmission grids. The operational
uncertainty may include but is not limited to uncertainty
in loads and generator outputs, such as wind turbines or
photovoltaic panels. Appropriate risk metrics will depend on
the application, but they can be flexibly defined through the
acceptability criterion as long as it can be described by a
binary criterion (e.g. 1 for acceptable operation and 0 for an
unacceptable operation of the power system); consequently,
the proposed approaches could be used to account for e.g. line
overloads, over-voltages or transient stability. Those different
risk functions are described by a DT ensemble and could be
learned through other supervised machine learning algorithms,
such as random forests, extremely randomized trees or other
boosting algorithms. Additionally, the cost function that is
used in the risk-cost balance could include terms related to the
loss of load or undesirable power peaks. Lastly, the approaches
presented in this work can be applied to a larger class of
operational challenges, including AC (optimal) power flow and
unit commitment problems.

The approaches are limited when aiming to obtain a guaran-
teed security certificate. As discusses, the security boundary
is approximated from data and this approximation leads to
inaccuracies which leave a certain residual risk. In other words,
in our case study, the control error can be guaranteed to attain
k ≤ 0.1 %, but cannot be guaranteed to equal zero.

VI. CONCLUSION

The challenges of embedding data-driven proxies of security
within power systems operational models have been presented,
showing how such a scheme can suffer from increased control
errors in the absence of risk averse measures. In response,
we proposed two approaches: introducing contingency-specific
safety margins and moving to a risk-averse formulation by
leveraging ensemble learning methods. Through case studies
on the IEEE 39-bus system, the proposed approaches were
shown to achieve superior cost performance while meeting
target risk tolerance levels. The risk-averse approach was
shown to be particularly robust against a wide range of
uncertainties while also imposing very little computational
overhead. This work enables, for the first time, the move
from traditional classifiers (as proxy descriptors of data-driven
security assessment) to more advanced ensemble methods
by proposing a novel risk formulation, GDP optimization
framework as well as describing the necessary calibration
steps. In the future, feature selection will be improved to
decrease the offline computational effort.
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