1,022 research outputs found
Theory of commensurable magnetic structures in holmium
The tendency for the period of the helically ordered moments in holmium to
lock into values which are commensurable with the lattice is studied
theoretically as a function of temperature and magnetic field. The
commensurable effects are derived in the mean-field approximation from
numerical calculations of the free energy of various commensurable structures,
and the results are compared with the extensive experimental evidence collected
during the last ten years on the magnetic structures in holmium. In general the
stability of the different commensurable structures is found to be in accord
with the experiments, except for the tau=5/18 structure observed a few degrees
below T_N in a b-axis field. The trigonal coupling recently detected in holmium
is found to be the interaction required to explain the increased stability of
the tau=1/5 structure around 42 K, and of the tau=1/4 structure around 96 K,
when a field is applied along the c-axis.Comment: REVTEX, 31 pages, 7 postscript figure
Recommended from our members
A mathematical model of the sterol regulatory element binding protein 2 cholesterol biosynthesis pathway
Cholesterol is one of the key constituents for maintaining the cellular membrane and thus the integrity of the cell itself. In contrast high levels of cholesterol in the blood are known to be a major risk factor in the development of cardiovascular disease. We formulate a deterministic nonlinear ordinary differential equation model of the sterol regulatory element binding protein 2 (SREBP-2) cholesterol genetic regulatory pathway in an hepatocyte. The mathematical model includes a description of genetic transcription by SREBP-2 which is subsequently translated to mRNA leading to the formation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a main precursor of cholesterol synthesis. Cholesterol synthesis subsequently leads to the regulation of SREBP-2 via a negative feedback formulation. Parameterised with data from the literature, the model is used to understand how SREBP-2 transcription and regulation affects cellular cholesterol concentration. Model stability analysis shows that the only positive steady-state of the system exhibits purely oscillatory, damped oscillatory or monotic behaviour under certain parameter conditions. In light of our findings we postulate how cholesterol homestasis is maintained within the cell and the advantages of our model formulation are discussed with respect to other models of genetic regulation within the literature
Recommended from our members
Mathematical modelling of contact dermatitis from nickel and chromium
Dermal exposure to metal allergens can lead to irritant and allergic contact dermatitis (ACD). In this paper we present a mathematical model of the absorption of metal ions, hexavalent chromium and nickel, into the viable epidermis and compare the localised irritant and T-lymphocyte (T-cell) mediated immune responses. The model accounts for the spatial-temporal variation of skin health, extra and intracellular allergen concentrations, innate immune cells, T-cells, cytokine signalling and lymph node activity up to about 6Â days after contact with these metals; repair processes associated with withdrawal of exposure to both metals is not considered in the current model, being assumed secondary during the initial phases of exposure. Simulations of the resulting system of PDEs are studied in one-dimension, i.e. across skin depth, and three-dimensional scenarios with the aim of comparing the responses to the two ions in the cases of first contact (no T-cells initially present) and second contact (T-cells initially present). The results show that on continuous contact, chromium ions elicit stronger skin inflammation, but for nickel, subsequent re-exposure stimulates stronger responses due to an accumulation of cytotoxic T-cell mediated responses which characterise ACD. Furthermore, the surface area of contact to these metals has little effect on the speed of response, whilst sensitivity is predicted to increase with the thickness of skin. The modelling approach is generic and should be applicable to describe contact dermatitis from a wide range of allergens
Recommended from our members
Conceptual design for the NSTX Central Instrumentation and Control System
The design and construction phase for the National Spherical Torus Experiment (NSTX) is under way at the Princeton Plasma Physics Laboratory (PPPL). Operation is scheduled to begin on April 30, 1999. This paper describes the conceptual design for the NSTX Central Instrumentation and Control (I and C) System. Major elements of the Central I and C System include the Process Control System, Plasma Control System, Network System, Data Acquisition System, and Synchronization System to support the NSTX experimental device
Salivary cortisol response to infant distress in pregnant women with depressive symptoms.
The Hypothalamic-Pituitary-Adrenal (HPA) axis has been proposed as a potential underlying biological mechanism linking prenatal depression with adverse offspring outcomes. However, it is unknown whether the reactivity of this system to stress is altered in pregnant women experiencing depression. The objective of this study was to investigate whether salivary cortisol response to a distressed infant film is enhanced in pregnant women with symptoms of depression compared with non-depressed controls. Salivary cortisol and subjective mood responses to the film were measured in 53 primiparous women, between 11 and 18 weeks gestation. Both groups showed similar increases in state anxiety in response to the film, but there was a significantly increased cortisol response in women experiencing symptoms of depression. Depression during pregnancy is associated with increased reactivity of the HPA axis. This is consistent with altered HPA axis functioning being a key mechanism by which prenatal mood disturbance can impact upon fetal development
Early childhood aggressive behaviour: Negative interactions with paternal antisocial behaviour and maternal postpartum depressive symptoms across two international cohorts.
BACKGROUND: Early childhood aggressive behaviour is a predictor of future violence. Therefore, identifying risk factors for children's aggressive behaviour is important in understanding underlying mechanisms. Maternal postpartum depression is a known risk factor. However, little research has focused on the influence of paternal behaviour on early childhood aggression and its interaction with maternal postpartum depression. METHODS: This study was performed in two cohorts: the Fathers Project, in the United Kingdom (n = 143) and the Generation R Study, in The Netherlands (n = 549). In both cohorts, we related paternal antisocial personality (ASP) traits and maternal postpartum depressive (PPD) symptoms to childhood aggressive behaviour at age two (Fathers Project) and age three (Generation R Study). We additionally tested whether the presence of paternal ASP traits increased the association between maternal PPD-symptoms and early childhood aggression. RESULTS: The association between paternal ASP traits and early childhood aggressive behaviour, corrected for maternal PPD-symptoms, was similar in magnitude between the cohorts (Fathers Project: standardized β = 0.12, p = 0.146; Generation R: β = 0.14, p = 0.001), although the association was not statistically significant in the Fathers Project. Strikingly, and in contrast to our expectations, there was evidence of a negative interaction between paternal ASP traits and maternal PPD-symptoms on childhood aggressive behaviour (Fathers Project: β = -0.20, p = 0.020; Generation R: β = -0.09, p = 0.043) in both studies. This meant that with higher levels of paternal ASP traits the association between maternal PPD-symptoms and childhood aggressive behaviour was less and vice versa. CONCLUSIONS: Our findings stress the importance of including both maternal and paternal psychopathology in future studies and interventions focusing on early childhood aggressive behaviour.Wellcome Trus
Investigating the 8.2 ka event in northwestern Madagascar: Insight from data–model comparisons
The 8.2 ka event is a well-known cooling event in the Northern Hemisphere, but is poorly understood in Madagascar. Here, we compare paleoclimate data and outputs from paleoclimate simulations to better understand it. Records from Madagascar suggest two distinct sub-events (8.3 ka and 8.2 ka), that seem to correlate with records from northern high latitude. This could indicate causal relationships via changes in the Atlantic Meridional Overturning Circulation (AMOC) with changes in moisture source's δ18O, and changes in the mean position of the Inter-Tropical Convergence Zone (ITCZ), as climate modelling suggests. These two sub-events are also apparent in other terrestrial records, but the climatic signals are different. The prominent 8.2 ka sub-event records a clear antiphase relationship between the northern and southern hemisphere monsoons, whereas such relationship is less evident during the first 8.3 ka sub-event. Data–model comparison have also shown a mismatch between the paleoclimate data and the model outputs, the causes of which are more or less understood and may lie in the proxies, in the model, or in both data and model. Knowing that paleoclimate proxies and climate models produce different sets of variables, further research is needed to improve the data–model comparison approach, so that both paleoclimate data and paleoclimate models will better predict the likely climate status of a region during a specified time in the past with minimal uncertainties
Adaptive response and enlargement of dynamic range
Many membrane channels and receptors exhibit adaptive, or desensitized,
response to a strong sustained input stimulus, often supported by protein
activity-dependent inactivation. Adaptive response is thought to be related to
various cellular functions such as homeostasis and enlargement of dynamic range
by background compensation. Here we study the quantitative relation between
adaptive response and background compensation within a modeling framework. We
show that any particular type of adaptive response is neither sufficient nor
necessary for adaptive enlargement of dynamic range. In particular a precise
adaptive response, where system activity is maintained at a constant level at
steady state, does not ensure a large dynamic range neither in input signal nor
in system output. A general mechanism for input dynamic range enlargement can
come about from the activity-dependent modulation of protein responsiveness by
multiple biochemical modification, regardless of the type of adaptive response
it induces. Therefore hierarchical biochemical processes such as methylation
and phosphorylation are natural candidates to induce this property in signaling
systems.Comment: Corrected typos, minor text revision
Survey of US public attitudes toward pharmacogenetic testing
To assess public attitudes and interest in pharmacogenetic (PGx) testing, we conducted a random-digit-dial telephone survey of U.S. adults, achieving a response rate of 42% (n=1139). Most respondents expressed interest in PGx testing to predict mild or serious side effects (73% ±3.29% and 85% ±2.91%, respectively), guide dosing (91%) and assist with drug selection (92%). Younger individuals (ages 18–34) were more likely to be interested in PGx testing to predict serious side effects (vs. ages 55+), as well as Whites, those with a college degree, and who had experienced side effects from medications. However, most respondents (78% ±3.14%) were not likely to have a PGx test if there was a risk that their DNA sample or test result could be shared without their permission. Given differences in interest among some groups, providers should clearly discuss the purpose of testing, alternative testing options (if available), and policies to protect patient privacy and confidentiality
- …