35 research outputs found

    A small molecule ApoE4-targeted therapeutic candidate that normalizes sirtuin 1 levels and improves cognition in an Alzheimer's disease mouse model.

    Get PDF
    We describe here the results from the testing of a small molecule first-in-class apolipoprotein E4 (ApoE4)-targeted sirtuin1 (SirT1) enhancer, A03, that increases the levels of the neuroprotective enzyme SirT1 while not affecting levels of neurotoxic sirtuin 2 (SirT2) in vitro in ApoE4-transfected cells. A03 was identified by high-throughput screening (HTS) and found to be orally bioavailable and brain penetrant. In vivo, A03 treatment increased SirT1 levels in the hippocampus of 5XFAD-ApoE4 (E4FAD) Alzheimer's disease (AD) model mice and elicited cognitive improvement while inducing no observed toxicity. We were able to resolve the enantiomers of A03 and show using in vitro models that the L-enantiomer was more potent than the corresponding D-enantiomer in increasing SirT1 levels. ApoE4 expression has been shown to decrease the level of the NAD-dependent deacetylase and major longevity determinant SirT1 in brain tissue and serum of AD patients as compared to normal controls. A deficiency in SirT1 level has been recently implicated in increased tau acetylation, a dominant post-translational modification and key pathological event in AD and tauopathies. Therefore, as a novel approach to therapeutic development for AD, we targeted identification of compounds that enhance and normalize brain SirT1 levels

    Neuronal pentraxin 1: A synaptic-derived plasma biomarker in Alzheimer's disease

    Get PDF
    Synaptic neurodegeneration is thought to be an early event initiated by soluble β-amyloid (Aβ) aggregates that closely correlates with cognitive decline in Alzheimer disease (AD). Apolipoprotein ε4 (APOE4) is the most common genetic risk factor for both familial AD (FAD) and sporadic AD; it accelerates Aβ aggregation and selectively impairs glutamate receptor function and synaptic plasticity. However, its molecular mechanisms remain elusive and these synaptic deficits are difficult to monitor. AD- and APOE4-dependent plasma biomarkers have been proposed, but synapse-related plasma biomarkers are lacking. We evaluated neuronal pentraxin 1 (NP1), a potential CNS-derived plasma biomarker of excitatory synaptic pathology. NP1 is preferentially expressed in brain and involved in glutamate receptor internalization. NP1 is secreted presynaptically induced by Aβ oligomers, and implicated in excitatory synaptic and mitochondrial deficits. Levels of NP1 and its fragments were increased in a correlated fashion in both brain and plasma of 7–8 month-old E4FAD mice relative to E3FAD mice. NP1 was also found in exosome preparations and reduced by dietary DHA supplementation. Plasma NP1 was higher in E4FAD+ (APOE4+/+/FAD+/−) relative to E4FAD- (non-carrier; APOE4+/+/FAD−/−) mice, suggesting NP1 is modulated by Aβ expression. Finally, relative to normal elderly, plasma NP1 was also elevated in patients with mild cognitive impairment (MCI) and elevated further in the subset who progressed to early-stage AD. In those patients, there was a trend towards increased NP1 levels in APOE4 carriers relative to non-carriers. These findings indicate that NP1 may represent a potential synapse-derived plasma biomarker relevant to early alterations in excitatory synapses in MCI and early-stage AD

    Nanoscale Extracellular Vesicle Analysis in Alzheimer’s Disease Diagnosis and Therapy

    No full text
    Diagnostic assays that leverage bloodborne neuron-derived (neuronal) nanoscale extracellular vesicles (nsEVs) as “windows into the brain” can predict incidence of Alzheimer’s Disease (AD) many years prior to onset. Beyond diagnostics, bloodborne neuronal nsEVs analysis may have substantial translational impact by revealing mechanisms of AD pathology; such knowledge could enlighten new drug targets and lead to new therapeutic approaches. The potential to establish three-dimensional nsEV analysis methods that characterize highly purified bloodborne nsEV populations in method of enrichment, cell type origin, and protein or RNA abundance dimensions could bring this promise to bear by yielding nsEV “omics” datasets that uncover new AD biomarkers and enable AD therapeutic development. In this review we provide a survey of both the current status of and new developments on the horizon in the field of neuronal nsEV analysis. This survey is supplemented by a discussion of the potential to translate such neuronal nsEV analyses to AD clinical diagnostic applications and drug development
    corecore