3,732 research outputs found

    Design of Phase II cancer trials evaluating survival probabilities

    Get PDF
    BACKGROUND: Phase II cancer studies are undertaken to assess the activity of a new drug or a new treatment regimen. Activity is sometimes defined in terms of a survival probability, a binary outcome such as one-year survival that is derived from a time-to-event variable. Phase II studies are usually designed with an interim analysis so they can be stopped if early results are disappointing. Most designs that allow for an interim look are not appropriate for monitoring survival probabilities since many patients will not have enough follow-up by the time of the interim analysis, thus necessitating an inconvenient suspension of accrual while patients are being followed. METHODS: Two-stage phase II clinical trial designs are developed for evaluating survival probabilities. These designs are compared to fixed sample designs and to existing designs developed to monitor binomial probabilities to illustrate the expected reduction in sample size or study length possible with the use of the proposed designs. RESULTS: Savings can be realized in both the duration of accrual and the total study length, with the expected savings increasing as the accrual rate decreases. Misspecifying the underlying survival distribution and the accrual rate during the planning phase can adversely influence the operating characteristics of the designs. CONCLUSION: Two-stage phase II trials for assessing survival probabilities can be designed that do not require prolonged suspension of patient accrual. These designs are more efficient than single stage designs and more practical than existing two-stage designs developed for binomial outcomes, particularly in trials with slow accrual

    Variation in Mating Dynamics across Five Species of Leiobunine Harvestmen (Arachnida: Opliones)

    Get PDF
    The study of mating choices often focuses on correlates of traits to the overall outcome of a mating interaction. However, mating interactions can proceed through a series of stages, with opportunities for assessment at each stage. We compared whether male or female size predicted mating interaction outcome across several stages of mating in five species of North American leiobunine harvestmen (commonly known as daddy longlegs). Leiobunine harvestmen have been previously shown to exhibit incredible morphological diversity consistent with a spectrum of male–female antagonism. Across all of the species, we found a general progression of female size predicting the outcome (success and timing) of early stages of interactions, and male size or male size relative to female size predicting the outcome and timing of later stages of interactions. We also found that size was not a strong predictor of outcome in the two species on the lower end of the antagonism spectrum. The variation in how female and male size predicted outcomes across species and stages of mating suggests that multiple mechanisms may operate to shape mating dynamics within and across species. Given the close relatedness of the species studied, the patterns we uncovered suggest a rapid evolution of the traits and processes predicting the outcome of mating interactions

    A Whole-Body Model for Glycogen Regulation Reveals a Critical Role for Substrate Cycling in Maintaining Blood Glucose Homeostasis

    Get PDF
    Timely, and sometimes rapid, metabolic adaptation to changes in food supply is critical for survival as an organism moves from the fasted to the fed state, and vice versa. These transitions necessitate major metabolic changes to maintain energy homeostasis as the source of blood glucose moves away from ingested carbohydrates, through hepatic glycogen stores, towards gluconeogenesis. The integration of hepatic glycogen regulation with extra-hepatic energetics is a key aspect of these adaptive mechanisms. Here we use computational modeling to explore hepatic glycogen regulation under fed and fasting conditions in the context of a whole-body model. The model was validated against previous experimental results concerning glycogen phosphorylase a (active) and glycogen synthase a dynamics. The model qualitatively reproduced physiological changes that occur during transition from the fed to the fasted state. Analysis of the model reveals a critical role for the inhibition of glycogen synthase phosphatase by glycogen phosphorylase a. This negative regulation leads to high levels of glycogen synthase activity during fasting conditions, which in turn increases substrate (futile) cycling, priming the system for a rapid response once an external source of glucose is restored. This work demonstrates that a mechanistic understanding of the design principles used by metabolic control circuits to maintain homeostasis can benefit from the incorporation of mathematical descriptions of these networks into “whole-body” contextual models that mimic in vivo conditions

    Absence of CD59 in guinea pigs: Analysis of the Cavia porcellus genome suggests the evolution of a CD59 pseudogene

    Get PDF
    CD59 is a membrane-bound regulatory protein that inhibits the assembly of the terminal membrane attack complex (C5b-9) of complement. From its original discovery in humans almost 30 years ago, CD59 has been characterized in a variety of species, from primates to early vertebrates, such as teleost fish. CD59 is ubiquitous in mammals; however, we have described circumstantial evidence suggesting that guinea pigs (Cavia porcellus) lack CD59, at least on erythrocytes. In this study, we have used a combination of phylogenetic analyses with syntenic alignment of mammalian CD59 genes to identify the only span of genomic DNA in C. porcellus that is homologous to a portion of mammalian CD59 and show that this segment of DNA is not transcribed. We describe a pseudogene sharing homology to exons 2 through 5 of human CD59 present in the C. porcellus genome. This pseudogene was flanked by C. porcellus homologs of two genes, FBXO3 and ORF91, a relationship and orientation that were consistent with other known mammalian CD59 genes. Analysis using RNA sequencing confirmed that this segment of chromosomal DNA was not transcribed. We conclude that guinea pigs lack an intact gene encoding CD59; to our knowledge, this is the first report of a mammalian species that does not express a functional CD59. The pseudogene we describe is likely the product of a genomic deletion event during its evolutionary divergence from other members of the rodent order

    Rehabilitation Therapy in Older Acute Heart Failure Patients (REHAB-HF) trial: Design and rationale.

    Get PDF
    BACKGROUND: Acute decompensated heart failure (ADHF) is a leading cause of hospitalization in older persons in the United States. Reduced physical function and frailty are major determinants of adverse outcomes in older patients with hospitalized ADHF. However, these are not addressed by current heart failure (HF) management strategies and there has been little study of exercise training in older, frail HF patients with recent ADHF. HYPOTHESIS: Targeting physical frailty with a multi-domain structured physical rehabilitation intervention will improve physical function and reduce adverse outcomes among older patients experiencing a HF hospitalization. STUDY DESIGN: REHAB-HF is a multi-center clinical trial in which 360 patients ≥60 years hospitalized with ADHF will be randomized either to a novel 12-week multi-domain physical rehabilitation intervention or to attention control. The goal of the intervention is to improve balance, mobility, strength and endurance utilizing reproducible, targeted exercises administered by a multi-disciplinary team with specific milestones for progression. The primary study aim is to assess the efficacy of the REHAB-HF intervention on physical function measured by total Short Physical Performance Battery score. The secondary outcome is 6-month all-cause rehospitalization. Additional outcome measures include quality of life and costs. CONCLUSIONS: REHAB-HF is the first randomized trial of a physical function intervention in older patients with hospitalized ADHF designed to determine if addressing deficits in balance, mobility, strength and endurance improves physical function and reduces rehospitalizations. It will address key evidence gaps concerning the role of physical rehabilitation in the care of older patients, those with ADHF, frailty, and multiple comorbidities

    A novel mouse model expressing human forms for complement receptors CR1 and CR2

    Get PDF
    Background The complement cascade is increasingly implicated in development of a variety of diseases with strong immune contributions such as Alzheimer’s disease and Systemic Lupus Erythematosus. Mouse models have been used to determine function of central components of the complement cascade such as C1q and C3. However, species differences in their gene structures mean that mice do not adequately replicate human complement regulators, including CR1 and CR2. Genetic variation in CR1 and CR2 have been implicated in modifying disease states but the mechanisms are not known. Results To decipher the roles of human CR1 and CR2 in health and disease, we engineered C57BL/6J (B6) mice to replace endogenous murine Cr2 with human complement receptors, CR1 and CR2 (B6.CR2CR1). CR1 has an array of allotypes in human populations and using traditional recombination methods (Flp-frt and Cre-loxP) two of the most common alleles (referred to here as CR1long and CR1short) can be replicated within this mouse model, along with a CR1 knockout allele (CR1KO). Transcriptional profiling of spleens and brains identified genes and pathways differentially expressed between mice homozygous for either CR1long, CR1short or CR1KO. Gene set enrichment analysis predicts hematopoietic cell number and cell infiltration are modulated by CR1long, but not CR1short or CR1KO. Conclusion The B6.CR2CR1 mouse model provides a novel tool for determining the relationship between human-relevant CR1 alleles and disease

    Hypothesis Generation Using Network Structures on Community Health Center Cancer-Screening Performance

    Get PDF
    RESEARCH OBJECTIVES: Nationally sponsored cancer-care quality-improvement efforts have been deployed in community health centers to increase breast, cervical, and colorectal cancer-screening rates among vulnerable populations. Despite several immediate and short-term gains, screening rates remain below national benchmark objectives. Overall improvement has been both difficult to sustain over time in some organizational settings and/or challenging to diffuse to other settings as repeatable best practices. Reasons for this include facility-level changes, which typically occur in dynamic organizational environments that are complex, adaptive, and unpredictable. This study seeks to understand the factors that shape community health center facility-level cancer-screening performance over time. This study applies a computational-modeling approach, combining principles of health-services research, health informatics, network theory, and systems science. METHODS: To investigate the roles of knowledge acquisition, retention, and sharing within the setting of the community health center and to examine their effects on the relationship between clinical decision support capabilities and improvement in cancer-screening rate improvement, we employed Construct-TM to create simulated community health centers using previously collected point-in-time survey data. Construct-TM is a multi-agent model of network evolution. Because social, knowledge, and belief networks co-evolve, groups and organizations are treated as complex systems to capture the variability of human and organizational factors. In Construct-TM, individuals and groups interact by communicating, learning, and making decisions in a continuous cycle. Data from the survey was used to differentiate high-performing simulated community health centers from low-performing ones based on computer-based decision support usage and self-reported cancer-screening improvement. RESULTS: This virtual experiment revealed that patterns of overall network symmetry, agent cohesion, and connectedness varied by community health center performance level. Visual assessment of both the agent-to-agent knowledge sharing network and agent-to-resource knowledge use network diagrams demonstrated that community health centers labeled as high performers typically showed higher levels of collaboration and cohesiveness among agent classes, faster knowledge-absorption rates, and fewer agents that were unconnected to key knowledge resources. Conclusions and research implications: Using the point-in-time survey data outlining community health center cancer-screening practices, our computational model successfully distinguished between high and low performers. Results indicated that high-performance environments displayed distinctive network characteristics in patterns of interaction among agents, as well as in the access and utilization of key knowledge resources. Our study demonstrated how non-network-specific data obtained from a point-in-time survey can be employed to forecast community health center performance over time, thereby enhancing the sustainability of long-term strategic-improvement efforts. Our results revealed a strategic profile for community health center cancer-screening improvement via simulation over a projected 10-year period. The use of computational modeling allows additional inferential knowledge to be drawn from existing data when examining organizational performance in increasingly complex environments

    A novel mouse model expressing human forms for complement receptors CR1 and CR2.

    Get PDF
    BACKGROUND: The complement cascade is increasingly implicated in development of a variety of diseases with strong immune contributions such as Alzheimer\u27s disease and Systemic Lupus Erythematosus. Mouse models have been used to determine function of central components of the complement cascade such as C1q and C3. However, species differences in their gene structures mean that mice do not adequately replicate human complement regulators, including CR1 and CR2. Genetic variation in CR1 and CR2 have been implicated in modifying disease states but the mechanisms are not known. RESULTS: To decipher the roles of human CR1 and CR2 in health and disease, we engineered C57BL/6J (B6) mice to replace endogenous murine Cr2 with human complement receptors, CR1 and CR2 (B6.CR2CR1). CR1 has an array of allotypes in human populations and using traditional recombination methods (Flp-frt and Cre-loxP) two of the most common alleles (referred to here as CR1 CONCLUSION: The B6.CR2CR1 mouse model provides a novel tool for determining the relationship between human-relevant CR1 alleles and disease
    corecore