1,089 research outputs found

    A comparison of the sensitivities of detection of Plasmodium falciparum gametocytes by magnetic fractionation, thick blood film microscopy, and RT-PCR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The magnetic properties of <it>Plasmodium</it>-infected erythrocytes have been exploited for different clinical and research purposes. A recent study in a rural clinical setting in Papua New Guinea has demonstrated that <it>Plasmodium falciparum </it>gametocyte detection is facilitated by magnetic deposition microscopy but no study has yet determined the relative sensitivity and limit of detection of a magnetic fractionation technique. The present study compares the detection limit and sensitivity of a technique based on the use of commercially available magnetic fractionation columns with those for thick blood film microscopy and reverse transcriptase polymerase chain reaction (RT-PCR) methods.</p> <p>Methods</p> <p>Gametocyte detection in six series of dilutions of cultured <it>P. falciparum </it>parasites with known gametocytaemia was conducted using magnetic fractionation, thick blood film, and RT-PCR techniques.</p> <p>Results</p> <p>The preparations obtained by the magnetic fractionation method were of thin film quality allowing easy gametocyte identification by light microscopy. Magnetic fractionation had a higher sensitivity and approximately two orders of magnitude better limit of detection than thick blood film microscopy. Gametocytes were also more readily detectable on the magnetically fractionated preparations. Magnetic fractionation had a similar limit of detection to that of RT-PCR.</p> <p>Conclusion</p> <p>Magnetic fractionation is a highly sensitive and convenient method for gametocyte detection in comparison with the standard thick blood film and RT-PCR methods, and could readily be adapted to field application.</p

    Parameterization of high magnetic field gradient fractionation columns for applications with Plasmodium falciparum infected human erythrocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Magnetic fractionation of erythrocytes infected with <it>Plasmodium falicparum </it>has several research uses including enrichment of infected cells from parasite cultures or enhanced detection of <it>P. falciparum </it>gametocytes. The aim of the present study was to quantitatively characterize the magnetic fractionation process and thus enable optimization of protocols developed for specific uses.</p> <p>Methods</p> <p>Synchronized cultures of <it>P. falciparum </it>parasites incubated with human erythrocytes were magnetically fractionated with commercially available columns. The timing of the fractionation experiments was such that the parasites were in second half of their erythrocytic life cycle with parasite densities ranging from 1 to 9%. Fractionations were carried out in a single pass through the columns. Cells were enumerated and differentiated in the initial samples as well as in the positive and negative fractions. The capture of cells by the fractionation column was described by a saturation binding model.</p> <p>Results</p> <p>The magnetic binding affinity to the column matrix was approximately 350 times greater for infected cells compared with uninfected cells. The purity of infected cells in the captured fraction was generally >80% but decreased rapidly (to less than 50%) when the number of infected cells that passed through the column was substantially decreased (to less than 9 ± 5 × 10<sup>5 </sup>cells). The distribution of captured parasite developmental stages shifted to mature stages as the number of infected cells in the initial samples and flow rate increased. The relationship between the yield of infected cells in the captured fraction and flow rate of cells conformed to a complementary cumulative log-normal equation with flow rates >1.6 × 10<sup>5 </sup>cells per second resulting in yields <50%.</p> <p>Conclusions</p> <p>A detailed quantitative analysis of a batchwise magnetic fractionation process for malaria infected erythrocytes using high gradient magnetic fractionation columns was performed. The models applied in this study allow the prediction of capture efficiency if the initial infected cell concentration and the flow rate are known.</p

    A comparative study of a flow-cytometry-based assessment of in vitro Plasmodium falciparum drug sensitivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently developed Sybr Green-based <it>in vitro Plasmodium falciparum </it>drug sensitivity assays provide an attractive alternative to current manual and automated methods. The present study evaluated flow cytometry measurement of DNA staining with Sybr Green in comparison with the <it>P. falciparum </it>lactate dehydrogenase assay, the tritiated hypoxanthine incorporation assay, a previously described Sybr Green based plate reader assay and light microscopy.</p> <p>Methods</p> <p>All assays were set up in standardized format in 96-well plates. The 50% inhibitory concentrations (IC<sub>50</sub>) of chloroquine, mefloquine and dihydroartemisinin against the laboratory adapted <it>P. falciparum </it>strains 3D7, E8B, W2mef and Dd2 were determined using each method.</p> <p>Results</p> <p>The resolution achieved by flow cytometry allowed quantification of the increase in individual cell DNA content after an incubation period of only 24 h. Regression, and Bland and Altman analyses showed that the IC<sub>50 </sub>values determined using the flow cytometry assay after 24 h agreed well with those obtained using the hypoxanthine incorporation assay, the <it>P. falciparum </it>lactate dehydrogenase assay, the Sybr Green plate reader assay and light microscopy. However the values obtained with the flow cytometry assay after 48 h of incubation differed significantly from those obtained with the hypoxanthine incorporation assay, and the <it>P. falciparum </it>lactate dehydrogenase assay at low IC<sub>50 </sub>values, but agreed well with the Sybr Green plate reader assay and light microscopy.</p> <p>Conclusions</p> <p>Although flow cytometric equipment is expensive, the necessary reagents are inexpensive, the procedure is simple and rapid, and the cell volume required is minimal. This should allow field studies using fingerprick sample volumes.</p

    Community perceptions of a malaria vaccine in the Kintampo districts of Ghana.

    Get PDF
    BACKGROUND: Malaria remains the leading cause of morbidity and mortality in sub-Saharan Africa despite tools currently available for its control. Making malaria vaccine available for routine use will be a major hallmark, but its acceptance by community members and health professionals within the health system could pose considerable challenge as has been found with the introduction of polio vaccinations in parts of West Africa. Some of these challenges may not be expected since decisions people make are many a time driven by a complex myriad of perceptions. This paper reports knowledge and perceptions of community members in the Kintampo area of Ghana where malaria vaccine trials have been ongoing as part of the drive for the first-ever licensed malaria vaccine in the near future. METHODS: Both qualitative and quantitative methods were used in the data collection processes. Women and men whose children were or were not involved in the malaria vaccine trial were invited to participate in focus group discussions (FGDs). Respondents, made up of heads of religious groupings in the study area, health care providers, traditional healers and traditional birth attendants, were also invited to participate in in-depth interviews (IDIs). A cross-sectional survey was conducted in communities where the malaria vaccine trial (Mal 047RTS,S) was carried out. In total, 12 FGDs, 15 IDIs and 466 household head interviews were conducted. RESULTS: Knowledge about vaccines was widespread among participants. Respondents would like their children to be vaccinated against all childhood illnesses including malaria. Knowledge of the long existing routine vaccines was relatively high among respondents compared to hepatitis B and Haemophilus influenza type B vaccines that were introduced more recently in 2002. There was no clear religious belief or sociocultural practice that will serve as a possible barrier to the acceptance of a malaria vaccine. CONCLUSION: With the assumption that a malaria vaccine will be as efficacious as other EPI vaccines, community members in Central Ghana will accept and prefer malaria vaccine to malaria drugs as a malaria control tool. Beliefs and cultural practices as barriers to the acceptance of malaria vaccine were virtually unknown in the communities surveyed

    Nonperturbative Light-Front QCD

    Full text link
    In this work the determination of low-energy bound states in Quantum Chromodynamics is recast so that it is linked to a weak-coupling problem. This allows one to approach the solution with the same techniques which solve Quantum Electrodynamics: namely, a combination of weak-coupling diagrams and many-body quantum mechanics. The key to eliminating necessarily nonperturbative effects is the use of a bare Hamiltonian in which quarks and gluons have nonzero constituent masses rather than the zero masses of the current picture. The use of constituent masses cuts off the growth of the running coupling constant and makes it possible that the running coupling never leaves the perturbative domain. For stabilization purposes an artificial potential is added to the Hamiltonian, but with a coefficient that vanishes at the physical value of the coupling constant. The weak-coupling approach potentially reconciles the simplicity of the Constituent Quark Model with the complexities of Quantum Chromodynamics. The penalty for achieving this perturbative picture is the necessity of formulating the dynamics of QCD in light-front coordinates and of dealing with the complexities of renormalization which such a formulation entails. We describe the renormalization process first using a qualitative phase space cell analysis, and we then set up a precise similarity renormalization scheme with cutoffs on constituent momenta and exhibit calculations to second order. We outline further computations that remain to be carried out. There is an initial nonperturbative but nonrelativistic calculation of the hadronic masses that determines the artificial potential, with binding energies required to be fourth order in the coupling as in QED. Next there is a calculation of the leading radiative corrections to these masses, which requires our renormalization program. Then the real struggle of finding the right extensions to perturbation theory to study the strong-coupling behavior of bound states can begin.Comment: 56 pages (REVTEX), Report OSU-NT-94-28. (figures not included, available via anaonymous ftp from pacific.mps.ohio-state.edu in subdirectory pub/infolight/qcd

    Rationally designed immunogens enable immune focusing following SARS-CoV-2 spike imprinting

    Get PDF
    Eliciting antibodies to surface-exposed viral glycoproteins can generate protective responses that control and prevent future infections. Targeting conserved sites may reduce the likelihood of viral escape and limit the spread of related viruses with pandemic potential. Here we leverage rational immunogen design to focus humoral responses on conserved epitopes. Using glycan engineering and epitope scaffolding in boosting immunogens, we focus murine serum antibody responses to conserved receptor binding motif (RBM) and receptor binding domain (RBD) epitopes following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike imprinting. Although all engineered immunogens elicit a robust SARS-CoV-2-neutralizing serum response, RBM-focusing immunogens exhibit increased potency against related sarbecoviruses, SARS-CoV, WIV1-CoV, RaTG13-CoV, and SHC014-CoV; structural characterization of representative antibodies defines a conserved epitope. RBM-focused sera confer protection against SARS-CoV-2 challenge. Thus, RBM focusing is a promising strategy to elicit breadth across emerging sarbecoviruses without compromising SARS-CoV-2 protection. These engineering strategies are adaptable to other viral glycoproteins for targeting conserved epitopes

    Calibration of myocardial T2 and T1 against iron concentration.

    Get PDF
    BACKGROUND: The assessment of myocardial iron using T2* cardiovascular magnetic resonance (CMR) has been validated and calibrated, and is in clinical use. However, there is very limited data assessing the relaxation parameters T1 and T2 for measurement of human myocardial iron. METHODS: Twelve hearts were examined from transfusion-dependent patients: 11 with end-stage heart failure, either following death (n=7) or cardiac transplantation (n=4), and 1 heart from a patient who died from a stroke with no cardiac iron loading. Ex-vivo R1 and R2 measurements (R1=1/T1 and R2=1/T2) at 1.5 Tesla were compared with myocardial iron concentration measured using inductively coupled plasma atomic emission spectroscopy. RESULTS: From a single myocardial slice in formalin which was repeatedly examined, a modest decrease in T2 was observed with time, from mean (± SD) 23.7 ± 0.93 ms at baseline (13 days after death and formalin fixation) to 18.5 ± 1.41 ms at day 566 (p<0.001). Raw T2 values were therefore adjusted to correct for this fall over time. Myocardial R2 was correlated with iron concentration [Fe] (R2 0.566, p<0.001), but the correlation was stronger between LnR2 and Ln[Fe] (R2 0.790, p<0.001). The relation was [Fe] = 5081•(T2)-2.22 between T2 (ms) and myocardial iron (mg/g dry weight). Analysis of T1 proved challenging with a dichotomous distribution of T1, with very short T1 (mean 72.3 ± 25.8 ms) that was independent of iron concentration in all hearts stored in formalin for greater than 12 months. In the remaining hearts stored for <10 weeks prior to scanning, LnR1 and iron concentration were correlated but with marked scatter (R2 0.517, p<0.001). A linear relationship was present between T1 and T2 in the hearts stored for a short period (R2 0.657, p<0.001). CONCLUSION: Myocardial T2 correlates well with myocardial iron concentration, which raises the possibility that T2 may provide additive information to T2* for patients with myocardial siderosis. However, ex-vivo T1 measurements are less reliable due to the severe chemical effects of formalin on T1 shortening, and therefore T1 calibration may only be practical from in-vivo human studies

    Fc receptor-like 5 and anti-CD20 treatment response in granulomatosis with polyangiitis and microscopic polyangiitis

    Get PDF
    BACKGROUND. Baseline expression of FCRL5, a marker of naive and memory B cells, was shown to predict response to rituximab (RTX) in rheumatoid arthritis. This study investigated baseline expression of FCRL5 as a potential biomarker of clinical response to RTX in granulomatosis with polyangiitis (CPA) and microscopic polyangiitis (MPA). METHODS. A previously validated quantitative PCR-based (qPCR-based) platform was used to assess FCRL5 expression in patients with GPA/MPA (RAVE trial, NCT00104299). RESULTS. Baseline FCRL5 expression was significantly higher in patients achieving complete remission (CR) at 6,12, and 18 months, independent of other clinical and serological variables, among those randomized to RTX but not cyclophosphamide-azathioprine (CYC/AZA). Patients with baseline FCRL5 expression >= 0.01 expression units (termed FCRL5(hi)) exhibited significantly higher CR rates at 6,12, and 18 months as compared with FCRL5(lo) subjects (84% versus 57% [P = 0.016], 68% versus 40% [P = 0.02], and 68% versus 29% [P = 0.0009], respectively). CONCLUSION. Our data taken together suggest that FCRL5 is a biomarker of B cell lineage associated with increased achievement and maintenance of complete remission among patients treated with RTX and warrant further investigation in a prospective manner
    corecore