161 research outputs found

    Excessive Yawning and SSRI Therapy

    Get PDF
    As we become more experienced with the long-term use of selective serotonin reuptake inhibitors (SSRIs), more subtle side-effects may become evident. Clinicians may be aware of yawning as a side-effect of antidepressant therapy, however sparse literature exists on the topic. We present two cases in which excessive daytime yawning was associated with SSRI treatment

    Protein expression of the epsilon subspecies of protein kinase C ceases as Swiss 3T6 fibroblasts increase in cell density even though message for the protein is still present

    Get PDF
    AbstractWe have noted previously that growth of C6 glioma cells from low cell density to confluency and quiescence in serum is accompanied by changes in protein content of different protein kinase C (PKC) subspecies. Here we show that the same occurs as non-contact-inhibiting Swiss 3T6 fibroblasts grow to high density in the presence of serum. Protein expression of PKC subspecies α and δ increases as the cells increase in density while that of PKC-ζ remains the same. Unusally, protein expression of PKC-ϵ is completely down-regulated as cells grow beyond about 50% confluency and no PKC-ϵ protein can be detected in 3T6 fibroblasts at high density by Western blotting. However, mRNA for PKC-ϵ is expressed at all stages of fibroblast growth as revealed by RT-PCR. When high-density 3T6 fibroblasts are passaged to low density in fresh medium, re-expression of PKC-ϵ protein is observed within 15 min and becomes down-regulated again as cells become more dense. This very rapid synthesis of PKC-ϵ is not blocked by the transcription inhibitor actinomycin D but is inhibited by cycloheximide. PKC-ϵ has some characteristics of a novel `early response' protein whose synthesis in newly passaged 3T6 cells is regulated at the translational level

    Continuous Physiological Monitoring of Ambulatory Patients

    Get PDF
    A poster originally presented at the "MEC Annual Meeting and Bioengineering14" conference (Imperial College London, 8th - 9th September 2014)

    An impedance pneumography signal quality index: Design, assessment and application to respiratory rate monitoring.

    Get PDF
    Impedance pneumography (ImP) is widely used for respiratory rate (RR) monitoring. However, ImP-derived RRs can be imprecise. The aim of this study was to develop a signal quality index (SQI) for the ImP signal, and couple it with a RR algorithm, to improve RR monitoring. An SQI was designed which identifies candidate breaths and assesses signal quality using: the variation in detected breath durations, how well peaks and troughs are defined, and the similarity of breath morphologies. The SQI categorises 32 s signal segments as either high or low quality. Its performance was evaluated using two critical care datasets. RRs were estimated from high-quality segments using a RR algorithm, and compared with reference RRs derived from manual annotations. The SQI had a sensitivity of 77.7 %, and specificity of 82.3 %. RRs estimated from segments classified as high quality were accurate and precise, with mean absolute errors of 0.21 and 0.40 breaths per minute (bpm) on the two datasets. Clinical monitor RRs were significantly less precise. The SQI classified 34.9 % of real-world data as high quality. In conclusion, the proposed SQI accurately identifies high-quality segments, and RRs estimated from those segments are precise enough for clinical decision making. This SQI may improve RR monitoring in critical care. Further work should assess it with wearable sensor data.This work was supported by a UK Engineering and Physical Sciences Research Council (EPSRC) Impact Acceleration Award awarded to PHC; the EPSRC [EP/H019944/1]; the Wellcome EPSRC Centre for Medical Engineering at King’s College London [WT 203148/Z/16/Z]; the Oxford and King’s College London Centres of Excellence in Medical Engineering funded by the Wellcome Trust and EPSRC under grants [WT88877/Z/09/Z] and [WT088641/Z/09/Z]; the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy’s & St Thomas’ NHS Foundation Trust and King’s College London; the NIHR Oxford Biomedical Research Centre Programme; a Royal Academy of Engineering Research Fellowship (RAEng) awarded to DAC; and EPSRC grants EP/P009824/1 and EP/N020774/1 to DAC

    Extraction of respiratory signals from the electrocardiogram and photoplethysmogram: technical and physiological determinants.

    Get PDF
    OBJECTIVE: Breathing rate (BR) can be estimated by extracting respiratory signals from the electrocardiogram (ECG) or photoplethysmogram (PPG). The extracted respiratory signals may be influenced by several technical and physiological factors. In this study, our aim was to determine how technical and physiological factors influence the quality of respiratory signals. APPROACH: Using a variety of techniques 15 respiratory signals were extracted from the ECG, and 11 from PPG signals collected from 57 healthy subjects. The quality of each respiratory signal was assessed by calculating its correlation with a reference oral-nasal pressure respiratory signal using Pearson's correlation coefficient. MAIN RESULTS: Relevant results informing device design and clinical application were obtained. The results informing device design were: (i) seven out of 11 respiratory signals were of higher quality when extracted from finger PPG compared to ear PPG; (ii) laboratory equipment did not provide higher quality of respiratory signals than a clinical monitor; (iii) the ECG provided higher quality respiratory signals than the PPG; (iv) during downsampling of the ECG and PPG significant reductions in quality were first observed at sampling frequencies of  <250 Hz and  <16 Hz respectively. The results informing clinical application were: (i) frequency modulation-based respiratory signals were generally of lower quality in elderly subjects compared to young subjects; (ii) the qualities of 23 out of 26 respiratory signals were reduced at elevated BRs; (iii) there were no differences associated with gender. SIGNIFICANCE: Recommendations based on the results are provided regarding device designs for BR estimation, and clinical applications. The dataset and code used in this study are publicly available

    Predicting Clinical Deteriorations using Wearable Sensors

    Get PDF
    Introduction Acutely-ill hospitalised patients are at risk of clinical deteriorations such as cardiac arrest, admission to intensive care, or unexpected death. Currently, patients are manually assessed every 4-6 hours to determine the likelihood of subsequent deterioration. However, this is limited to intermittent assessments, delaying time-sensitive interventions. Wearable sensors, combined with an alerting system, could provide continuous automated assessments of the likelihood of deteriorations. To be suitable for hospital use, wearable sensors must be unobtrusive and provide reliable measurements of key vital signs including breathing rate (BR), a key predictor of deteriorations. The aims of this work were: (i) to develop a technique for monitoring BR unobtrusively using wearable sensors, and (ii) to assess whether wearable sensors provide reliable predictions of deteriorations when using this technique. Monitoring breathing rate (BR) unobtrusively Current methods for monitoring BR using wearable sensors are obtrusive. An alternative approach is to estimate BR from electrocardiogram or pulse oximeter signals, which are already acquired by wearable sensors to monitor heart rate and blood oxygen levels. Both signals are subtly modulated by breathing, providing opportunity to use them to monitor BR. I assessed the performance of previously proposed signal processing techniques for estimating BR from these signals in both healthy and hospitalised subjects. Although some techniques were precise enough for use with healthy subjects in the laboratory, they were imprecise when used with hospital patients. Therefore, I developed a novel technique, combining the strengths of time- and frequency-domain techniques. Its performance was assessed on data from 264 subjects. In hospital patients, the technique provided highly precise BRs 86% of the time, which exceeds the performance of manual observation, the current clinical standard. Assessing the reliability of wearable sensors for predicting deteriorations I implemented methods for rejecting unreliable sensor data, and for fusing continuous multiparametric data, to predict deteriorations. These were used alongside the novel technique for monitoring BR to predict deteriorations using wearable sensors. The system was assessed in a clinical trial of 184 hospital patients, conducted in collaboration with clinicians. The reliability of the system was assessed by comparing its predictions against documented deteriorations. Its predictive value was similar to that of the routine manual assessments (AUROCs of 0.78 vs 0.79). Crucially it provided continuous assessment, potentially providing predictions of deteriorations hours earlier than routine practice. Conclusion This work has demonstrated the potential for wearable sensors to reliably and unobtrusively predict deteriorations, when coupled with a novel technique for monitoring BR. This could improve patient outcomes, and reduce costs. Further work should investigate which patients would benefit most from this technology, and whether it could reduce clinical workload. In the future the technology could potentially be used with consumer wearables to improve patient safety in the community, where clinical expertise is less readily available.This poster was displayed at the STEM for Britain event, held in the Houses of Parliament (London, UK) on 12th March 2018

    Respiratory rate monitoring to detect deteriorations using wearable sensors

    Get PDF
    This poster provides an overview of the work described in: P. H. Charlton, "Continuous respiratory rate monitoring to detect clinical deteriorations using wearable sensors," Ph.D. Thesis, King’s College London, 2017.This poster was first presented at the Bioengenuity Keynotes Conference, held on Monday 6th March at the University of Oxford

    Breathing Rate Estimation From the Electrocardiogram and Photoplethysmogram: A Review.

    Get PDF
    Breathing rate (BR) is a key physiological parameter used in a range of clinical settings. Despite its diagnostic and prognostic value, it is still widely measured by counting breaths manually. A plethora of algorithms have been proposed to estimate BR from the electrocardiogram (ECG) and pulse oximetry (photoplethysmogram, PPG) signals. These BR algorithms provide opportunity for automated, electronic, and unobtrusive measurement of BR in both healthcare and fitness monitoring. This paper presents a review of the literature on BR estimation from the ECG and PPG. First, the structure of BR algorithms and the mathematical techniques used at each stage are described. Second, the experimental methodologies that have been used to assess the performance of BR algorithms are reviewed, and a methodological framework for the assessment of BR algorithms is presented. Third, we outline the most pressing directions for future research, including the steps required to use BR algorithms in wearable sensors, remote video monitoring, and clinical practice

    Estimating the effectiveness of routine asymptomatic PCR testing at different frequencies for the detection of SARS-CoV-2 infections

    Get PDF
    AbstractBackgroundRoutine asymptomatic testing using RT-PCR of people who interact with vulnerable populations, such as medical staff in hospitals or care workers in care homes, has been employed to help prevent outbreaks among vulnerable populations. Although the peak sensitivity of RT-PCR can be high, the probability of detecting an infection will vary throughout the course of an infection. The effectiveness of routine asymptomatic testing will therefore depend on testing frequency and how PCR detection varies over time.MethodsWe fitted a Bayesian statistical model to a dataset of twice weekly PCR tests of UK healthcare workers performed by self-administered nasopharyngeal swab, regardless of symptoms. We jointly estimated times of infection and the probability of a positive PCR test over time following infection, we then compared asymptomatic testing strategies by calculating the probability that a symptomatic infection is detected before symptom onset and the probability that an asymptomatic infection is detected within 7 days of infection.FindingsWe estimated that the probability that the PCR test detected infection peaked at 77% (54 - 88%) 4 days after infection, decreasing to 50% (38 - 65%) by 10 days after infection. Our results suggest a substantially higher probability of detecting infections 1–3 days after infection than previously published estimates. We estimated that testing every other day would detect 57% (33-76%) of symptomatic cases prior to onset and 94% (75-99%) of asymptomatic cases within 7 days if test results were returned within a day.InterpretationOur results suggest that routine asymptomatic testing can enable detection of a high proportion of infected individuals early in their infection, provided that the testing is frequent and the time from testing to notification of results is sufficiently fast.FundingWellcome Trust, National Institute for Health Research (NIHR) Health Protection Research Unit, Medical Research Council (UKRI)</jats:sec
    corecore