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A B S T R A C T   

Impedance pneumography (ImP) is widely used for respiratory rate (RR) monitoring. However, ImP-derived RRs 
can be imprecise. The aim of this study was to develop a signal quality index (SQI) for the ImP signal, and couple 
it with a RR algorithm, to improve RR monitoring. An SQI was designed which identifies candidate breaths and 
assesses signal quality using: the variation in detected breath durations, how well peaks and troughs are defined, 
and the similarity of breath morphologies. The SQI categorises 32 s signal segments as either high or low quality. 
Its performance was evaluated using two critical care datasets. RRs were estimated from high-quality segments 
using a RR algorithm, and compared with reference RRs derived from manual annotations. The SQI had a 
sensitivity of 77.7 %, and specificity of 82.3 %. RRs estimated from segments classified as high quality were 
accurate and precise, with mean absolute errors of 0.21 and 0.40 breaths per minute (bpm) on the two datasets. 
Clinical monitor RRs were significantly less precise. The SQI classified 34.9 % of real-world data as high quality. 
In conclusion, the proposed SQI accurately identifies high-quality segments, and RRs estimated from those 
segments are precise enough for clinical decision making. This SQI may improve RR monitoring in critical care. 
Further work should assess it with wearable sensor data.   

1. Introduction 

Respiratory rate is a key marker of the progression and severity of 
acute illness [1]. Consequently, respiratory rate (RR) is routinely 
monitored in acutely- and critically-ill hospitalised patients [2]. It is 
often estimated from the thoracic electrical impedance pneumography 
(ImP) signal, from which individual breaths can be identified and RR can 
be estimated [3,4]. However, the ImP signal is susceptible to motion 
artifact [5], and RRs estimated from ImP signals have been found to be 
imprecise and inaccurate in several studies [6–9]. Erroneous RRs could 
adversely impact clinical decision making with true clinical de-
teriorations being missed, or false alerts of deteriorations being raised 

[10]. Therefore, methods for improving the performance of ImP-based 
RR monitoring could improve patient safety and reduce resource 
utilisation. 

A common approach to improve the estimation of parameters from 
physiological signals is to use a signal quality index (SQI) to identify 
segments of high quality signal, from which parameters can be more 
reliably estimated [11]. SQIs have been used to improve: (i) heart rate 
estimation from the electrocardiogram signal [11]; (ii) pulse rate esti-
mation from the photoplethysmogram signal [12]; and (iii) cardiac 
output estimation from the arterial blood pressure signal [13]. However, 
little research has been conducted on the development of a SQI for RR 
estimation from the ImP signal. Previous studies of ImP signal 
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processing techniques have focused on: motion artifact detection [14] 
and removal [15,16]; suppressing cardiac content [17]; decomposition 
into cardiac and respiratory components [18]; and calibration for res-
piratory parameter estimation [19]. Furthermore, a technique for signal 
quality assessment has been developed [10,20], which when coupled 
with a RR algorithm was found to have a bias and limits of agreement of 
1.7 ± 5.8 bpm in the challenging environment of patient transport [20]. 
In addition, a technique termed the agreement SQI has been developed 
to determine whether a segment of ImP signal is deemed to be of suf-
ficiently high quality to estimate RR from it accurately [21,22]. Whilst 
this technique has been applied to data from healthy volunteers and 
hospitalised patients, its performance has not been assessed, and was 
found to be sub-optimal in this work. Therefore, there is scope for 
developing a novel SQI to improve the performance of ImP-derived RRs 
in the hospital setting. 

The choice of algorithm to estimate RR from physiological signals 
also affects the performance of RR monitoring [23]. Different RR algo-
rithms have been shown to have different performances when applied to 
the electrocardiogram and photoplethysmogram signals [24], and the 
ImP signal [25]. Indeed, a comparison of eight different RR algorithms 
applied to ImP signals acquired at rest found a fourfold increase in mean 
absolute error between the best and worst performing algorithms (which 
were either based on detecting individual breaths in the time domain, or 
identifying the frequency corresponding to the maximum spectral power 
in the frequency domain) [25]. Therefore, it is important to ensure that a 
high-performance RR algorithm is used for ImP-based RR monitoring. 

The aim of this study was to develop a novel SQI, and couple it with a 
high performance RR algorithm, to improve the performance of ImP- 
based RR monitoring in the hospital inpatient setting. The novel SQI 
identifies candidate breaths and assesses signal quality using: the vari-
ation in detected breath durations, how well peaks and troughs are 
defined, and the similarity of breath morphologies. It categorises signal 
segments as either high or low quality. The first objective of this study 
was to assess the discriminatory performance of the novel SQI for dis-
tinguishing between high and low quality ImP signal segments. The 
second objective was to compare the accuracy and precision of RRs 
obtained from high quality segments identified by the novel SQI when 
using: (a) RRs reported by a clinical monitor; and (b) RRs estimated 
using a high performance RR algorithm. The third objective was to 
assess the frequency at which RRs are reported when using the novel SQI 
in a real-world setting. The novel SQI was compared with the agreement 
SQI, and the generalisability of the findings was assessed using a second 
independent dataset. In Section 2 the datasets used in this study are 
described, as well as the signal processing methods, and the analysis 
methods. The results are presented in Section 3. The potential implica-
tions of this work for clinical practice are discussed in Section 4. This 
study builds on the work presented in [23,26], in which the algorithm 
design was presented, but its performance was not assessed on separate 
datasets. 

2. Materials and methods 

2.1. Datasets 

Two datasets were used in this study: the RRest-vent dataset and the 
MIMIC dataset. Both datasets contain ImP signals, which were split into 
adjacent 32 s segments for analysis. A duration of 32 s was chosen as a 
compromise between a longer duration (which in other applications has 
been found to improve RR estimation) and a shorter duration (which 
could allow shorter high quality segments to be identified between 
transient artifacts and allow changes in RR to be tracked more accu-
rately) [27]. 

The RRest-vent dataset was used to: (i) develop the SQI; (ii) assess its 
discriminatory performance; (iii) compare the accuracy and precision of 
RRs reported by a clinical monitor, and estimated by a RR algorithm; 
and (iv) assess the impact of false positives (segments falsely identified 

as high quality by the novel SQI) on RR estimates. This dataset, 
described in [23], contains data from 59 hospital patients during their 
recovery from major cardiac surgery at St Thomas’ Hospital (London, 
UK). The following data were recorded from the clinical monitors 
(IntelliVue MP70, Philips Medical Systems, Andover, MA, USA) used as 
part of routine post-operative care: ImP signals at a sampling rate of 
125 Hz, and the RRs estimated by the monitor from its ImP signals at 
1 Hz. Data were acquired throughout patients’ critical care stay using 
BedMaster data acquisition software (v.4.1.12, Excel Medical Elec-
tronics, Jupiter, FL, USA). Data were extracted at three time points 
during each patient’s stay: whilst mechanically ventilated on the 
intensive care unit (ICU, in the hour immediately prior to disconnection 
from the ventilator); unassisted on ICU (within the hour after discon-
nection); and, shortly before discharge from critical care to the ambu-
latory ward (within the eight hour period leading up to discharge). A 
total of 29.5 h of data were extracted, consisting of 10 min of data (18 
segments) at each time point for each patient. This dataset is a subset of 
the LISTEN dataset, which was collected in accordance with the Decla-
ration of Helsinki as part of National Clinical Trial no. 01549717, and 
approved by the Bloomsbury Research Ethics Committee (reference 
12/LO/0526) [28]. Patients provided informed consent to participate in 
the study. The 59 patients studied in this work were selected from the 
wider LISTEN dataset using the following criteria: (i) patients had to 
follow a typical recovery trajectory (moving from intensive care to a 
high-dependency unit, to an ambulatory ward) and be in sinus rhythm 
during the recording periods; and (ii) patients were excluded if they 
were paced, or if a full set of physiological signals could not be recorded 
from the monitor. 

The RRest-vent dataset was split into training and testing subsets. The 
training subset, consisting of data from 34 subjects, was used to design 
the novel SQI. The testing subset, consisting of data from the remaining 
25 subjects, was used for analysis. Each of the 1,350 segments in the 
testing subset was manually labelled as being either high or low quality, 
where a “high quality” label was only given if the single expert annotator 
was confident that all the breaths in that segment could be accurately 
identified. In addition, individual breaths were annotated in those seg-
ments deemed to be of high quality in any of: the manual annotations, 
the novel SQI, or the agreement SQI. These were used to calculate 
reference RRs (calculated as the mean breath duration) to compare with 
those estimated from the ImP signal. 

The MIMIC dataset was used to: (i) compare the accuracy and pre-
cision of RRs reported by a clinical monitor, and estimated using a RR 
algorithm; and (ii) assess the frequency at which RRs are reported when 
using the novel SQI in a real-world setting. For this study, a single hour 
of data from each of 100 adult critical care patients at the Beth Israel 
Deaconess Medical Center (Boston, MA, USA) was extracted from the 
MIMIC-III Waveform Database Matched Subset [29,30]. The resulting 
dataset was termed the RRest-mimic dataset. Patients were continuously 
monitored using the same clinical monitors as in the RRest-vent dataset 
[31]. Similarly, ImP signals sampled at 125 Hz and RRs estimated from 
the ImP signals at 1 Hz, were extracted from the routine monitoring 
data. Individual breaths were manually annotated in a sample of the 
segments deemed to be of high quality by the novel SQI: breaths were 
annotated in five segments for each of the 87 patients with at least five 
high-quality segments; annotations were made for between one and five 
segments for 8 patients; and no high quality segments were available to 
annotate in 5 patients. A total of 452 segments were annotated. The 
MIMIC-III Waveform Database Matched Subset is freely available. Details 
of how to access the data used in this study (the RRest-mimic dataset), 
and the Matlab ® code used to download and extract the data, are 
provided in the Data Access Statement. 

2.2. The novel signal quality index algorithm 

The novel SQI was developed by adapting the approach proposed by 
Orphanidou et al. for cardiac signals in [11]. It takes a 32 s segment of 
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ImP signal as an input, and outputs the signal quality (either high or 
low), and a RR estimate for high-quality segments. The novel SQI con-
sists of three stages. Firstly, individual breaths are detected in the signal. 
Secondly, breath durations are assessed for physiological plausibility. 
Any signal segments with implausible cycle timings were deemed to be 
of low quality. Thirdly, template matching is used to assess the similarity 
of breath morphologies as shown in Fig. 1. If the correlation between the 
average breath’s morphology, and each individual breath’s morphology, 
is high enough then the signal segment is deemed to be of high quality. 
The three stages of the SQI are illustrated in Fig. 2, and are now 
described in detail. 

The first stage, detection of breaths, was performed as follows. The 
ImP signal was low-pass filtered to remove frequency content above 
1 Hz (-3 dB cutoff at 1.0 Hz, i.e. 60 breaths per minute, bpm) using a 
Tukey window to avoid edge effects (tapered for 2 s at either end), and 
downsampled to 5 Hz. Each 32 s segment was normalised to have a mean 
of 0 and standard deviation of 1; inverted; and any linear trend was 
removed. Individual breaths were then identified in the ImP signal using 
a modified version of the Count-orig method proposed in [32], contain-
ing the following steps:  

1 Peaks and troughs were detected as local extrema (i.e. points of 
greater amplitude for peaks, or lower amplitude for troughs, than the 
two neighbouring points).  

2 Relevant peaks were identified as those above 0.2 times the 75th 
percentile of all peak amplitudes (shown as hollow red dots in the 
left-hand panels of Fig. 1).  

3 Relevant troughs were identified as those below 0.2 times the 25th 
percentile of all trough amplitudes (shown as hollow black dots in 
the left-hand panels of Fig. 1).  

4 The relevant peaks between each pair of consecutive relevant 
troughs were identified. If there was more than one relevant peak 
then only the relevant peak with the greatest amplitude was 
retained.  

5 Valid breaths were identified as the time spanning consecutive 
relevant peaks with at least one relevant trough between them 

Fig. 1. Impedance (ImP) signal quality assessment: A novel SQI algorithm was designed to assess the quality of ImP signal segments. On the left, two ImP segments 
are shown. Hollow red and black dots indicate relevant peaks and troughs respectively, which were used to identify valid breaths indicated by arrows (as described in 
Section 2.2). Relevant peaks and troughs were identified using the thresholds shown, with only one relevant peak permitted between consecutive relevant troughs. 
On the right are the corresponding average breath templates (red, aligned by each relevant peaks) and the individual breaths (blue) from which they were calculated. 
The upper segment is of low quality, as indicated by a low mean correlation coefficient (R) between the individual breaths and average breath template of 0.54. The 
lower segment is of high quality, as indicated by a high R of 0.97. 

Fig. 2. A flowchart of the signal quality index (SQI) algorithm.  
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(indicated by arrows in the left-hand panels of Fig. 1). The duration 
of each valid breath was calculated as the time between the relevant 
peaks marking the start and end of that valid breath. 

The second stage, assessment of the physiological plausibility of 
valid breath durations, was performed as follows. Three criteria were 
used: (i) the normalised standard deviation of breath durations had to be 
< 0.25 to permit only moderate variation in the durations of detected 
breaths; (ii) the proportion of breath durations > 1.5, or < 0.5, times the 
median breath duration had to be < 15 % to prevent errors due to 
outlying breath durations; (iii) > 60 % of the segment duration had to be 
occupied by valid breaths. Any segment which did not satisfy these three 
criteria was deemed to be of low quality. 

The third stage, assessment of the similarity of breath morphologies, 
was performed as follows. First, the mean breath interval was calculated 
as the mean interval between consecutive relevant peaks. Second, in-
dividual breaths were extracted as signal segments of duration equal to 
the mean breath interval centred on each relevant peak (any individual 
breaths which extended beyond the start or end of the 32 s segment were 
discarded), and each normalised by their Euclidean norm. Individual 
breaths are shown in blue in the right-hand panels of Fig. 1. Third, an 
average breath morphology template was calculated as the mean of all 
the individual breaths centred on their relevant peaks (shown as hollow 
red dots in the right-hand panels of Fig. 1). The similarity of breath 
morphologies was quantified using the mean correlation coefficient 
between individual breaths and the average breath template. The cor-
relation coefficient had to be > 0.75 for the signal segment to be 
considered to be high quality. 

The criteria and thresholds used in the SQI were manually chosen 
from a range of possible values to optimise performance on the RRest- 
vent training subset. This approach resulted in similar performance to 
automatic determination of thresholds using a linear logistic regression 
model. 

2.3. The agreement signal quality index algorithm 

The previously proposed agreement SQI was used as a comparator in 
this study, since it was also originally designed to determine whether RR 
can be accurately estimated from a segment of ImP signal in the hospital 
setting [21,22]. The agreement SQI consists of estimating RR using in-
dependent time- and frequency-domain techniques, calculating the dif-
ference between the two resulting RRs, and concluding that the signal 
segment is of high quality if and only if the difference is < 2 bpm. In this 
study the two RRs were estimated by: (i) using the time-domain Coun-
t-orig method described in Section 2.2; and (ii) calculating the power 
spectrum of the signal using the Welch Periodogram (analysing 32 s 
windows with overlapping sections of duration 12.8 s, and 50 % over-
lap), and estimating the RR as the frequency corresponding to the 
maximum power spectral density. These methods were chosen because 
of their high performance in [23]. Further details on these two methods 
are provided in [24]. 

2.4. Assessing the discriminatory performance of the novel SQI 

The discriminatory performance of the novel SQI for distinguishing 
between high and low quality signal segments was assessed by 
comparing its labels of signal quality to the manual annotations on the 
RRest-vent testing subset. Discriminatory performance was quantified 
using sensitivity and specificity, defined as: 

sensitivity =
TP
P

,

where TP is the number of true positives (i.e. segments which were 
correctly deemed to be of high quality by the SQI), P is the number of 
positives (i.e. segments annotated as high quality); and 

specificity =
TN
N

,

where TN is the number of true negatives (i.e. segments which were 
correctly deemed to be of low quality by the SQI), N is the number of 
negatives (i.e. segments annotated as low quality). 95 % confidence 
intervals (CIs) were calculated using bootstrapping with 1000 bootstrap 
replicas. 

The performance of the novel SQI was compared to that of the pre-
viously proposed agreement SQI using the two-sided asymptotic 
McNemar test at the 5% significance level [33]. The statistical measures 
of discriminatory performance reported for the novel SQI were also re-
ported for the agreement SQI. 

2.5. Comparing RRs obtained from a clinical monitor and using a RR 
algorithm 

The RRest-vent testing subset and the RRest-mimic datasets were used 
to compare the accuracy and precision of RRs obtained from high quality 
segments when using: (a) RRs reported by a clinical monitor, and (b) 
RRs estimated using a high-performance RR algorithm. To do so, RRs 
were obtained from those reported by the clinical monitor by calculating 
the median of the RRs outputted by the monitor during each segment. 
The RR algorithm used to estimate RRs from ImP signals was a modified 
version of the Count-Orig algorithm [32], since it has performed well in 
several previous studies [23–25]. This consisted of identifying valid 
breaths (as performed in the first stage of the novel SQI, described in 
Section 2.2), and calculating the RR of each segment as the mean 
duration of valid breaths in that segment. The reference RR for each 
segment was calculated as the mean breath duration derived from the 
manually annotated breaths. 

A further subgroup analysis of the RRest-vent testing subset was 
conducted to assess the impact of false positives (i.e. low quality seg-
ments falsely identified by the SQI as high quality) on RR estimates. The 
accuracy and precision of RRs estimated using the RR algorithm were 
calculated for two subgroups of segments: those which were correctly 
identified as high quality by the novel SQI, and those which were 
incorrectly identified as high quality (as detemined through manual 
annotation). 

The following statistical methods were used to assess the accuracy 
and precision of RRs. The agreement between each method’s RRs and 
the reference RRs was quantified using the Limits of Agreement tech-
nique [34]. The accuracy of RRs was quantified using the bias (i.e. mean 
error, corrected for repeated measurements within subjects), 

bias =

∑n
i=1

(∑mi
j=1

[
RRrefij − RRestij

] )

∑n
i=1 mi  

which was calculated as the mean difference between the estimated RRs, 
RRest, and the reference RRs, RRref, across the i = 1, …, n subjects, each of 
which had mi pairs of estimated and reference RRs. The precision of RRs 
was assessed by calculating the limits of agreement (i.e. the expected 
range of 95 % of errors around the systematic bias), ±1.96s, denoted as 
2SD, where s is the standard deviation of the errors. Any segments in 
which the estimated RR was zero were excluded from the analysis. The 
method described in [35] was used to account for repeated measure-
ments per subject. s was calculated from the total variance: the sum of 
the within subjects variance, σ2

w, and between subjects variance, σ2
b, 

which were estimated using one-way analysis of variance: 

σ2
w = MSresidual  

σ2
b =

MSsubject − MSresidual(

(
∑

mi)
2
−
∑

mi2

(n− 1)
∑

mi

)
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where MSresidual is the mean square error, and MSsubject is the difference 
between the mean squares for subjects, and the sums are from i = 1, …, n. 

Two further statistics were used to assess the utility of RRs. The 
coverage probability, CP2, is the proportion of high quality segments for 
which highly useful RRs are returned, defined as being within 2 bpm of 
the reference RR. The mean absolute error (MAE) was also reported. 

Scatter plots of estimated and reference RRs, and Bland-Altman plots 
of RR errors, were provided (in Fig. 3). Errors of > 10 bpm were trun-
cated to 10 bpm on Bland-Altman plots. 

2.6. Assessing the frequency at which RRs are reported when using the 
novel SQI 

The frequency at which RRs are reported when using the novel SQI in 
a real-world setting was assessed using the real-world RRest-mimic 
dataset. Firstly, the proportion of segments which were deemed to be 
high quality by the novel SQI was assessed, both for the entire dataset 
and for individual subjects (reported as the median and inter-quartile 
range). Secondly, the durations of gaps between consecutive high- 
quality segments were assessed. 

Case studies were provided to illustrate clinical scenarios in which 
the novel SQI combined with a RR algorithm may confer clinical benefit 
over current clinical monitoring (the case studies are provided in Fig. 4). 

3. Results 

3.1. The discriminatory performance of the novel SQI 

The novel SQI had a sensitivity and specificity (95 % CIs) of 77.7 
(74.9–80.4) and 82.3 (79.0–85.2) % respectively on the RRest-vent 
testing subset. The novel SQI classified 79.6 % of the segments correctly, 
and only 7.3 % of segments were misclassified as high quality when the 
reference annotation was low quality. The confusion matrix provided in 
Table 1 indicates that there was a good balance between high and low 
quality data in the testing subset: 58.7 % high quality and 41.3 % low 
quality. 

In comparison, the previously proposed agreement SQI had a sensi-
tivity and specificity of 59.7 (56.3–62.9) and 74.9 (71.4–78.2) % 

respectively on the same data. It classified 66.0 % of the segments 
correctly, and misclassified 10.4 % of segments as high quality. The 
confusion matrix is provided in the Supplementary Material. The 
discriminatory performance of the novel SQI was superior to that of the 
agreement SQI, as shown by the McNemar test rejecting the null hy-
pothesis of marginal homogeneity between the two SQIs (p < 0.001). 
Both the sensitivity and specificity of the novel SQI were significantly 
higher than that of the agreement SQI. Additional results for the novel 
and agreement SQIs across the different clinical settings in the RRest-vent 
testing subset are provided in the Supplementary Material. 

For reference, during training on the RRest-vent training subset, the 
novel SQI had a sensitivity and specificity (95 % CIs) of 74.6 (71.9–77.2) 
and 87.6 (85.3–89.7) %, and the agreement SQI had a sensitivity and 
specificity (95 % CIs) of 48.0 (45.2–51.2) and 81.7 (78.7–84.0) %. These 
results are in keeping with the preliminary results reported in [23,26]. 

3.2. A comparison of RRs obtained using a RR algorithm and from a 
clinical monitor 

Table 2 shows the performance of two methods for obtaining RRs 
from ImP segments deemed to be of high quality by the novel SQI: the 
Count-Orig RR algorithm, and obtaining RR estimates from the clinical 
monitor RRs. RR estimates were more precise when obtained using the 
RR algorithm, with limits of agreement of 0.0 ± 1.0 bpm and 0.1 ± 1.8 
bpm on the two datasets. In comparison, when using clinical monitor 
RRs the limits of agreement were significantly wider (0.3 ± 3.7 bpm and 
-0.1 ± 6.0 bpm), indicating less precision. The results indicate that 
performance was significantly improved when using the RR algorithm, 
rather than using RRs provided by the clinical monitor. Indeed, the 
frequencies of erroneous RRs (those with an error of > 2.0 bpm, indi-
cated by CP2) were only 1.4 % and 7.7 % when using the RR algorithm, 
compared to 15.1 % and 29.8 % when using RRs from the monitor. 
Furthermore, the frequencies of highly erroneous RRs which could affect 
treatment decisions (those with an error of > 5.0 bpm), were 0.1 % and 
0.2 % when using the RR algorithm, compared to 3.1 % and 10.2 % 
when using the clinical monitor RRs. The reference and estimated RRs 
obtained using each method are shown in Fig. 3. 

The impact of false positives on RR estimates was assessed by 

Fig. 3. The performance of RRs estimated from segments deemed to be of high quality by the Novel SQI in each dataset. Results are shown for each dataset, and when 
using the RR algorithm or clinical monitor RRs. Upper plots show the estimated RRs plotted against the reference RRs. Lower plots show the errors against the 
reference RRs. 
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calculating RRs (using the Count-orig algorithm) from those segments 
falsely identified as high quality by the novel SQI in the RRest-vent 
testing subset. RR estimates derived from the 94 segments which were 
falsely identified as high quality had limits of agreement of 0.2 ± 2.1 
bpm (within which 95 % of errors are expected to lie). In comparison, 
RR estimates derived from the 580 correctly identified high-quality 
segments had limits of agreement of -0.1 ± 0.7 bpm. The limits of 
agreement were significantly wider for RR estimates derived from low- 
quality segments, indicating less precision in those segments which were 
actually of low quality. 

3.3. The frequency at which RRs were reported when using the novel SQI 

The impact of the novel SQI on the proportion of segments for which 
RRs were reported was assessed using the real-world RRest-mimic data-
set. Overall, the novel SQI identified 34.9 % of the 10,782 non-flat-line 
segments as high quality in this dataset (the 517 flat-line segments were 
excluded from the analysis). On a per subject basis, the novel SQI 
identified a median (lower – upper quartiles) of 32.7 (12.3–55.3) % of 
each subject’s non-flat-line segments as high quality. The RR algorithm 
estimated RRs from all of the segments deemed to be high quality, 
indicating that the novel SQI allowed RRs to be obtained for approxi-
mately one third of the time in this real-world setting. There was a 
median (lower – upper quartiles) of 64 (32–224) s between RRs obtained 
from high quality segments identified by the novel SQI. The most recent 
RR was less than five and ten minutes ago for 79.7 % and 89.6 % of the 
time respectively. 

Fig. 4 shows four case studies demonstrating potential benefits of 
using the novel SQI and RR algorithm, explained in the figure caption. 

4. Discussion 

This study presented a novel SQI for use with the ImP signal. The SQI 
classifies periods of ImP signal as either high or low quality by 

Fig. 4. Case studies demonstrating the utility of the novel SQI combined with a RR algorithm (grey shading indicates normal RRs): (a) both the clinical monitor and 
the novel approach track changes in RR precisely; (b) the clinical monitor outputs a high RR in a period of low signal quality (at 3 min., as indicated by the absence of 
a reference RR), which could result in a false alert; (c) between 3 and 10 min. the clinical monitor outputs normal RRs in a period of predominantly low signal quality, 
which may result in an alert being falsely suppressed; (d) the clinical monitor incorrectly outputs mostly normal RRs when the true RRs are low, despite the signal 
quality being high, which may also result in an alert being falsely suppressed. Data obtained from the RRest-vent dataset. 

Table 1 
The discriminatory performance of the novel SQI, assessed on the RRest-vent 
testing subset. The confusion matrix for the novel SQI is shown, indicating the 
number of ImP signal segments in each category, and the percentage of segments 
deemed to be of high and low quality by manual annotations (bottom row).   

Actual Class (determined 
by manual annotation) 

High 
Quality 

Low 
Quality 

Predicted Class (determined by novel 
SQI) 

High 
Quality 615 99 

Low 
Quality 

177 459   

58.7 % 41.3 %  

Table 2 
The performance of RRs estimated from segments deemed to be of high quality 
by the novel SQI. Results are reported for each dataset, when: (i) using the 
Count-Orig RR algorithm to estimate RRs; and (ii) obtaining RR estimates from 
the clinical monitor RRs. CI: confidence interval. Statistics are as defined in 
Section 2.5.   

RRest-vent testing subset RRest-mimic dataset 

Novel SQI & 
RR Algorithm 

Novel SQI & 
Clinical 
Monitor RRs 

Novel SQI & 
RR Algorithm 

Novel SQI & 
Clinical 
Monitor RRs 

Bias [bpm] 
(95 % CI) 

0.0 (-0.2 – 
0.1) 

0.3 (-0.2 – 0.7) 0.1 (-0.1 – 
0.2) 

− 0.1 (-0.8 – 
0.5) 

2SD [bpm] 
(95 % CI) 

1.0 (0.8–1.2) 3.7 (2.9–4.4) 1.8 (1.5–2.1) 6.0 (4.9–7.1) 

CP2 [%] 98.6 84.9 92.3 70.2 
iCP5 [%] 0.1 3.1 0.2 10.2 
MAE [bpm] 0.21 1.04 0.40 1.90 
Number of 

windows 
714 709 452 423  
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identifying candidate breaths, assessing the physiological plausibility of 
the resulting breath-to-breath timings, and assessing the consistency of 
the signal morphology of each breath. The SQI was assessed on two 
datasets, across a range of clinical settings. It showed good performance 
for discriminating between high and low quality data, outperforming a 
previous technique from the literature. In addition, when using a RR 
algorithm, RRs derived from the segments identified as high quality by 
the novel SQI were highly precise and accurate across a wide range of 
RRs. A real-world assessment indicated that RRs could be obtained for 
approximately one third of the time when using the novel SQI. The re-
sults indicate that the SQI may confer benefit in high-dependency set-
tings. In the future it may also be found to provide benefit when used 
with wearable sensors, in both hospital and community settings. 

The criteria used by the SQI to discriminate between high- and low- 
quality data provide insight into the reasons for its performance. The SQI 
only deemed segments to be of high quality if: they did not exhibit high 
variation in breath durations, the majority of the segment was occupied 
by breaths with well defined peaks and troughs, and these breaths 
exhibited similar morphology. This indicates the key strength of the SQI: 
it identifies high quality segments in which there is not high variability 
in the breathing pattern over short periods (seconds), and in which RR 
can be accurately estimated. It seems likely this would have utility for 
detecting changes in RR which accompany acute deteriorations in 
monitored hospital patients, where current nurse observations are 
separated by several minutes or hours. However, it is not suitable for use 
in settings where either continuous RRs are required (such as for 
detection of apnea and respiratory arrests), or the breathing pattern is 
expected to be highly irregular (such as during ataxic breathing, cluster 
breathing, and potentially Cheyne-Stokes respiration [36], or in 
neonates). 

This study builds on previous work on assessing the quality of 
physiological signals. The novel SQI was designed by adapting the 
approach presented by Orphanidou et al. for electrocardiogram (ECG) 
and photoplethysmogram (PPG) signals [11]. This approach was 
adapted for use with respiratory signals, and provided results compa-
rable with previous work. The ability of the SQI to distinguish between 
high and low quality data (sensitivity and specificity of 78 and 82 % 
respectively on the RRest-vent testing subset) was not as high as when the 
approach was used with the ECG (94 and 97 %) and the PPG (91 and 95 
%). However, the RRs estimated from segments deemed to be high 
quality had minimal bias and a precision of 1.0 and 1.8 bpm (2SD on 
each dataset), which is comparable to previous studies of gold-standard 
RR measurements (e.g. 1.3 bpm when using an oral-nasal pressure sensor 
in [24]), and a better performance than typically achieved when esti-
mating RR from ECG or PPG signals [24]. Furthermore, the MAEs of 0.21 
and 0.40 bpm observed when using the novel SQI with a RR algorithm in 
this study improves on the best MAE of 0.42 bpm reported in a com-
parison of previous algorithms without an SQI (in laboratory rather than 
clinical conditions) [25]. The high performance of estimated RRs can be 
attributed to the selection of high-quality segments, and the use of the 
Count-orig RR algorithm, which has previously been shown to provide 
superior performance to other RR estimation techniques [24,25,32]. 
Nonetheless, the observation that RRs were less precise in segments 
falsely identified as high quality by the novel SQI indicates that the SQI 
could be improved in the future. 

The novel SQI may impact clinical practice in several settings. Its 
performance on data acquired from static bedside monitors in this study 
indicates that it may be suitable for a prospective clinical study in high- 
dependency settings. However, it is likely to confer greater benefit 
outside of the critical care setting, where there is a lower ratio of staff to 
patients. In areas such as the ambulatory ward, or home setting, the SQI 
could potentially improve the alert rate resulting from ImP monitoring 
using wearable sensors. The case studies demonstrated how it could 
reduce the false alert rate, and increase the true alert rate, which would 
reduce healthcare costs and improve patient safety respectively. How-
ever, a key limitation of this study is that the performance of the SQI has 

not been assessed on data from ambulatory patients. Therefore, further 
work is required to assess its performance in this setting before it could 
reasonably be used with wearable sensor data. Such studies could be 
performed using both ImP monitoring and reference respiratory moni-
toring (such as by a facemask) during rest and exercise: the Vortal 
dataset would be suitable for such studies [24,37]. In addition, the 
performance of the SQI was assessed against signal quality and breath 
annotations provided by a single annotator. Future studies could provide 
further, complementary evidence on its performance in additional 
clinical settings. 

The SQI is also expected to have impact in the research setting. A 
recent review of techniques to estimate RR from the ECG and PPG 
identified the need to obtain reliable RRs from reference respiratory 
signals to evaluate the performance of ECG- and PPG-based RR algo-
rithms [27]. Several datasets which have been previously used to 
develop RR algorithms contain reference ImP signals, such as the 
MGH/MF and MIMIC datasets [29,30,38]. The MIMIC dataset, con-
taining data from critical care patients, is widely used for other purposes 
too [39]. The SQI is suitable for extracting reliable RRs from this dataset, 
increasing the scope of studies which can be conducted on the dataset. 

5. Conclusions 

The novel ImP SQI presented in this study was found to discriminate 
well between low- and high-quality data, and result in highly accurate 
and precise RR estimates when coupled with a high performance RR 
algorithm. The SQI was assessed in the critical care setting, and may 
confer clinical benefit for identifying acute deteriorations in that setting. 
It is also a valuable resource for future research, enhancing the value of 
existing datasets containing ImP signals. A Matlab ® implementation of 
the SQI is publicly available (see Supplementary Material). Importantly, 
the SQI is not suitable for use in settings where RRs are required 
continuously. Furthermore, it has not yet been assessed outside of the 
critical care setting, and in the presence of irregular breathing patterns. 
It could potentially have great benefit if used with wearable sensors, 
making this a promising avenue for future research. 
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