11 research outputs found

    Loss of the neuroprotective factor Sphingosine 1-phosphate early in Alzheimer\u27s disease pathogenesis

    Get PDF
    Background The greatest genetic risk factor for late-onset Alzheimer\u27s disease (AD) is the ϵ4 allele of Apolipoprotein E (ApoE). ApoE regulates secretion of the potent neuroprotective signaling lipid Sphingosine 1-phosphate (S1P). S1P is derived by phosphorylation of sphingosine, catalysed by sphingosine kinases 1 and 2 (SphK1 and 2), and SphK1 positively regulates glutamate secretion and synaptic strength in hippocampal neurons. S1P and its receptor family have been subject to intense pharmacological interest in recent years, following approval of the immunomodulatory drug Fingolimod, an S1P mimetic, for relapsing multiple sclerosis. Results We quantified S1P levels in six brain regions that are differentially affected by AD pathology, in a cohort of 34 post-mortem brains, divided into four groups based on Braak neurofibrillary tangle staging. S1P declined with increasing Braak stage, and this was most pronounced in brain regions most heavily affected by AD pathology. The S1P/sphingosine ratio was 66% and 64% lower in Braak stage III/IV hippocampus (p = 0.010) and inferior temporal cortex (p = 0.014), respectively, compared to controls. In accordance with this change, both SphK1 and SphK2 activity declined with increasing Braak pathology in the hippocampus (p = 0.032 and 0.047, respectively). S1P/sphingosine ratio was 2.5-fold higher in hippocampus of ApoE2 carriers compared to ApoE4 carriers, and multivariate regression showed a significant association between APOE genotype and hippocampal S1P/sphingosine (p = 0.0495), suggesting a new link between APOE genotype and pre-disposition to AD. Conclusions This study demonstrates loss of S1P and sphingosine kinase activity early in AD pathogenesis, and prior to AD diagnosis. Our findings establish a rationale for further exploring S1P receptor pharmacology in the context of AD therapy

    Methylation of translation-associated proteins in Saccharomyces cerevisiae : identification of methylated lysines and their methyltransferases

    No full text
    This study aimed to identify sites of lysine methylation in Saccharomyces cerevisiae and the associated methyltransferases. Hexapeptide ligand affinity chromatography was used to normalize the abundance levels of proteins in whole cell lysate. MS/MS, in association with antibody-based detection, was then used to identify lysine methylated proteins and the precise sites of modification. Lysine methylation was found on the proteins elongation factor (EF) 1-α, 2, and 3A, as well as ribosomal proteins 40S S18-A/B, 60S L11-A/B, L18-A/B, and L42-A/B. Precise sites were mapped in all cases. Single-gene knockouts of known and putative methyltransferase(s), in association with MS/MS, showed that EF1-α is monomethylated by Efm1 at lysin 30 and dimethylated by See1 at lysine 316. Methyltransferase Rkm1 was found to monomethylate 40S ribosomal protein S18-A/B at lysine 48. Knockout analysis also revealed that putative methyltransferase YBR271W affects the methylation of proteins EF2 and 3A; this was detected by Western blotting and immunodetection. This methyltransferase shows strong interspecies conservation and a tryptophan-containing motif associated with its active site. We suggest that enzyme YBR271W is named EF methyltransferase 2 (Efm2), in line with the recent naming of YHL039W as Efm1.13 page(s

    Contextual fear conditioning is enhanced in mice lacking functional sphingosine kinase 2

    No full text
    The lipid sphingosine 1-phosphate (S1P) is a potent neuroprotective signalling molecule that signals through its own family of five G-protein coupled receptors. S1P signalling enhances presynaptic glutamate release and is essential for neural development. S1P is synthesized by the enzymes sphingosine kinases 1 and 2 (SphK1 and SphK2), of which SphK2 mRNA and activity is more abundant in the brain. In this study we investigated the consequences of global SphK2 knockout (SphK2−/−) on basic motor capabilities, anxiety, learning, and memory in mice, using a range of tests including the elevated plus maze, the cheeseboard, contextual and cued fear conditioning, and fear extinction. Loss of SphK2 resulted in an 85-90% reduction in brain S1P levels, and was associated with a notably higher freezing response in a novel context. SphK2 knockout mice also exhibited increased contextual fear conditioning but the extinction of contextual fear memory was similar to control mice. SphK2−/− mice, contrary to their control littermates, did not respond to cue presentation with increased freezing. Anxiety measures in the elevated plus maze were not different between SphK2−/− mice and control littermates. Also, knockout mice showed no deficits in neurological reflexes or motor functions, and performed as well as their control littermates in the spatial memory test. Our findings demonstrate that SphK2 is responsible for the vast majority of S1P synthesis in the brain, and plays a role in freezing responses as evaluated in the fear conditioning paradigm

    Loss of ceramide synthase 2 activity, necessary for myelin biosynthesis, precedes tau pathology in the cortical pathogenesis of Alzheimer\u27s disease

    No full text
    The anatomical progression of neurofibrillary tangle pathology throughout Alzheimer\u27s disease (AD) pathogenesis runs inverse to the pattern of developmental myelination, with the disease preferentially affecting thinly myelinated regions. Myelin is comprised 80% of lipids, and the prototypical myelin lipids, galactosylceramide, and sulfatide are critical for neurological function. We observed severe depletion of galactosylceramide and sulfatide in AD brain tissue, which can be traced metabolically to the loss of their biosynthetic precursor, very long chain ceramide. The synthesis of very long chain ceramides is catalyzed by ceramide synthase 2 (CERS2). We demonstrate a significant reduction in CERS2 activity as early as Braak stage I/II in temporal cortex, and Braak stage III/IV in hippocampus and frontal cortex, indicating that loss of myelin-specific ceramide synthase activity precedes neurofibrillary tangle pathology in cortical regions. These findings open a new vista on AD pathogenesis by demonstrating a defect in myelin lipid biosynthesis at the preclinical stages of the disease. We posit that, over time, this defect contributes significantly to myelin deterioration, synaptic dysfunction, and neurological decline

    Simultaneous Assessment of Serum Levels and Pharmacologic Effects of Cannabinoids on Endocannabinoids and N-Acylethanolamines by Liquid Chromatography-Tandem Mass Spectrometry

    No full text
    Introduction: The primary compounds of Cannabis sativa, delta-9-tetrahydrocannabinol (Delta(9)-THC) and cannabidiol (CBD), inflict a direct influence on the endocannabinoid system-a complex lipid signaling network with a central role in neurotransmission and control of inhibitory and excitatory synapses. These phytocannabinoids often interact with endogenously produced endocannabinoids (eCBs), as well as their structurally related N-acylethanolamines (NAEs), to drive neurobiological, nociceptive, and inflammatory responses. Identifying and quantifying changes in these lipid neuromodulators can be challenging owing to their low abundance in complex matrices. Materials and Methods: This article describes a robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the extraction and quantification of the eCBs anandamide and 2-arachidonoylglycerol, along with their congener NAEs oleoylethanolamine and palmitoylethanolamine, and phytocannabinoids CBD, Delta(9)-THC, and 11-Nor-9-carboxy-Delta(9)-tetrahydrocannabinol, a major metabolite of Delta(9)-THC. Our method was applied to explore pharmacokinetic and pharmacodynamic effects from intraperitoneal injections of Delta(9)-THC and CBD on circulating levels of eCBs and NAEs in rodent serum. Results: Detection limits ranged from low nanomolar to picomolar in concentration for eCBs (0.012-0.24 pmol/mL), NAEs (0.059 pmol/mL), and phytocannabinoids (0.24-0.73 pmol/mL). Our method displayed good linearity for calibration curves of all analytes (R-2 > 0.99) as well as acceptable accuracy and precision, with quality controls not deviating > 15% from their nominal value. Our LC-MS/MS method reliably identified changes to these endogenous lipid mediators that followed a causal relationship, which was dependent on both the type of phytocannabinoid administered and its pharmaceutical preparation. Conclusion: We present a rapid and reliable method for the simultaneous quantification of phytocannabinoids, eCBs, and NAEs in serum using LC-MS/MS. The accuracy and sensitivity of our assay infer it can routinely monitor endogenous levels of these lipid neuromodulators in serum and their response to external stimuli, including cannabimimetic agents

    ReTimeML: a retention time predictor that supports the LC–MS/MS analysis of sphingolipids

    No full text
    Abstract The analysis of ceramide (Cer) and sphingomyelin (SM) lipid species using liquid chromatography–tandem mass spectrometry (LC–MS/MS) continues to present challenges as their precursor mass and fragmentation can correspond to multiple molecular arrangements. To address this constraint, we developed ReTimeML, a freeware that automates the expected retention times (RTs) for Cer and SM lipid profiles from complex chromatograms. ReTimeML works on the principle that LC–MS/MS experiments have pre-determined RTs from internal standards, calibrators or quality controls used throughout the analysis. Employed as reference RTs, ReTimeML subsequently extrapolates the RTs of unknowns using its machine-learned regression library of mass-to-charge (m/z) versus RT profiles, which does not require model retraining for adaptability on different LC–MS/MS pipelines. We validated ReTimeML RT estimations for various Cer and SM structures across different biologicals, tissues and LC–MS/MS setups, exhibiting a mean variance between 0.23 and 2.43% compared to user annotations. ReTimeML also aided the disambiguation of SM identities from isobar distributions in paired serum-cerebrospinal fluid from healthy volunteers, allowing us to identify a series of non-canonical SMs associated between the two biofluids comprised of a polyunsaturated structure that confers increased stability against catabolic clearance

    Sphingosine kinase 2 potentiates amyloid deposition but protects against hippocampal volume loss and demyelination in a mouse model of Alzheimer's disease

    No full text
    Sphingosine 1-phosphate (S1P) is a potent vasculoprotective and neuroprotective signaling lipid, synthesized primarily by sphingosine kinase 2 (SK2) in the brain. We have reported pronounced loss of S1P and SK2 activity early in Alzheimer's disease (AD) pathogenesis, and an inverse correlation between hippocampal S1P levels and age in females, leading us to speculate that loss of S1P is a sensitizing influence for AD. Paradoxically, SK2 was reported to mediate amyloid β (Aβ) formation from amyloid precursor protein (APP) in vitro To determine whether loss of S1P sensitizes to Aβ-mediated neurodegeneration, we investigated whether SK2 deficiency worsens pathology and memory in male J20 (PDGFB-APPSwInd) mice. SK2 deficiency greatly reduced Aβ content in J20 mice, associated with significant improvements in epileptiform activity and cross-frequency coupling measured by hippocampal electroencephalography. However, several key measures of APPSwInd-dependent neurodegeneration were enhanced on the SK2-null background, despite reduced Aβ burden. These included hippocampal volume loss, oligodendrocyte attrition and myelin loss, and impaired performance in Y-maze and social novelty memory tests. Inhibition of the endosomal cholesterol exporter NPC1 greatly reduced sphingosine phosphorylation in glial cells, linking loss of SK2 activity and S1P in AD to perturbed endosomal lipid metabolism. Our findings establish SK2 as an important endogenous regulator of both APP processing to Aβ, and oligodendrocyte survival, in vivo These results urge greater consideration of the roles played by oligodendrocyte dysfunction and altered membrane lipid metabolic flux as drivers of neurodegeneration in AD.SIGNIFICANCE STATEMENT Genetic, neuropathological, and functional studies implicate both Aβ and altered lipid metabolism and/or signaling as key pathogenic drivers of Alzheimer's disease. In this study, we first demonstrate that the enzyme SK2, which generates the signaling lipid S1P, is required for Aβ formation from APP in vivo Second, we establish a new role for SK2 in the protection of oligodendrocytes and myelin. Loss of SK2 sensitizes to Aβ-mediated neurodegeneration by attenuating oligodendrocyte survival and promoting hippocampal atrophy, despite reduced Aβ burden. Our findings support a model in which Aβ-independent sensitizing influences such as loss of neuroprotective S1P are more important drivers of neurodegeneration than gross Aβ concentration or plaque density

    A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism

    No full text
    Ceramides are signalling molecules that regulate several physiological functions including insulin sensitivity. Here the authors report a selective ceramide synthase 1 inhibitor that counteracts lipid accumulation within the muscle and adiposity by increasing fatty acid oxidation but without affecting insulin sensitivity in mice fed with an obesogenic diet
    corecore