240 research outputs found

    Suometsien pysyvien kasvukoealojen (SINKA) maastotyöohjeet.

    Get PDF

    Neulasanalyysi turvemaan männikön jatkolannoitustarpeen määrityksessä

    Get PDF

    Decomposition of Scots pine fine woody debris in boreal conditions : implications for estimating carbon pools and fluxes

    Get PDF
    "Litter quality and environmental effects on Scots pine (Pinus sylvestris L.) fine woody debris (FWD) decomposition were examined in three forestry-drained peatlands representing different site types along a climatic gradient from the north boreal (Northern Finland) to south (Southern Finland) and hemiboreal (Central Estonia) conditions. Decomposition (percent mass loss) of FWD with diameter 10 mm (branches) was measured using the litter bag method over 1-4-year periods. Overall, decomposition rates increased from north to south, the rate constants (k values) varying from 0.128 to 0.188 year(-1) and from 0.066 to 0.127 year(-1) for twigs and branches, respectively. On average, twigs had lost 34%, 19% and 19%, and branches 25%, 17% and 11% of their initial mass after 2 years of decomposition at the hemiboreal, south boreal and north boreal sites, respectively. After 4 years at the south boreal site the values were 48% for twigs and 42% for branches. Based on earlier studies, we suggest that the decomposition rates that we determined may be used for estimating Scots pine FWD decomposition in the boreal zone, also in upland forests. Explanatory models accounted for 50.4% and 71.2% of the total variation in FWD decomposition rates when the first two and all years were considered, respectively. The variables most related to FWD decomposition included the initial ash, water extractives and Klason lignin content of litter, and cumulative site precipitation minus potential evapotranspiration. Simulations of inputs and decomposition of Scots pine FWD and needle litter in south boreal conditions over a 60-year period showed that 72 g m(-2) of organic matter from FWD vs. 365 g m(-2) from needles accumulated in the forest floor. The annual inputs varied from 5.7 to 15.6 g m(-2) and from 92 to 152 g m(-2) for FWD and needles, respectively. Each thinning caused an increase in FWD inputs, Up to 510 g m(-2), while the needle inputs did not change dramatically. Because the annual FWD inputs were lowered following the thinnings, the overall effect of thinnings on C accumulation from FWD was slightly negative. The contribution of FWD to soil C accumulation, relative to needle litter, seems to be rather minor in boreal Scots pine forests. (C) 2008 Elsevier B.V. All rights reserved.""Litter quality and environmental effects on Scots pine (Pinus sylvestris L.) fine woody debris (FWD) decomposition were examined in three forestry-drained peatlands representing different site types along a climatic gradient from the north boreal (Northern Finland) to south (Southern Finland) and hemiboreal (Central Estonia) conditions. Decomposition (percent mass loss) of FWD with diameter 10 mm (branches) was measured using the litter bag method over 1-4-year periods. Overall, decomposition rates increased from north to south, the rate constants (k values) varying from 0.128 to 0.188 year(-1) and from 0.066 to 0.127 year(-1) for twigs and branches, respectively. On average, twigs had lost 34%, 19% and 19%, and branches 25%, 17% and 11% of their initial mass after 2 years of decomposition at the hemiboreal, south boreal and north boreal sites, respectively. After 4 years at the south boreal site the values were 48% for twigs and 42% for branches. Based on earlier studies, we suggest that the decomposition rates that we determined may be used for estimating Scots pine FWD decomposition in the boreal zone, also in upland forests. Explanatory models accounted for 50.4% and 71.2% of the total variation in FWD decomposition rates when the first two and all years were considered, respectively. The variables most related to FWD decomposition included the initial ash, water extractives and Klason lignin content of litter, and cumulative site precipitation minus potential evapotranspiration. Simulations of inputs and decomposition of Scots pine FWD and needle litter in south boreal conditions over a 60-year period showed that 72 g m(-2) of organic matter from FWD vs. 365 g m(-2) from needles accumulated in the forest floor. The annual inputs varied from 5.7 to 15.6 g m(-2) and from 92 to 152 g m(-2) for FWD and needles, respectively. Each thinning caused an increase in FWD inputs, Up to 510 g m(-2), while the needle inputs did not change dramatically. Because the annual FWD inputs were lowered following the thinnings, the overall effect of thinnings on C accumulation from FWD was slightly negative. The contribution of FWD to soil C accumulation, relative to needle litter, seems to be rather minor in boreal Scots pine forests. (C) 2008 Elsevier B.V. All rights reserved.""Litter quality and environmental effects on Scots pine (Pinus sylvestris L.) fine woody debris (FWD) decomposition were examined in three forestry-drained peatlands representing different site types along a climatic gradient from the north boreal (Northern Finland) to south (Southern Finland) and hemiboreal (Central Estonia) conditions. Decomposition (percent mass loss) of FWD with diameter 10 mm (branches) was measured using the litter bag method over 1-4-year periods. Overall, decomposition rates increased from north to south, the rate constants (k values) varying from 0.128 to 0.188 year(-1) and from 0.066 to 0.127 year(-1) for twigs and branches, respectively. On average, twigs had lost 34%, 19% and 19%, and branches 25%, 17% and 11% of their initial mass after 2 years of decomposition at the hemiboreal, south boreal and north boreal sites, respectively. After 4 years at the south boreal site the values were 48% for twigs and 42% for branches. Based on earlier studies, we suggest that the decomposition rates that we determined may be used for estimating Scots pine FWD decomposition in the boreal zone, also in upland forests. Explanatory models accounted for 50.4% and 71.2% of the total variation in FWD decomposition rates when the first two and all years were considered, respectively. The variables most related to FWD decomposition included the initial ash, water extractives and Klason lignin content of litter, and cumulative site precipitation minus potential evapotranspiration. Simulations of inputs and decomposition of Scots pine FWD and needle litter in south boreal conditions over a 60-year period showed that 72 g m(-2) of organic matter from FWD vs. 365 g m(-2) from needles accumulated in the forest floor. The annual inputs varied from 5.7 to 15.6 g m(-2) and from 92 to 152 g m(-2) for FWD and needles, respectively. Each thinning caused an increase in FWD inputs, Up to 510 g m(-2), while the needle inputs did not change dramatically. Because the annual FWD inputs were lowered following the thinnings, the overall effect of thinnings on C accumulation from FWD was slightly negative. The contribution of FWD to soil C accumulation, relative to needle litter, seems to be rather minor in boreal Scots pine forests. (C) 2008 Elsevier B.V. All rights reserved."Peer reviewe

    Modelling light scattering by absorbing smooth and slightly rough facetted particles

    Get PDF
    A method for approximating light scattering properties of strongly absorbing facetted particles which are large compared to the wavelength is presented. It consists in adding the approximated external diffraction and reflection far fields and is demonstrated for a smooth hexagonal prism. This computationally fast method is extended towards prisms with slightly rough surfaces by introducing a surface scaling factor in order to account for edge effects on subfacets forming the rough surface. These effects become more pronounced with decreasing subfacet dimension to wavelength ratio. Azimuthally resolved light scattering patterns, phase functions and degree of linear polarisation obtained by this method and by the Discrete Dipole Approximation are compared for hexagonal prisms with smooth and slightly rough surfaces, respectively.Peer reviewedSubmitted Versio

    Vähäpuustoisten ojitusaluemetsiköiden harvennuspuunkorjuun ja jäävän puuston kasvatuksen kannattavuus kolmessa esimerkkileimikossa

    Get PDF
    TutkimusartikkeliTutkimuksessa simuloitiin harvennushakkuu, optimoitiin lähikuljetus sekä ennustettiin jäävän puuston kehitys kolmessa, puustorakenteeltaan erilaisessa esimerkkileimikossa erilaisilla metsänkasvatusvaihtoehdoilla. Esimerkkileimikot kuvasivat monille kunnostusojituskohteille tyypillisiä vähäpuustoisia tai puustorakenteeltaan ryhmittäisiä suon osa-alueita. Puunkorjuun kannattavuutta selvitettiin leimikoille simuloitujen korjuuvaihtoehtojen avulla. Simuloimalla jäävän puuston myöhempi kehitys arvioitiin ensiharvennusvaiheen toimenpiteiden vaikutuksia metsänkasvatuksen kannattavuuteen pitkällä aikavälillä. Tulokset osoittivat, että puuston harventaminen kunnostus ojituksen yhteydessä ei aina ole edullisin ratkaisu. Harvennuksen myöhentäminen kunnostusojitus ajankohdasta 15–25 vuodella lisäsi oleellisesti harvennuksen ainespuukertymää ja paransi pitkän aikavälin tuotos- ja taloustulosta. Mikäli harvennus kuitenkin tehtiin kunnostusojituksen yhteydessä, voimakas kertaharvennus oli sekä puunkorjuun että pitkän aikavälin tuoton kannalta paras ratkaisu. Harvennuskertymien suureneminen alensi korjuukustannuksia vajaalla 10 prosentilla korjuukelpoisen vähimmäiskertymän tuottavaan harvennusvaihtoehtoon verrattuna. Liian voimakkaissa harvennuksissa, jäävän puuston määrän laskiessa alle asetuksessa säädetyn minimivaatimuksen, kasvutappiot lisääntyivät selvästi ja myös pitkän aikavälin taloustulos heikentyi. Metsänkasvatusvaihtoehtojen väliset erot tuotos- ja taloustuloksissa olivat pienimmillään karuimman kasvupaikan esimerkkileimikossa
    corecore