159 research outputs found

    Stem Cell Based Models in Congenital Hyperinsulinism - Perspective on Practicalities and Possibilities

    Get PDF
    Congenital hyperinsulinism (CHI) is a severe inherited neonatal disorder characterized by inappropriate insulin secretion caused by genetic defects of the pancreatic beta cells. Several open questions remain in CHI research, such as the optimal treatment for the most common type of CHI, caused by mutations in the genes encoding ATP-sensitive potassium channels, and the molecular mechanisms of newly identified CHI genes. Answering these questions requires robust preclinical models, particularly since primary patient material is extremely scarce and accurate animal models are not available. In this short review, we explain why pluripotent stem cell derived islets present an attractive solution to these issues and outline the current progress in stem-cell based modeling of CHI. Stem cell derived islets enable the study of molecular mechanisms of CHI and the discovery of novel antihypoglycemic drugs, while also providing a valuable model to study the biology of variable functional states of beta cells.Peer reviewe

    Maturation of beta cells : lessons from in vivo and in vitro models

    Get PDF
    The ability to maintain normoglycaemia, through glucose-sensitive insulin release, is a key aspect of postnatal beta cell function. However, terminally differentiated beta cell identity does not necessarily imply functional maturity. Beta cell maturation is therefore a continuation of beta cell development, albeit a process that occurs postnatally in mammals. Although many important features have been identified in the study of beta cell maturation, as of yet no unified mechanistic model of beta cell functional maturity exists. Here, we review recent findings about the underlying mechanisms of beta cell functional maturation. These findings include systemic hormonal and nutritional triggers that operate through energy-sensing machinery shifts within beta cells, resulting in primed metabolic states that allow for appropriate glucose trafficking and, ultimately, insulin release. We also draw attention to the expansive synergistic nature of these pathways and emphasise that beta cell maturation is dependent on overlapping regulatory and metabolic networks.Peer reviewe

    Generation of iPSC line HEL24.3 from human neonatal foreskin fibroblasts

    Get PDF
    Human iPSC line HEL24.3 was generated from healthy human foreskin fibroblasts using non-integrative reprogramming method. Reprogramming factors Oct3/4, Sox2, Klf4, and cMyc were delivered using Sendai viruses. (C) 2015 Elsevier B.V. All rights reserved.Peer reviewe

    Generation of iPSC line HEL47.2 from healthy human adult fibroblasts

    Get PDF
    Human iPSC line HEL47.2 was generated from healthy 83-year old male dermal fibroblasts using non-integrative reprogramming method. Reprogramming factors Oct3/4, Sox2, Klf4, and cMyc were delivered using Sendai viruses. (C) 2015 Elsevier B.V. All rights reserved.Peer reviewe

    In vitro beta-cell killing models using immune cells and human pluripotent stem cell-derived islets : Challenges and opportunities

    Get PDF
    Type 1 diabetes (T1D) is a disease of both autoimmunity and beta-cells. The beta-cells play an active role in their own demise by mounting defense mechanisms that are insufficient at best, and that can become even deleterious in the long term. This complex crosstalk is important to understanding the physiological defense mechanisms at play in healthy conditions, their alterations in the T1D setting, and therapeutic agents that may boost such mechanisms. Robust protocols to develop stem-cell-derived islets (SC-islets) from human pluripotent stem cells (hPSCs), and islet-reactive cytotoxic CD8(+) T-cells from peripheral blood mononuclear cells offer unprecedented opportunities to study this crosstalk. Challenges to develop in vitro beta-cell killing models include the cluster morphology of SC-islets, the relatively weak cytotoxicity of most autoimmune T-cells and the variable behavior of in vitro expanded CD8(+) T-cells. These challenges may however be highly rewarding in light of the opportunities offered by such models. Herein, we discuss these opportunities including: the beta-cell/immune crosstalk in an islet microenvironment; the features that make beta-cells more sensitive to autoimmunity; therapeutic agents that may modulate beta-cell vulnerability; and the possibility to perform analyses in an autologous setting, i.e., by generating T-cell effectors and SC-islets from the same donor.Peer reviewe

    Genome editing of human pancreatic beta cell models : problems, possibilities and outlook

    Get PDF
    Understanding the molecular mechanisms behind beta cell dysfunction is essential for the development of effective and specific approaches for diabetes care and prevention. Physiological human beta cell models are needed for this work. We review the possibilities and limitations of currently available human beta cell models and how they can be dramatically enhanced using genome-editing technologies. In addition to the gold standard, primary isolated islets, other models now include immortalised human beta cell lines and pluripotent stem cell-derived islet-like cells. The scarcity of human primary islet samples limits their use, but valuable gene expression and functional data from large collections of human islets have been made available to the scientific community. The possibilities for studying beta cell physiology using immortalised human beta cell lines and stem cell-derived islets are rapidly evolving. However, the functional immaturity of these cells is still a significant limitation. CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) has enabled precise engineering of specific genetic variants, targeted transcriptional modulation and genome-wide genetic screening. These approaches can now be exploited to gain understanding of the mechanisms behind coding and non-coding diabetes-associated genetic variants, allowing more precise evaluation of their contribution to diabetes pathogenesis. Despite all the progress, genome editing in primary pancreatic islets remains difficult to achieve, an important limitation requiring further technological development.Peer reviewe

    In vitro beta-cell killing models using immune cells and human pluripotent stem cell-derived islets: Challenges and opportunities

    Get PDF
    Type 1 diabetes (T1D) is a disease of both autoimmunity and β-cells. The β-cells play an active role in their own demise by mounting defense mechanisms that are insufficient at best, and that can become even deleterious in the long term. This complex crosstalk is important to understanding the physiological defense mechanisms at play in healthy conditions, their alterations in the T1D setting, and therapeutic agents that may boost such mechanisms. Robust protocols to develop stem-cell-derived islets (SC-islets) from human pluripotent stem cells (hPSCs), and islet-reactive cytotoxic CD8+ T-cells from peripheral blood mononuclear cells offer unprecedented opportunities to study this crosstalk. Challenges to develop in vitro β-cell killing models include the cluster morphology of SC-islets, the relatively weak cytotoxicity of most autoimmune T-cells and the variable behavior of in vitro expanded CD8+ T-cells. These challenges may however be highly rewarding in light of the opportunities offered by such models. Herein, we discuss these opportunities including: the β-cell/immune crosstalk in an islet microenvironment; the features that make β-cells more sensitive to autoimmunity; therapeutic agents that may modulate β-cell vulnerability; and the possibility to perform analyses in an autologous setting, i.e., by generating T-cell effectors and SC-islets from the same donor

    Long-Term Outcome and Treatment in Persistent and Transient Congenital Hyperinsulinism : A Finnish Population-Based Study

    Get PDF
    Context: The management of congenital hyperinsulinism (CHI) has improved. Objective: To examine the treatment and long-term outcome of Finnish patients with persistent and transient CHI (P-CHI and T-CHI). Design: A population-based retrospective study of CHI patients treated from 1972 to 2015. Patients: 106 patients with P-CHI and 132 patients with T-CHI (in total, 42 diagnosed before and 196 after year 2000) with median follow-up durations of 12.5 and 6.2 years, respectively. Main outcome measures: Recovery, diabetes, pancreatic exocrine dysfunction, neurodevelopment. Results: The overall incidence of CHI (n = 238) was 1:11 300 live births (1972-2015). From 2000 to 2015, the incidence of P-CHI (n = 69) was 1:13 500 and of T-CHI (n = 127) 1:7400 live births. In the 21st century P-CHI group, hyperinsulinemic medication was initiated and normoglycemia achieved faster relative to earlier. Of the 74 medically treated P-CHI patients, 68% had discontinued medication. Thirteen (12%) P-CHI patients had partial pancreatic resection and 19 (18%) underwent near-total pancreatectomy. Of these, 0% and 84% developed diabetes and 23% and 58% had clinical pancreatic exocrine dysfunction, respectively. Mild neurological difficulties (21% vs 16%, respectively) and intellectual disability (9% vs 5%, respectively) were as common in the P-CHI and T-CHI groups. However, the 21st century P-CHI patients had significantly more frequent normal neurodevelopment and significantly more infrequent diabetes and pancreatic exocrine dysfunction compared with those diagnosed earlier. Conclusions: Our results demonstrated improved treatment and long-term outcome in the 21st century P-CHI patients relative to earlier.Peer reviewe
    • …
    corecore