64 research outputs found

    Response of cathodoluminescence to crystal-plastic deformation in zircon

    Get PDF
    Geochemical and geochronological studies of zircon are commonly supplemented by cathodoluminescence (CL) imaging because it provides a means of recognizing different generations of zircon growth at high-spatial resolution. Crystal-plastic deformation of zircon can have significant effects on zircon geochemistry. Detailed analyses from electron backscatter diffraction mapping combined with panchromatic CL imaging and hyperspectral CL mapping of several crystal-plastically deformed grains from different geological settings are used to establish the relationships between crystal-plastic deformation and CL in zircon. Results show a strong spatial association between deformation microstructures and CL response that lead to modification of CL that commonly cross-cuts primary zoning. Variable contributions from two fundamental deformation-related processes result in a variety of CL characteristics: A defect control on panchromatic CL intensity, particularly at low-angle (subgrain) boundaries; and changes in spectral CL response due to deformation-related modification of CL-active REE geochemistry. A framework is provided for the recognition of deformation-related microstructures using CL and the usefulness of CL imaging in the discrimination of these microstructures is critically evaluated

    Nanoscale records of ancient shock deformation: Reidite (ZrSiO4) in sandstone at the Ordovician Rock Elm impact crater

    Get PDF
    The terrestrial record of meteorite impacts is difficult to decipher because unequivocal evidence of impact is increasingly destroyed with time by erosion, burial, and tectonics. Zircon survives these processes as a shocked mineral, and above 20 GPa transforms to reidite, a high-pressure ZrSiO4 polymorph diagnostic of impact. However, the utility of reidite has been limited by its occurrence; it has only been reported from three relatively young (<36 Ma) impact craters globally. Here we report a new occurrence of reidite in brecciated sandstone from the Ordovician Rock Elm impact crater in Wisconsin, United States. Electron backscatter diffraction mapping was used to identify reidite and microtwins within shocked zircons smaller than 50 µm in diameter. Reidite occurs both as 200–500-nm-wide lamellar intergrowths and as nanoparticulate grains, and not only provides the first diagnostic evidence for ultrahigh-pressure shock metamorphism at Rock Elm, but is also the oldest reported occurrence of reidite. Considering its small size, and the ubiquitous presence of detrital zircon in siliciclastic rocks, reidite may be more common in the rock record than has been reported but has potentially gone undetected. The recognition that nanoscale reidite can be preserved over deep time within zircon in shock-metamorphosed sandstone presents new opportunities for investigating Earth’s impact record, as it could potentially preserve nanoscopic evidence of impact events much older than the one that formed Rock Elm. Given that shocked zircons have been shown to survive sedimentary cycling, the identification of reidite within zircons in siliciclastic rocks could facilitate investigating the impact chronology over much of the geological time scale, as the oldest terrestrial minerals known are detrital zircons

    Quantitative characterization of plastic deformation of zircon and geological implications

    Get PDF
    The deformation-related microstructure of an Indian Ocean zircon hosted in a gabbro deformed at amphibolite grade has been quantified by electron backscatter diffraction. Orientation mapping reveals progressive variations in intragrain crystallographic orientations that accommodate 20° of misorientation in the zircon crystal. These variations are manifested by discrete low-angle (<4°) boundaries that separate domains recording no resolvable orientation variation. The progressive nature of orientation change is documented by crystallographic pole figures which show systematic small circle distributions, and disorientation axes associated with 0.5–4° disorientation angles, which lie parallel to rational low index crystallographic axes. In the most distorted part of the grain (area A), this is the [100] crystal direction. A quaternion analysis of orientation correlations confirms the [100] rotation axis inferred by stereographic inspection, and reveals subtle orientation variations related to the local boundary structure. Microstructural characteristics and orientation data are consistent with the low-angle boundaries having a tilt boundary geometry with dislocation line [100]. This tilt boundary is most likely to have formed by accumulation of edge dislocations associated with a 〈001〉{100} slip system. Analysis of the energy associated with these dislocations suggest they are energetically more favorable than TEM verified 〈010〉{100} slip. Analysis of minor boundaries in area A indicates deformation by either [01¯0] (001) edge, or [100](100) and [001](100) screw dislocations. In other parts of the grain, [11¯0] cross slip on (111), (111¯) and (112) planes seems likely. These data provide the first detailed microstructural analysis of naturally deformed zircon and indicate ductile crystal-plastic deformation of zircon by the formation and migration of dislocations into low-angle boundaries. Minimum estimates of dislocation density in the low-angle boundaries are of the order of ∼3.1010 cm−2. This value is sufficiently high to have a marked effect on the geochemical behavior of zircon, via enhanced bulk diffusion and increased dissolution rates. Therefore, crystal plasticity in zircon may have significant implications for the interpretation of radiometric ages, isotopic discordance and trace element mobility during high-grade metamorphism and melting of the crust

    Grenville Skarn Titanite: Potential Reference Material for Sims U–Th–Pb Analysis

    Get PDF
    We have investigated the homogeneity, chemical composition, structure, degree of radiation damage, and post-formation evolution of titanite crystals from skarns of the Grenville Province of the Canadian Shield using SHRIMP, TIMS, Raman and PL spectroscopy, EBSD, and EPMA–WDS. These results are used to assess the potential of the titanite as Reference Material (RM) for micro-analytical U–Th–Pb age dating. The SHRIMP data show that these megacrysts (5–31g) have concordant U–Pb isotope systematics, 60 to 500 ppm U, 120 to 1200 ppm Th , 206Pb/204Pb between 500 and 2500, ages of ~1 Ga, and excellent homogeneity at the scale of the analytical volume of the ion probe. The ID–TIMS titanite data for OLT1, OLT2 and TCB show that these crystals are essentially concordant. Data for OLT1 and OLT2 show slight scatter (i.e., in excess of that expected from the uncertainty in an individual analysis). For OLT1, one of seven analyses shows Pb loss or, possibly, a younger period of growth. Crystals OLT1 and OLT2 have respective TIMS concordia ages of 1014.8 ± 2.0 Ma (2s, n = 6, MSWD = 1.8) and 998.0 ± 4.5 Ma (2s, n = 3, MSWD = 3.3) for domains that have not lost Pb.The TIMS analyses of TCB are tightly clustered and give a concordia age of 1018.1 ± 1.7 Ma (2s, n = 4, MSWD = 0.92). Raman and PL spectra show a low to moderate degree of accumulated radiation-induced damage in the Grenville Skarn Titanite crystals and uniform internal distributions of this damage. The EDSB contrast images indicate little or no crystallographic misorientation. The EMPA–WDS data show that the outer 50–100 mm of the OLT1 and TCB crystals are enriched in Al and F, and depleted in Fe and Nb, when compared with the interior. In spite of the variation in composition and degree of radiation damage amongst samples, there are no identifiable matrix effects in our SHRIMP data. Some Grenville skarn titanite (GST) crystals have potential as RM for micro-analytical U–Th–Pb age dating. Crystal TCB has excellent homogeneity of U–Th–Pb isotopic composition. Crystals OLT1 and OLT2 have minor TIMS age heterogeneity. However, this heterogeneity is smaller than that of the Khan titanite, our current in-house titanite standard. Careful selection of analysis areas during SIMS, and of chips for TIMS analysis, allows high-quality isotopic data to be obtained from these large crystals of titanite

    Exploring the relative contribution of mineralogy and CPO to the seismic velocity anisotropy of evaporites

    Get PDF
    We present the influence of mineralogy and microstructure on the seismic velocity anisotropy ofevaporites. Bulk elastic properties and seismic velocities are calculated for a suite of 20 natural evaporate samples, which consist mainly of halite, anhydrite, and gypsum. They exhibit strong fabrics as a result of tectonic and diagenetic processes. Sample mineralogy and crystallographic preferred orientation (CPO) were obtained with the electron backscatter diffraction (EBSD) technique and the data used for seismic velocity calculations. Bulk seismic properties for polymineralic evaporites were evaluated with a rock recipe approach. Ultrasonic velocity measurements were also taken on cube shaped samples to assess the contribution of grain-scale shape preferred orientation (SPO) to the total seismic anisotropy. The sample results suggest that CPO is responsible for a significant fraction of the bulk seismic properties, in agreement with observations from previous studies. Results from the rock recipe indicate that increasing modal proportion of anhydrite grains can lead to a greater seismic anisotropy of a halite-dominated rock.Conversely, it can lead to a smaller seismic anisotropy degree of a gypsum-dominated rock until anestimated threshold proportion after which anisotropy increases again. The difference between thepredicted anisotropy due to CPO and the anisotropy measured with ultrasonic velocities is attributed to the SPO and grain boundary effects in these evaporites

    Deformation-related microstructures in magmatic zircon and implications for diffusion

    Get PDF
    An undeformed glomeroporphyritic andesite from Java, Indonesia, contains zoned plagioclase and amphibole glomerocrysts in a fine-grained groundmass and records a complex history of adcumulate formation and subsequent disaggregation by externally derived melts. A suite of xenocrystic zircon records Proterozoic and Archaean dates whilst a second population of zoned, euhedral, igneous zircon yields a SHRIMP crystallisation age of 9.3 0.2 Ma. Quantitative microstructural analysis (via electron backscatter diffraction - EBSD) show no deformation in the inherited xenocrysts, but intragrain orientation variations of up to c.30 in 80% of the young zircon population. These variations are typically accommodated by both progressive crystallographic bending and discrete low angle boundaries that overprint growth zoning. Dispersion of crystallographic orientations are dominantly by rotation about an axis parallel to the zircon c-axis [001], which is coincident with the dominant orientation of misorientation axes of adjacent analysis points in EBSD maps. Less common misorientation axes account for minor components of crystallographic dispersion. These observations are consistent with zircon deformation by dislocation creep and the formation of tilt and twist boundaries associated with the operation of {100} and {010} slip systems.The restriction of deformation microstructures to large glomerocrysts and the young magmatic zirconpopulation, and the absence of deformation within the host igneous rock and inherited zircon grains, indicatethat zircon deformation took place within a low-melt fraction (<5% melt), mid - lower crustal cumulate prior tofragmentation during magmatic disaggregation and entrainment of xenocrystic zircons during magmaticdecompression. Tectonic stresses within the compressional Sunda Arc at the time of magmatism are consideredto be the probable driver for low-strain deformation of the cumulate in the late stages of initial crystallisation.These results provide the first evidence of crystal plastic dislocation creep in zircon associated with magmatic crystallisation and indicate that the development of crystal-plastic microstructures in zircon is not restricted to high-strain rocks. Such microstructures have previously been shown to enhance bulk diffusion of trace elements (U, Th and REE) in zircon. The development of deformation microstructures, and therefore multiple diffusion pathways in zircon in the magmatic environment, has significant implications for the interpretation of geochemical data from igneous zircon and the trace element budgets of melts due to the potential enhancement of bulk diffusion and dissolution rates

    Interpreting U–Pb data from primary and secondary features in lunar zircon

    Get PDF
    In this paper, we describe primary and secondary microstructures and textural characteristics found in lunar zircon and discuss the relationships between these features and the zircon U–Pb isotopic systems and the significance of these features for understanding lunar processes. Lunar zircons can be classified according to: (i) textural relationships between zircon and surrounding minerals in the host breccias, (ii) the internal microstructures of the zircon grains as identified by optical microscopy, cathodoluminescence (CL) imaging and electron backscattered diffraction (EBSD) mapping and (iii) results of in situ ion microprobe analyses of the Th–U–Pb isotopic systems. Primary zircon can occur as part of a cogenetic mineral assemblage (lithic clast) or as an individual mineral clast and is unzoned, or has sector and/or oscillatory zoning. The age of primary zircon is obtained when multiple ion microprobe analyses across the polished surface of the grain give reproducible and essentially concordant data. A secondary set of microstructures, superimposed on primary zircon, include localised recrystallised domains, localised amorphous domains, crystal–plastic deformation, planar deformation features and fractures, and are associated with impact processes. The first two secondary microstructures often yield internally consistent and close to concordant U–Pb ages that we interpret as dating impact events. Others secondary microstructures such as planar deformation features, crystal–plastic deformation and micro-fractures can provide channels for Pb diffusion and result in partial resetting of the U–Pb isotopic systems

    Physical properties of Mesozoic sedimentary rocks from the Perth Basin, Western Australia

    Get PDF
    The Perth Basin (PB) hosts important aquifers within the Yarragadee Formation and adjacent geological formations with potential for economic exploitation by both geothermal energy and carbon capture and sequestration. Published studies on the reservoir quality of the sedimentary units of the PB are very few. This study reports some petrophysical and lithological characteristics of the sedimentary units of interest for geothermal and geosequestration scenarios and help interpolation toward non-sampled intervals. A new fluvial-dominated lithofacies scheme was developed for the Mesozoic stratigraphy from four wells drilled in the central PB (Pinjarra-1, Cockburn-1, Gingin-1 and Gingin-2) based on grainsize, sorting, sedimentary structures and colour that relate to the environment of deposition. Systematic laboratory measurements of permeability, porosity, and thermal conductivity were conducted on core samples to investigate a variety of lithofacies and depths from these wells. Empirical correlations are established among the different physical properties, indicating encouraging relationships for full PB basin interpolation such as between porosity and permeability, when the samples are grouped into ‘hydraulic units’ defined by a ‘flow zone indicator’ parameter. The common principal controls on the PB thermal conductivity are the pore space arrangement and mineralogical content, which are strongly lithofacies-specific. Therefore, the lithofacies type could be a good first-order discriminator for describing spatial variations of thermal conductivity and then estimate their flow zone indicator

    Bunbury Basalt: Gondwana breakup products or earliest vestiges of the Kerguelen mantle plume?

    Get PDF
    © 2016 Elsevier B.V. In this contribution, we investigate the role of a mantle plume in the genesis of the Bunbury Basalt using high-precision 40Ar/39Ar geochronology and whole-rock geochemistry, and by using crustal basement thickness of the eastern Indian Ocean and the western Australian continent. The Bunbury Basalt is a series of lava flows and deep intrusive rocks in southwestern Australia thought to be the earliest igneous products from the proto-Kerguelen mantle plume. Nine new plateau ages indicate that the Bunbury Basalt erupted in three distinct phases, at 136.96±0.43 Ma, 132.71±0.43 Ma and 130.45±0.82 Ma. All Bunbury Basalt samples are enriched tholeiitic basalts with varying contributions from the continental lithosphere that are similar to other Kerguelen plume-products. Based on plate reconstructions and the present geochronological constraints, the eruption of the oldest Bunbury Basalt preceded the emplacement of the Kerguelen large igneous province by at least 10-20 m.y. Such age differences between a precursor and the main magmatic event are not uncommon but do require additional explanation. Low crustal stretching factors beneath the Bunbury Basalt (ߘ1.4) indicate that decompression melting could not have been generated from asthenospheric mantle with a normal chemistry and geotherm. An elevated geotherm from the mantle plume coupled with the geochemical similarity between the Bunbury Basalt and other Kerguelen plume-products suggests a shared origin exists. However, new age constraints of the oldest Bunbury Basalt are synchronous with the breakup of eastern Gondwana and the initial opening of the Indian Ocean at ca. 137-136 Ma, which may mean an alternative explanation is possible. The enriched geochemistry can equally be explained by a patch of shallow mantle beneath the southern Perth Basin. The patch may have been enriched during Gondwana suturing at ca. 550-500 Ma, during early rifting events by magmatic underplating or by intruded melts into the subcontinental lithospheric mantle. This enriched geochemical signature would then be sufficient to trigger decompression melting from passive rifting between Greater India and Australia with no contribution from the Kerguelen hotspot. We conclude that although the proto-Kerguelen hotspot is certainly a possible explanation for the genesis of the Bunbury Basalt, decompression melting of an enriched patch of subcontinental lithospheric mantle is an alternative theory

    Thermal history recorded by the Apollo 17 impact melt breccia 73217

    Get PDF
    Lunar breccia 73217 is composed of plagioclase and pyroxene clasts originating from a single gabbronorite intrusion, mixed with a silica-rich glass interpreted to represent an impact melt. A study of accessory minerals in a thin section from this breccia (73217,52) identified three different types of zircon and anhedral grains of apatite which represent distinct generations of accessory phases and provide a unique opportunity to investigate the thermal history of the sample. Equant, anhedral zircon grains that probably formed in the gabbronorite, referred to as type-1, have consistent U?Pb ages of 4332 7 Ma. A similar age of 4335 5 Ma was obtained from acicular zircon (type-2) grains interpreted to have formed from impact melt. A polycrystalline zircon aggregate (type-3) occurs as a rim around a baddeleyite grain and has a much younger age of 3929 10 Ma, similar to the 3936 17 Ma age of apatite grains found in the thin section. A combined apatite-type-3 zircon age of 3934 12 Ma is proposed as the age of the Serenitatis impact event and associated thermal pulse. X-ray mapping andelectron probe analyses showed that Ti is inhomogeneous in the zircon grains on the sub-micrometer scale. However, model temperatures estimated from SHRIMP analyses of Ti-concentration in the 10 lm diameter spots on the polished surfaces of type-1 and type-2 zircons range between about 1300 and 900 C respectively, whereas Ti-concentrations determined for the type-3 zircon are higher at about 1400?1500 C. A combination of U?Pb ages, Ti-concentration data and detailed imaging and petrographic studies of the zircon grains shows that the gabbronorite parent of the zircon clasts formed shortly before the 4335 5 Ma impact, which mixed the clasts and the felsic melt and projected the sample closer to the surface where fast cooling resulted in the crystallization of acicular zircon (type-2). The 3934 12 Ma Serenitatis event resulted in partial remelting of the glass and formation of polycrystalline zircon (type-3). This event also reset the U?Pb system of apatite, formed merrillite coronas around some apatite grains, and probably re-equilibrated some pyroxenes in the clasts. Although there have been arguments for pre-3.9 Ga impacts based on other types of samples, the age of the acicular zircon at 4335 5 Ma provides the first evidence of impact melt significantly predating the lunar cataclysm. Our data, combined with other chronological results, demonstrate the occurrence of pre-3.9 Ga impacts on the Moon and suggest that the lunar impact history consisted of a series of intense bombardment episodes interspersed with relatively calm periods of low impact flux
    • …
    corecore