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Abstract 13 

Geochemical and geochronological studies of zircon are commonly supplemented by 14 

cathodoluminescence (CL) imaging because it provides a means of recognizing 15 

different generations of zircon growth at high spatial resolution. Crystal-plastic 16 

deformation of zircon can have significant effects on zircon geochemistry. Detailed 17 

analyses from electron backscatter diffraction mapping combined with panchromatic 18 

CL imaging and hyperspectral CL mapping of several crystal-plastically deformed 19 

grains from different geological settings are used to establish the relationships 20 

between crystal-plastic deformation and CL in zircon. Results show a strong spatial 21 

association between deformation microstructures and CL response that lead to 22 

modification of CL that commonly cross-cuts primary zoning. Variable contributions 23 

from two fundamental deformation-related processes result in a variety of CL 24 

characteristics: A defect control on panchromatic CL intensity, particularly at low-25 

angle (subgrain) boundaries; and changes in spectral CL response due to deformation-26 

related modification of CL-active REE geochemistry. A framework is provided for 27 

the recognition of deformation-related microstructures using CL and the usefulness of 28 

CL imaging in the discrimination of these microstructures is critically evaluated.  29 

 30 
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1. Introduction 36 

Panchromatic cathodoluminescence (PCL) imaging commonly supplements a range 37 

of studies of zircon (ZrSiO4) because it is a rapid, high-spatial resolution means of 38 

recognizing fine scale intragrain growth zoning and recrystallisation textures, and 39 

provides a framework for the interpretation of geochronological and geochemical 40 

analyses (Corfu et al., 2003; Geisler et al., 2003; Hanchar and Miller, 1993; Hanchar 41 

and Rudnick, 1995; Hoskin, 2000; Hoskin and Black, 2000; Pidgeon, 1992; Vavra, 42 

1990). The phenomenon of CL in crystalline solids is caused by the emission of 43 

radiation as electrons excited by external irradiation (such as visible light or an 44 

electron beam) return to their lower energy ground states. Cathodoluminescence in 45 

minerals is typically activated by substitutional trace elements with equivalent valence 46 

states at specific sites in the crystal lattice (Pagel et al., 2000). Many of the factors 47 

that contribute to the CL signal of zircon are well established. Studies of natural and 48 

synthetic zircon show that the presence of various CL-active impurity ions, such as 49 

trivalent rare earth elements (REE3+), causes narrow luminescence emission peaks at 50 

characteristic wavelengths (Table 1) (Blanc, 2000; Cesbron et al., 1995; Nasdala et 51 

al., 2002; Nasdala et al., 2003; Remond et al., 1992). In natural zircon, narrow REE 52 

peaks are commonly superimposed on a broad emission peak (Table 1). The origin of 53 

so-called ‘broadband’ CL is not well understood and has been attributed to point 54 

defects (Koschek, 1993), OH- defects (Remond et al., 1992), or defects within the 55 

silica tetrahedra (Kempe et al., 2000). The sum of all of the luminescence bands gives 56 

the integrated intensity seen in panchromatic CL images. 57 

Crystal defects, such as structural disorder associated with radiation damage, have 58 

been shown to suppress CL intensity in zircon (Geisler and Pidgeon, 2001; Nasdala et 59 
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al., 2002), because the presence of crystal defects proximal to CL-activator elements 60 

changes the crystal field symmetries and can lead to non-luminescence (Geisler and 61 

Pidgeon, 2001; Geisler et al., 2001).  62 

Recent studies show that zircon can deform by crystal-plasticity at crustal conditions 63 

(Reddy et al., 2007) and that deformation-related microstructures and/or associated 64 

chemical changes may modify CL signal (Reddy et al., 2007; Reddy et al., 2006; 65 

Timms et al., 2006). However, the relationships between CL and deformation-related 66 

microstructures are not well documented and remain poorly understood. This paper 67 

utilizes panchromatic CL imaging and hyperspectral CL mapping of several examples 68 

of deformed zircon grains from different geological settings to characterize the range 69 

of responses to crystal-plastic deformation. In so doing the potential use of CL 70 

imaging for the reliable identification of plastic deformation is assessed. This is the 71 

first detailed study of the effects of deformation on the CL characteristics of zircon. 72 

 73 

2. Sample characteristics 74 

Five zircon grains were selected to illustrate a variety of effects of different styles of 75 

crystal-plastic deformation on zircon CL response. Three grains come from ultramafic 76 

and mafic rocks including an Archaean pyroxenite from NW Scotland (GST15), an 77 

Indian Ocean gabbroic mylonite (IOZ), and a mantle xenolith from the Udachnaya 78 

kimberlite, Siberia (UX), and two grains are from an undeformed andesite from Java 79 

(Fig. 1; Table 2). The general paucity of zircons in pyroxenites, mantle xenoliths and 80 

mafic rocks means that, when present, they can provide important constraints on 81 

geological processes and increased emphasis is placed on geochronological and 82 

geochemical data from these grains. Therefore, it is critical to be able to identify and 83 
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interpret deformation microstructures and their CL response to correctly interpret 84 

geochronological and geochemical information from such samples.  85 

Sample GST15 is one of several large (c.12.5 mm long), subhedral, deformed zircon 86 

grains from the margin of a syntectonic pyroxenite intrusion (Kinny and Friend, 1997) 87 

(Fig. 1a). The grain was crystal-plastically deformed soon after crystallization, 88 

probably during regional amphibolite-facies Inverian metamorphism (Timms et al., 89 

2006). IOZ is a single magmatic zircon hosted in a deformed gabbro recovered from 90 

Ocean Drilling Program Leg 735B drilled at the Atlantis II slow spreading ridge in the 91 

Indian Ocean (Dick et al., 2000). The grain is within a 1cm-wide amphibolite-facies 92 

shear zone predominantly composed of recrystallised plagioclase and magnetite 93 

(Reddy et al., 2007) (Fig. 1b). Grain UX is an anhedral zircon, the largest (>900μm 94 

long) grain in a zircon-rich zone of a partially metasomatised garnet websterite mantle 95 

xenolith (U2268) from the Udachnaya kimberlite, Siberia (Fig. 1c). Udachnaya 96 

peridotite xenoliths preserve assemblages with a range of mantle PT conditions from 97 

750-1380°C and ~75-210 km depth, (Boyd et al., 1997). The grains from ultramafic 98 

and mafic rocks were originally selected for study for their large size allowing 99 

multiple in-situ ion probe analyses to facilitate quantitative comparison with 100 

deformation microstructures, which is not presented here. 101 

The two grains from an undeformed, Miocene porphyritic andesite from the Ponorogo 102 

district of East Java (sample Jhs2PON4 of Smyth et al. (2007)), are more akin to 103 

zircon routinely analysed for geochronology and/or geochemistry. Two grains are 104 

from a population of euhedral magmatic zircon grains with a weighted mean 105 

207Pb/206Pb crystallisation age of 9.3 ± 0.2 Ma (Reddy et al., 2008b). Approximately 106 

80% of the population preserve crystal-plastic deformation microstructures, and the 107 

grains (5 and 8 of Reddy et al. (2008b)) are representative of the style of deformation 108 
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found in the zircon. The host rock contains plagioclase and hornblende phenocrysts 109 

and glomerocrysts in a fine groundmass. Deformation of the zircons occurred within a 110 

magma chamber during a low melt fraction cumulate stage before later disaggregation 111 

by melt rejuvenation (Reddy et al., 2008b). 112 

 113 

3. Analytical Procedure 114 

Zircon grains from GST15 and Jhs2PON4 were separated from crushed rock samples 115 

using magnetic and methylene iodide liquid separation, then mounted in epoxy resin 116 

and polished to approximately half their thickness. For samples IOZ and UX, 117 

petrographic thin sections were progressively polished down to 0.25μm diamond 118 

paste. All of the samples were given a further polish with 0.06μm colloidal silica 119 

NaOH suspension (pH 9.8) on a Buehler Vibromet II polisher. Colloidal silica 120 

polishing times varied between samples from 2-6 hours. A carbon coat was applied 121 

prior to CL imaging. For EBSD analysis, previous coats were removed by further 122 

polishing (<30 minutes) with colloidal silica, and a light C-coat (c. 2 nm thick) was 123 

applied to reduce the effects of charging under the electron beam but maintain a 124 

strong EBSD signal. EBSD map data were collected using the SEM facilities at the 125 

Microstructural Analysis Facility, Curtin University, part of the Nano-scale 126 

Characterization Centre, WA, except EBSD mapping of IOZ which was collected 127 

using a Philips XL30 FEG SEM at the University of Adelaide, South Australia. EBSD 128 

data were acquired using a Nordlys 1 detector with 20kV accelerating voltage, 20mm 129 

working distance, spot size ~0.5μm, and tilt of 70°. Settings for electron backscatter 130 

pattern (EBSP) collection are given in Table 3 following Reddy et al. (2008a). EBSPs 131 

were indexed to theoretical reflector files generated via Channel 5 Twist software 132 
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using structural data for zircon that include Oxford Instruments (HKL Technology 133 

Ltd.) “Best in Family” default zircon phase, and zircon at 1 atmosphere and 9.8 GPa 134 

from Hazen and Finger (1979), equivalent to zircon [2] and zircon [3] from the 135 

Mincryst crystallographic database (Chichagov et al., 2001; Reddy et al., 2008a) 136 

(Table 3). All EBSD data were processed using Oxford Instruments Channel 5.9 137 

software with a variety of settings and parameters (Table 3). The raw EBSD data were 138 

processed using the noise reduction procedure described by Reddy et al. (2007) 139 

(Table 3). Visual comparison of the processed data with original data shows that no 140 

significant artefacts were generated through noise reduction. Misorientation analysis 141 

involves determination of the angle/axis pair that describes the minimum 142 

misorientation between two differently oriented structures (Wheeler et al., 2001). 143 

Minimum misorientation is commonly referred to in materials science literature as 144 

‘disorientation’ and is referred to herein simply as ‘misorientation’. Cumulative 145 

misorientation maps were generated by colouring each pixel for misorientation from a 146 

user-defined reference orientation of the grain, and show absolute orientation 147 

variations within a grain (Reddy et al., 2008b). The boundaries between adjacent data 148 

points with different misorientation angles (0.5-1˚, 1-2˚, >2˚) were plotted as solid 149 

lines, superimposed on cumulative misorientation maps, to show the orientation 150 

boundary microstructure. Misorientation axis maps were produced by colour 151 

assignment to low-angle (>0.5˚) boundaries for their misorientation axis orientation 152 

within the (user defined) sample x-y-z reference frame. In these maps, adjacent 153 

subgrains that have misorientation axes parallel to x, y, or z have red, green or blue 154 

boundaries, respectively. A constant colour along the length of a boundary indicates 155 

consistency in the axis geometry. 156 
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Panchromatic CL images were collected using a CCD-Si collector mounted on a 157 

Philips XL30 SEM at Curtin University of Technology with 10kV accelerating 158 

voltage, spot size of ~0.5μm and 15mm working distance. Hyperspectral CL maps of 159 

each grain were acquired by automated collection of CL spectra at nodes on a user-160 

defined grid using a 2049-element linear spectrometer/CCD-Si mounted on a Jeol 161 

JXA8200 microprobe at the Advanced Analytical Centre, James Cook University, 162 

Townsville, Australia. The accelerating voltage was 20kV, with the minimum spot 163 

size (~1μm) and 100nA probe current. Instrument sensitivity is 86 photons/count and 164 

has a spectral range of 331.4 to 1826.9 nm. A grating of 300 lines/mm and blaze 165 

width of 500 nm were used. The setting details for individual maps are given in Table 166 

3. Trichromatic CL maps were produced from wavelength CL data by assignment of 167 

narrow wavelength ranges to three colour channels. Spectral windows at 390-410, 168 

540-560 and 595-620 nm encompass common dominant peaks for Er3+, Tb3+ and Eu3+ 169 

plus Sm3+ in zircon, respectively, and have been chosen to highlight relative changes 170 

in HREE through MREE. The data were managed through XCLent operating software 171 

(MacRae et al., 2005). 172 

 173 

4. Results 174 

4.1 Microstructure Characteristics 175 

All of the samples analysed in this study preserve microstructures with similar 176 

characteristics that include orientation variations accommodated by a combination of 177 

both progressive bending of the lattice and discrete (<1μm wide) low-angle (generally 178 

<10˚) boundaries (Figs 2-6). These microstructures are commonly heterogeneously 179 

distributed across each grain, and not limited to the grain margins. The total 180 
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cumulative misorientation varies across each grain from ~10˚ (Fig. 5a) to ~23˚ (Fig. 181 

6c). The most misoriented domains in the Jhs2PON4 grains are within the grain 182 

interior, whereas they are generally towards the grain edge in the other examples. 183 

Detailed accounts of the microstructural characteristics of GST15 and IOZ are given 184 

by Timms et al., (2006) and Reddy et al. (2007) respectively, and are summarized 185 

briefly here. 186 

 187 

The appearance and geometry of low-angle boundary microstructure also varies from 188 

sample to sample (Figs 2b, 4b, 5b, 6e, f). Boundaries in IOZ are sub-parallel and form 189 

deformation ’bands’, whereas boundaries in the other samples form polygonal 190 

networks that subdivide the zircon into ‘subgrains’ with relatively consistent internal 191 

orientations (e.g., Figs 2a, 3, 5b, 6c, d). The size of orientation sub-domains is 192 

variable within and between individual samples, and is typically 5-150 µm. In all 193 

cases, a hierarchy of orientation boundaries is present with numerous boundaries that 194 

accommodate low misorientation angles (<1.5˚) and comparatively few higher-angle 195 

(<10˚) boundaries (Fig. 7). Where low-angle boundaries do not intersect other 196 

boundaries or the grain edge, they dissipate into wider domains of orientation 197 

variation. 198 

 199 

Stereographic analysis of crystallographic pole orientations for each data point of the 200 

EBSD maps shows gradual, cumulative dispersion of crystallographic axes that are 201 

consistent with the orientation variations shown by the cumulative misorientation 202 

maps. IOZ shows a simple dispersion about a single <100> direction (Fig. 8b). GST 203 

15, UX and grain 8 from Jhs2PON4 show complex dispersion patterns that are 204 

dominated by combinations of <001> and <100> rotation axes (Fig 8a, c, e), whereas 205 
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the dispersion of crystallographic poles in grain 5 from Jhs2PON4 is dominated by a 206 

single rotation about the <001> direction (Fig.8d). The misorientation axes describing 207 

the geometrical coincidence between adjacent data points are systematically aligned 208 

in similar orientations to the dominant rotation axes that account for the 209 

crystallographic dispersion patterns (Fig. 8). Importantly, additional clusters of 210 

misorientation axes are identifiable for samples that show complex dispersion 211 

patterns. In most cases, these minor populations of axes are also parallel with low-212 

index directions. For example, two discrete minor clusters of 2-4˚ data in GST15 align 213 

with {111} and {011} poles respectively (Fig. 8bi) and correspond with two different 214 

low-angle boundaries (Fig. 2b). In UX, 2-5˚ misorientation axes cluster at or near 215 

{100} poles, whereas 1-2˚ misorientation axes form several clusters that align with 216 

higher-index directions in zircon, and tend to be aligned along the {001} and {010} 217 

planes (Fig. 8c). The two Jhs2PON4 grains show systematic alignment of higher-218 

angle misorientation axes with low-index directions, and a minor component of 1-5˚ 219 

misorientation axes clustering at higher-index positions (Fig. 8d-e). 220 

 221 

4.2 Cathodoluminescence 222 

Each grain has different CL characteristics in both panchromatic CL images and 223 

wavelength CL maps (Figs 2c,d, 4c, d, 5c, d, 6g, j). The GST15 grain is largely 224 

uniform with no oscillatory zoning in panchromatic CL, with a broad decrease in CL-225 

intensity toward the grain edge (Fig. 2c, 3b). This pattern is disrupted by a complex 226 

network of CL-dark bands (Figs 2c, 3b). Typically, the borders of the dark CL bands 227 

are diffuse, with CL gradients away from the bands, and the bands tend to terminate 228 

into broader dark CL areas where they do not link with other bands (Figs 2c, 3b). 229 

Narrow (up to 20μm wide) zones of bright CL sharp edges transect the grain and cut 230 
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across the network of dark CL signal and probably represent healed fractures. The 231 

network of dark CL bands and bright CL domains is cut by sets of brittle fractures. 232 

Hyperspectral CL mapping shows that the CL signal of the centre of the host ‘low 233 

strain’ zircon is dominated by a broad peak centred at ~550 nm with minor peaks at 234 

~500 and ~600 nm (Fig. 9b). The spectral variations that define the dark bands are 235 

caused by panchromatic reduction of CL emission without shifts in the relative 236 

intensity of different peaks (Fig. 9b).  237 

 238 

Panchromatic CL imaging of IOZ shows fine-scale oscillatory growth zoning 239 

characteristic of igneous zircon (Fig. 4c). The CL intensity contrast between the 240 

oscillatory bands is reduced in the deformed region of the grain such that the strong 241 

zoning is replaced by mid grey CL emission where the zoning is barely visible. This is 242 

overprinted by discrete, narrow (~1μm) darker bands that are oblique to oscillatory 243 

growth zoning (Fig. 4c). Hyperspectral CL data reveals that the region with reduced 244 

contrast in oscillatory zoning corresponds to a shift in the wavelength characteristics 245 

of CL emission. Spectral analysis of the grain centre shows a broad peak centred at 246 

~400nm with minor peaks superimposed at ~420nm, ~470nm, ~550nm and ~600nm 247 

(Figs 4d, 9a). In comparison, CL spectra from the reduced contrast domain show a 248 

similar general form but with decreased luminescence at ~400nm and ~470nm, and 249 

increased intensity of peaks at ~550nm and ~600nm. 250 

 251 

The UX grain does not show oscillatory or sector zoning in panchromatic CL, and 252 

heterogeneously developed CL-dark bands cross-cut a uniform CL pattern (Fig. 5d). 253 

UX has a broad spectral peak centred at ~470nm with superimposed fine structure at 254 

~430, 500, 550 and 600 nm (Fig. 9c). The CL spectra from the dark bands have peaks 255 
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at the same wavelengths with the same relative magnitudes as the adjacent domains, 256 

and differ only in panchromatic intensity (Figs 5d, 9c). This CL texture is disrupted 257 

by very subtle, discrete linear features (up to a few microns wide) revealed by 258 

wavelength CL that commonly track along the dark bands, and in other places transect 259 

the microstructure (Fig. 5d). Spectral analysis shows that the CL-bright features are 260 

caused by a decrease in the 475 nm peak and a relative increase in peak intensities at 261 

~550 nm and ~605 nm. 262 

 263 

The zircon grains from Jhs2PON4 have euhedral, bright CL cores with strongly 264 

oscillatory zoned rims in panchromatic CL (Fig. 6g-h). The cores are not oscillatory 265 

zoned and contain diffuse curvilinear substructures that do not continue into the rims. 266 

Localized disruption of the CL pattern in the cores and rims is visible in panchromatic 267 

CL. Blocks of rotated and distorted zoning rimmed by dark CL boundaries coincide 268 

with the position of sub-domains bound by orientation boundaries identified by EBSD 269 

(Fig. 6). The CL spectra of Jhs2PON4 grains are dominated by a broad, asymmetric 270 

peak centred at ~400 nm, with narrow minor peaks superimposed on the long 271 

wavelength tail at ~500, ~550 and ~605 nm (Fig. 9d-e). CL contrast of primary 272 

oscillatory zoning in the undisturbed parts of the grain is generated by panchromatic 273 

CL intensity variations rather than shifts in the spectral response. Hyperspectral CL 274 

mapping reveals that discrete domains of high local misorientation that cross-cut the 275 

primary growth zoning locally show a significant spectral shift with a relative increase 276 

of the 500, 550 and 605 nm peaks over peaks at lower wavelengths (Figs 6g-h, 9d-e). 277 

 278 
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5. Discussion 279 

5.1 Explanation of Orientation Variations 280 

In all samples, the orientation variations identified by EBSD mapping are 281 

accommodated by a combination of progressive orientation change and discrete low 282 

angle boundaries, most commonly with systematic low-index crystallographic 283 

relationships. These microstructures do not have surface topographic expression and 284 

do not correspond to visible fractures identified using optical microscopy (with the 285 

exception of a complex zone in GST 15 shown in Fig. 2). These characteristics are 286 

consistent with the formation and migration of dislocations through the crystal 287 

structure, i.e., dislocation creep and subsequent recovery (Reddy et al., 2007; Reddy 288 

et al., 2006; Timms et al., 2006), rather than by brittle fracture (Boullier, 1980; Rimsa 289 

et al., 2007; Steyrer and Sturm, 2002) or solid-state recrystallisation (Hoskin and 290 

Black, 2000). The data show that crystal-plastic deformation microstructures can 291 

affect significant areas of the grains and are not always located at the tips or localized 292 

at the grain margins. 293 

 294 

Low-angle boundaries are formed during dislocation creep by the accumulation of 295 

dislocations into boundary planes to accommodate the progressive bending of a 296 

crystal lattice and minimise defect energy of the lattice, and their geometry is a direct 297 

consequence of the geometry of contributory slip system(s) (Boyle et al., 1998; Lloyd 298 

et al., 1997; Prior et al., 2002). This allows the slip system associated with a particular 299 

dislocation geometry to be determined by utilizing a simple geometric model that 300 

relates the low-angle boundary orientation and misorientation axis to the Burgers 301 

vector and slip plane (Prior et al., 2002; Reddy et al., 2007). The analysis of 302 

misorientation axes and low-angle boundary geometry shows that zircon grains 303 
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contain a variety of dislocation geometries, which indicate that zircon can deform by 304 

several slip systems, even within a single grain. Analysis of the grains indicates the 305 

operation of the two main slip systems <100> {001} and <001> {100} (and 306 

symmetric equivalents), both of which are known slip systems for zircon (Leroux et 307 

al., 1999; Reddy et al., 2007; Timms et al., 2006). Boundaries with misorientation 308 

axes that coincide with higher index directions, such as <011> and <111> in GST15, 309 

or <012> in Jhs2PON4 grain 5, are less common and are a consequence of higher 310 

index slip systems, or a result of combinations of different slip systems at a scale that 311 

cannot be resolved by the EBSD data (Reddy et al., 2007).  312 

 313 

5.2 The effects of crystal-plastic deformation on cathodoluminescence in zircon 314 

5.2.1 Spatial relationship between deformation microstructure and CL textures 315 

In all of the studied samples the effects of crystal-plastic deformation is reflected in 316 

CL, with textures that cross cut, disrupt and/or overprint primary growth features. 317 

However, the exact response of CL to crystal-plastic deformation is varied, and 318 

attributed to two phenomenon – panchromatic reduction in CL response and spectral 319 

shifts in the CL response. Additional complexity can be seen in GST15 where new, 320 

CL-bright zircon has grown along a domain of crystal-plastic and brittle deformation, 321 

either by solid state recystallisation driven by lattice strain energy, or growth into 322 

open fracture porosity (Fig. 2). 323 

 324 

5.2.2 Panchromatic reduction in CL response – the effect of structural defects 325 

The localized low-luminosity domains associated with low-angle boundaries are 326 

interpreted to result from secondary modification of CL due to crystal-plastic 327 

processes. The presence of discrete low-angle boundaries implies that the adjacent 328 



 15

crystal volume has been swept by a population of dislocations. At high temperatures 329 

where this process is efficient, these volumes have a relatively low dislocation 330 

density, whereas low-angle boundaries have a significantly higher ’geometrically 331 

necessary’ dislocation density. The accumulation of dislocations into low-angle 332 

boundaries lowers the strain energy of the surrounding crystal volume. Localised loss 333 

of CL response at low-angle boundaries suggests that high dislocation densities within 334 

low-angle boundary regions has led to short range disorder and disruption of CL-335 

active impurity site symmetry. Both of these factors have been proposed to 336 

significantly affect CL in ‘undeformed’ zircon (Blanc, 2000; Cesbron et al., 1995; 337 

Geisler and Pidgeon, 2001). Boundary misorientation angle seems to have a greater 338 

effect on loss of CL response than specific slip system geometry, with the darkest 339 

domains corresponding with the highest angle boundaries (Fig. 3).  340 

The pattern of progressive reduction of panchromatic CL signal developed broadly 341 

around low-angle boundaries in GST15 and UX suggests that the migration of 342 

dislocations into low-angle boundaries was not efficient. In contrast, the JhsPON4 343 

grains tend to have sharply localized reduction in CL response at low-angle 344 

boundaries, and IOZ shows virtually no low-angle boundary effect, perhaps as a 345 

consequence of efficient dislocation glide and climb (Fig 3). Asymmetrically 346 

developed patterns of reduced panchromatic CL is observed around some of the low-347 

angle boundaries in GST15 and UX and could reflect low-angle boundary mobility, 348 

where zircon with modified CL response occurs in the trail behind advancing 349 

boundaries (Figs 2, 3, 5). Alternatively, this pattern could be a consequence of beam 350 

interaction with low-angle boundaries at shallow angles to the polished surface, in 351 

agreement with escape depth (activation volume) of CL which is generally 352 
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significantly larger than for EBSD, secondary and backscattered electrons (Kempe et 353 

al., 2000; Nasdala et al., 2004). 354 

 355 

Timms et al. (2006) demonstrated that enrichment of U and Th can occur at low-angle 356 

boundaries due to the creation of enhanced-diffusivity pathways. Although the 357 

presence of U and Th does not cause CL loss, the accumulated microstructural 358 

damage due to α-decay over time could locally suppress panchromatic CL intensity. 359 

However, the maximum accumulated α-doses calculated for the young and U-Th poor 360 

zircon in this study are low, even for the most U- and Th-enriched domains in GST 15 361 

(6.53 x108 events/mg, after Murakami et al. (1991)) and are unlikely to have 362 

suppressed CL. Radiation damage related loss of CL response in other deformed 363 

samples depends on factors such as the concentration of U and Th, timing of 364 

enrichment, the thermal (annealing) history of the zircon. 365 

 366 

5.2.3 Spectral shifts in CL signal – geochemical effects 367 

Hyperspectral CL mapping shows narrow emission peaks at known wavelengths for 368 

REE3+ suggesting that these and other CL-active trace elements are present in the 369 

analyzed samples. Detectable peaks correspond to the following CL-active REE3+ in 370 

each sample: Er3+, Dy3+, Tb3+, Sm3+ Eu3+ in IOZ and UX; Dy3+, Tb3+, Sm3+ Eu3+ in 371 

GST15; and Er3+, Tb3+, Sm3+ Eu3+ in the Jhs2PON4 grains. Localized differences in 372 

CL emission wavelengths associated with crystal-plastic deformation microstructures 373 

occur in all except one sample. A change in the relative intensity of REE3+ emission 374 

peaks is interpreted to reflect changes in the relative concentration of different CL-375 

active REE3+. This interpretation has been verified by quantitative ion microprobe 376 

analysis of IOZ which records a bulk increase in all REE3+, and a preferential increase 377 
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in middle over heavy REE3+ with deformation (Reddy et al., 2006). However, 378 

calibration of CL spectra to quantify ionic concentrations is not possible due to non-379 

unique solutions for the deconvolution of CL spectra, primarily arising from 380 

interference from different peaks, unknown orientation effects, the competing effect 381 

of structural integrity, and instrumental factors such as spectrometer response 382 

corrections. Even so, a similar pattern of relative intensification of middle REE3+ 383 

peaks (e.g., Sm3+, Eu3+, Tb3+) over heavy REE3+ (e.g., Er3+) implies middle REE 384 

enrichment in deformed zones in all except one example, and indicates that 385 

wavelength modification could be a common phenomenon that accompanies crystal-386 

plastic deformation (Fig. 9). Such changes in zircon composition are best explained 387 

by enhanced diffusion associated with the development of crystal-plastic deformation 388 

microstructures. Reddy et al. (2006) report REE diffusion distances associated with 389 

crystal-plastic high diffusivity pathways in IOZ that are 105 greater than those 390 

expected from experimentally-derived, volume diffusion parameters (Cherniak et al., 391 

1997). The spatial extent to which REE composition has been modified is shown by 392 

the trichromatic wavelength CL maps and varies between the samples (Figs 1, 3-5). In 393 

IOZ, the modified domain encompasses all of the deformed area and is not limited to 394 

low-angle boundaries. In contrast, REE modification in Jhs2PON4 grains is restricted 395 

to low-angle boundaries and domains of high local misorientation. In UX, REE 396 

enrichment is most pronounced along the low-angle boundary network, with 397 

additional patchy modification in the deformed domain that is not related to the 398 

current position of low-angle boundaries.  399 

 400 

Although the results of this study suggest that deformation-related REE modification 401 

could be a common process, little is known about the diffusion characteristics of 402 
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crystal-plastic deformation microstructures in zircon. The enrichment of middle over 403 

heavy REEs in modified zircon could be a product of the chemical reservoir for 404 

exchange and/or differences in diffusivity between REEs due to ionic radii variations 405 

in a similar way to empirically derived diffusion parameters (e.g., the activation 406 

energy, E, and diffusion coefficient, D0) for volume diffusion (Cherniak et al., 1997). 407 

Deformation-related REE enrichment of zircon implies interaction with a REE source, 408 

such as a REE bearing fluid, and light REE enrichment or depletion depends on the 409 

stability of REE-bearing phases and the grain boundary fluid chemistry (e.g., Rolland 410 

et al., 2003). 411 

 412 

5.3 Evaluation of CL imaging for detecting and interpreting deformation 413 

microstructures 414 

The net effect of deformation and related processes on the finite CL texture will be 415 

governed by the interaction between rates of dislocation glide and climb, recovery, 416 

pathway diffusivity (dynamic and arrested), intrinsic defect structure, impurity source 417 

availability, and temperature-time history. The resultant texture may be 418 

uncomplicated (e.g., IOZ) or have complex overprinting relationships (e.g., UX). 419 

Some of the examples in this study illustrate that deformation-related microstructures 420 

can be clearly identified in cathodoluminescence images, such as in UX and GST15 421 

where there is no primary growth zoning, or where primary growth zoning is clearly 422 

disrupted, such as for grain 5 of Jhs2PON4. However, other samples show that 423 

deformation microstructures can be cryptic. This is true where deformation has 424 

resulted in changes in emission wavelength but with negligible changes to the 425 

integrated emission intensity. In other cases, primary CL features may dominate and 426 
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deformation effects on panchromatic CL images can be very subtle and easily 427 

overlooked.  428 

 429 

A current analytical problem is that crystal-plastic deformation microstructures can 430 

cause geochemical heterogeneity at finer scales than the spatial resolution of many 431 

current quantitative microbeam techniques, such as ion microprobe and laser ICP-MS. 432 

This study illustrates that wavelength CL mapping can be a useful technique to 433 

spatially resolve variations in REE in zircon semi-quantitatively, and down to ppm 434 

levels, at the same scale as microstructural analysis by EBSD. However, interplay 435 

between various controls on CL leads to ambiguities associated with the interpretation 436 

of panchromatic CL images and hyperspectral CL maps. Given that deformation can 437 

be accompanied by geochemical modification of zircon, and that deformation-related 438 

textures are not always clear on CL images, it is important to identify and characterize 439 

deformation in zircon via other imaging techniques, such as orientation contrast 440 

imaging, or orientation mapping by electron backscatter diffraction. In conclusion, 441 

this study highlights that CL imaging and orientation mapping can be a powerful 442 

combination for robust interpretations of intragrain characteristics of zircon. 443 

 444 
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Figure 1 460 

Photomicrographs and maps of the samples utilized in this study. (ai) Reflected light 461 

optical image of zircon-bearing pyroxenite GST15. (aii) Cumulative misorientation 462 

map and profile of zircon grain from GST15. (b) Backscatter electron image of IOZ. 463 

(ci) Optical micrographs of mantle xenolith U2268 showing the context of zircon UX. 464 

(cii) Detail of area shown in (ci). (d) Panchromatic CL image of magmatic zircon 465 

population separated from Jhs2PON4 (after Reddy et al. (2008b)). 80% of the grains 466 

preserve crystal-plastic deformation microstructures (indicated by dots). 467 

 468 

Figure 2 469 

(a) Cumulative orientation map, (b) boundary misorientation axis geometry map, (c) 470 

panchromatic CL image, and (d) hyperspectral CL map of the deformed tip of the 471 

zircon grain from GST15 (after Timms et al. (2006)). The microstructure is dominated 472 

by a complex pattern of orientation domains with <5˚ misorientation boundaries that 473 

cumulatively accommodate ~11˚ of misorientation across the area shown. Orientation 474 

boundaries in (a) form a polygonal network and are sites of lower panchromatic CL 475 

intensity in (c) than the orientation domains. The complex zone shown in lower left 476 

contains a combination of ductile and brittle deformation microstructures, and 477 

contains patches of recrystallised bright-CL zircon. (b) shows systematic geometric 478 

relationships between misorientation axes and differently oriented boundaries. The 479 

colour uniformity in (d) indicates no relative changes in Er3+, Tb3+, Sm3+ or Eu3+ peak 480 

intensities. Profile (i) to (ii) and boundary labelled α shown in Fig. 3. Dark ellipses in 481 

(a) and (b) are non-indexed points over ion probe analysis pits. Boundary β shows 482 

asymmetrically developed pattern of reduced-CL. Refer to text and Fig. 8 for 483 
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explanation of crystallographic direction annotations in (b). Numbered areas in (d) 484 

correspond to CL spectra shown in Fig. 9. 485 

 486 

Figure 3 487 

(a) Misorientation profile and (b) panchromatic CL intensity profiles for transect (i) to 488 

(ii) shown in Fig. 2. Peaks in the non-cumulative misorientation profile correspond to 489 

low-angle boundaries. (b) shows a general, gradual decrease in CL intensity from left 490 

to right with negative excursions that generally correspond to the position of low-491 

angle boundaries. Range bars indicate the approximate extent of significant CL-492 

quenching associated with >0.5˚ boundaries. Note the asymmetry of profile associated 493 

with boundary labelled α. See text for discussion. 494 

 495 

Figure 4 496 

(a) Cumulative orientation map, (b) boundary misorientation axis geometry map, (c) 497 

panchromatic CL image, and (d) hyperspectral CL map of the deformed tip of IOZ 498 

(after Reddy et al. (2006)). The grain records 14˚ of cumulative lattice strain 499 

accommodated by sub-parallel low-angle boundaries. Oscillatory CL growth zones 500 

are homogenized in the deformed region. Arrows in (b) highlight selected boundaries 501 

visible in (c). Arrows in (c) highlight linear dark bands that correspond to low-angle 502 

boundaries. Colour change from blue-green to red in (d) indicates increase in the REE 503 

CL peak for Tb3+ relative to Er3+. Numbered areas in (d) correspond to CL spectra 504 

shown in Fig. 9b. 505 

 506 

Figure 5 507 
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(a) Cumulative orientation map, (b) boundary misorientation axis geometry map, (c) 508 

panchromatic CL image, and (d) hyperspectral CL map of the deformed tip of UX. 509 

The grain records a cumulative misorientation of up to 10˚ towards the corners of the 510 

grain, accommodated by a system of well-defined 1-5˚ boundaries and less discrete 511 

<1˚ boundaries. (b) shows systematic geometric relationships between boundary 512 

orientation and boundary misorientation axes. (bi) indicates a domain of distributed 513 

lattice strain, (bii) indicates a discrete low-angle boundary. (c) shows patchy domains 514 

of featureless panchromatic CL disrupted by variably low-luminescent domains that 515 

mimic the deformation microstructure. (d) shows an additional complexity of 516 

distinctive yellow patches and ribbons that indicate increased luminescence from 517 

Tb3+, Sm3+ and Eu3+ relative to Er3+. Numbered areas in (d) correspond to CL spectra 518 

shown in Fig. 9c. 519 

 520 

Figure 6 521 

(a-b) Cumulative orientation maps, (c-d) boundary misorientation axis geometry 522 

maps, (e-f) panchromatic CL images, (g-h) hyperspectral CL maps of grains 5 and 8 523 

from Jhs2PON4 (Fig. 1d). (a-b) show that both grains preserve heterogeneously 524 

distributed polygonal orientation sub-domains, particularly on their flanks. These are 525 

separated by low-angle (<5˚) boundaries with systematic misorientation axes (c-d) 526 

that accommodate cumulative misorientation of 23˚ and 12 ˚ across grains 5 and 8, 527 

respectively. See text for description of (e) to (h). Numbered areas in (g-h) correspond 528 

to CL spectra shown in Fig. 9d, e. ((d, b, e and f) after Reddy et al. (2008b)). 529 

 530 

Figure 7 531 
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Distribution of correlated (i.e., for adjacent data points) misorientation angles for (a) 532 

GST15, (b) IOZ, (c) UX, and (d-e) grains 5 and 8 from Jhs2PON4. Each grain 533 

contains a high relative frequency of low misorientation angles and a progressively 534 

lower proportion to higher misorientation angles. See text for discussion. 535 

 536 

Figure 8 537 

Stereographic projections of crystallographic data from EBSD maps on Figs 2, 4-6 for 538 

(a) GST15, after Timms et al. (2006), (b) IOZ, (c) UX, and (d-e) grains 5 and 8 from 539 

Jhs2PON4, respectively. (i) Pole to selected low-index planes for all data on each 540 

map. Colours correspond to misorientation away from a reference orientation as 541 

shown in previous figures. (ii) Plots of 0.5-5˚ misorientation axis data for adjacent 542 

EBSD analysis points. (a.i) Data is a subset that does not include misorientation axes 543 

that relate to late brittle fractures. (i) and (ii) plotted as lower hemisphere equal area 544 

projections in the user-defined sample x-y-z coordinate system. 545 

 546 

Figure 9 547 

Selected CL emission spectra from (a) GST15 (after Timms et al. (2006)), (b) IOZ, 548 

(c) UX, (d) Jhs2PON4 grain 5, and (e) Jhs2PON4 grain 8. Individual spectra represent 549 

the mean from approximately 10 by 10 μm areas corresponding to numbered points 550 

shown on hyperspectral CL maps in previous figures. Annotations include the 551 

position of the dominant peaks for REE3+, and the wavelengths assigned to blue, 552 

green and red colour channels in wavelength maps in previous figures. See text for 553 

discussion.554 
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Sample ID Grain 

Length 
(µm) 

Host rock Location Latitude/Longitude U (ppm) Th 
(ppm) 

Age (Ma) 

GST151, 2 ca. 12,500 Sytectonic pyroxenite Loch an Daimh Mór, Assynt 
Terrain, Lewisian complex, NW 
Scotland  

58°19’54”N  05°07’57”W 20-60 30-110 207Pb/206Pb: 
2451 ±14 (35) 

IOZ3, 4 ca. 700 Deformed gabbro ODP Leg 176, Atlantis II 
Ridge, Indian Ocean 

32°43.392’S, 57°15.960’E 3-6 1-4 ca. 11  

UX5 ca. 900 Metasomatised 
garnet websterite 
mantle xenolith 

Udachnaya Kimberlite, Siberia 66°25’N  112°51’W c. 12 c. 40 Proterozoic 

Jhs2PON46, 7 
grain 5 

ca. 300 1297 408 

Jhs2PON46, 7 
grain 8 

ca. 200 

Undeformed 
porphyritic Andesite 

Porongo district, E. Java 07°50’S  111°40’E 

2112 810 

206Pb/238U: 
9.28 ± 0.21 
(20) 

 
Table 2. Sample details. U-Pb ages are combined mean ages from multiple (n) SHRIMP analyses, e.g., Jhs2PON4 age is the weighted 
mean age from 20 analyses from 20 grains. Errors are 1σ. 1 Kinny & Friend (1997); 2 Timms et al. (2006); 3 Reddy et al. (2006); 4 
Reddy et al. (2007); 5 Timms (unpublished data); 6 Smyth et al. (2007); 7 Reddy et al. (2008b). 



CL activator Spectral peak positions 
 Ref ~300nm ~400nm ~500nm  ~600nm ~700nm ~800nm ~900nm >900nm 
Cr3+ c    694 775    
Cr5+ (300 K) c        1213 
Cr5+ (12 K) c        1132 1154 1191 

1215 1258 
Ce3+ 
 

a 
b 

- 
355 

- - - - - - - 

Pr3+ 
 

a 
b 

Non-excited  
489 

 
596 

 
621 

    

Nd3+ 
 

a 
b 

     809   874-882-892  

Sm3+ 
 

a 
b 

342-361  
 

559-570  597-605- 
565 

615  646-661 
601   612   647 

702-710-725    

Eu3+ 
 

a 
b 

302-363-386  560   595-616-632 
596  

652-656 
616 654 

692-704 
702 707 

   

Gd3+ 
 

a 
b 

30-360  308-313 
312 

       

Tb3+ 
 

a 
b 

382 
383 

415   436   459   475 
415   437   489 

489   548   588-596 
548 

624   666   672   685 766 837   878   

Dy3+ 
 

a 
b 

(280)   362 456   483 
478 

542   578 
575 

609   646-666 754   780 810-828-845-861  

Ho3+ 
 

a 
b 

- - - 
549 

- 
665 

- - -  

Er3+ 
 

a 
b 

323 405   474 530 
549   559 

619     

Tm3+ 
 

a 
b 

291   350-364 
289   347 

383   454   481 
458   483 

513 656-679 758 790-805   

Intrinsic d (300)-340-(380)        
Intrinsic d (210)-285-(340)        
Intrinsic e   (500-700)      
Intrinsic f  (<300-475)       
Intrinsic e   (490-700)      
Intrinsic g         
Intrinsic h   (400)-430-580-(800)      

 
Table 1. Spectral peak positions for cathodoluminescence due to REEs, other trace elements, and intrinsic sources in zircon. Approximate 
spectral range of intrinsic broadband emission indicated by parentheses. Dominant peaks are indicated in bold. a (Blanc, 2000); b (Gaft et al., 
2000b); c (Gaft et al., 2000a); d (Nasdala et al., 2002); e (Nasdala et al., 2003); f (Hanchar and Rudnick, 1995); g (Timms et al., 2006);  h (Götze 
et al., 1999). 



 

EBSD map settings and statistics Fig 1 
IOZ 

Fig. 2 
GST15 

Fig. 4 
UX 

Fig. 5 
Jhs2PON4-

5 

Fig. 6 
Jhs2PON4-

8 
EBSP collection time per frame (ms) 60 60 60 60 60 
Background (frames) 64 64 64 64 64 
EBSP noise reduction (frames) 4 4 4 4 4 
                                    (binning) 4x4 2x2 2x2 4x4 4x4 
                                    (gain) Low High Low Low Low 
Number of reflectors 50 80 80 80 80 
Hough resolution 60 65 65 65 65 
Match units HKL b.i.f. Zircon [2]* HKL b.i.f. Zircon [3]* Zircon [3]* 
Band detection – min/max no. of bands 6/10 6/8 6/8 6/8 6/8 
Mean angular deviation cut off 1.6 1.3 1.3 1.3 1.3 
Step size (µm) 1 1.5 1 1 1 
Step X 172 340 392 180 276 
Step Y 123 340 428 390 190 
Average mean angular deviation (°) 0.3702 0.4955 0.5201 0.4216 0.5107 
EBSD noise reduction      
Wildspike removal (% of total data) 0.00006 0.032 0.176 0.058 0.264 
5 neighbour zero solution extrapolation 
(% of total data) 

0.17 14.65 16.67 4.96 14.99 

Orientation averaging filter** (Filter size 
/ smoothing angle / artefact angle) 

3x3 / 5˚ / 1˚ 3x3 / 5˚ / 1˚ 3x3 / 5˚ / 1˚ 3x3 / 5˚ / 1˚ 3x3 / 5˚ / 1˚ 

Wavelength CL map settings      
Dwell time per point (ms) 50 50 25 25 25 
Step size (µm) 0.5 2 1 1 1 
Step X 200 250 440 300 330 
Step Y 250 250 440 500 230 
 
Table 3. Settings for EBSD and wavelength CL maps. *generated from structure file 
cards in the Mincryst crystallographic database. ** after Humphreys et al. (2001). 
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