32 research outputs found

    Characterisation of acute respiratory infections at a United Kingdom paediatric teaching hospital: observational study assessing the impact of influenza A (2009 pdmH1N1) on predominant viral pathogens

    Get PDF
    Background According to the World Health Organisation, influenza A (2009 pdmH1N1) has moved into the post-pandemic phase, but there were still high numbers of infections occurring in the United Kingdom in 2010-11. It is therefore important to examine the burden of acute respiratory infections at a large children’s hospital to determine pathogen prevalence, occurrence of co-infection, prevalence of co-morbidities and diagnostic yield of sampling methods. Methods This was a retrospective study of respiratory virus aetiology in acute admissions to a paediatric teaching hospital in the North West of England between 1st April 2010 and 31st March 2011. Respiratory samples were analysed either with a rapid RSV test if the patient had symptoms suggestive of bronchiolitis, followed by multiplex PCR testing for ten respiratory viruses, or with multiplex PCR testing alone if the patient had suspected other ARI. Patient demographics and data regarding severity of illness, presence of co-morbidities and respiratory virus sampling method were retrieved from case notes. Results 645 patients were admitted during the study period. 82/645 (12.7%) patients were positive for 2009 pdmH1N1, of whom 24 (29.2%) required PICU admission, with 7.3% mortality rate. Viral co-infection occurred in 48/645 (7.4%) patients and was not associated with more severe disease. Co-morbidities were present more frequently in older children, but there was no significant difference in prevalence of co-morbidity between 2009 pdmH1N1 patients and those with other ARI. NPA samples had the highest diagnostic yield with 192/210 (91.4%) samples yielding an organism. Conclusions Influenza A (2009 pdmH1N1) is an ongoing cause of occasionally severe disease affecting both healthy children and those with co-morbidities. Surveillance of viral pathogens provides valuable information on patterns of disease

    Coronary CT Angiography and 5-Year Risk of Myocardial Infarction.

    Get PDF
    BACKGROUND: Although coronary computed tomographic angiography (CTA) improves diagnostic certainty in the assessment of patients with stable chest pain, its effect on 5-year clinical outcomes is unknown. METHODS: In an open-label, multicenter, parallel-group trial, we randomly assigned 4146 patients with stable chest pain who had been referred to a cardiology clinic for evaluation to standard care plus CTA (2073 patients) or to standard care alone (2073 patients). Investigations, treatments, and clinical outcomes were assessed over 3 to 7 years of follow-up. The primary end point was death from coronary heart disease or nonfatal myocardial infarction at 5 years. RESULTS: The median duration of follow-up was 4.8 years, which yielded 20,254 patient-years of follow-up. The 5-year rate of the primary end point was lower in the CTA group than in the standard-care group (2.3% [48 patients] vs. 3.9% [81 patients]; hazard ratio, 0.59; 95% confidence interval [CI], 0.41 to 0.84; P=0.004). Although the rates of invasive coronary angiography and coronary revascularization were higher in the CTA group than in the standard-care group in the first few months of follow-up, overall rates were similar at 5 years: invasive coronary angiography was performed in 491 patients in the CTA group and in 502 patients in the standard-care group (hazard ratio, 1.00; 95% CI, 0.88 to 1.13), and coronary revascularization was performed in 279 patients in the CTA group and in 267 in the standard-care group (hazard ratio, 1.07; 95% CI, 0.91 to 1.27). However, more preventive therapies were initiated in patients in the CTA group (odds ratio, 1.40; 95% CI, 1.19 to 1.65), as were more antianginal therapies (odds ratio, 1.27; 95% CI, 1.05 to 1.54). There were no significant between-group differences in the rates of cardiovascular or noncardiovascular deaths or deaths from any cause. CONCLUSIONS: In this trial, the use of CTA in addition to standard care in patients with stable chest pain resulted in a significantly lower rate of death from coronary heart disease or nonfatal myocardial infarction at 5 years than standard care alone, without resulting in a significantly higher rate of coronary angiography or coronary revascularization. (Funded by the Scottish Government Chief Scientist Office and others; SCOT-HEART ClinicalTrials.gov number, NCT01149590 .)

    Act now against new NHS competition regulations: an open letter to the BMA and the Academy of Medical Royal Colleges calls on them to make a joint public statement of opposition to the amended section 75 regulations.

    Get PDF

    Do-It-Yourself (DIY) Artificial Pancreas Systems for Type 1 Diabetes: Perspectives of Two Adult Users, Parent of a User and Healthcare Professionals

    Get PDF
    The artificial pancreas system or an automated insulin dosing system has been the ‘holy grail’ for patients with type 1 diabetes and their caregivers who have over the years wanted to ‘close the loop’ between monitoring of glucose and delivery of insulin. The launch of the Medtronic MiniMed 670G system in 2017 and the subsequent release of the Tandem t:slim with Control-IQ system, the DANA RS pump compatible-CamAPS FX app and the more recent announcement of the Medtronic MiniMed 780G system have come as answers to their prayers. However, in the time taken to develop and launch these commercial systems, creative and ebullient parents of young patients with type 1 diabetes, along with other patients, technologists and healthcare professionals have developed mathematical models as software solutions to determine insulin delivery that in conjunction with compatible hardware have helped ‘close the loop’. Under an umbrella movement #WeAreNotWaiting, they have, as a community, refined and disseminated technologies that are open source and ubiquitously available as do-it-yourself (DIY) closed-loop systems or DIY artificial pancreas systems (APS). There are presently three systems—OpenAPS, AndroidAPS and Loop. We present perspectives of two patients, parent of a patient, and their healthcare providers; the users spanning an age spectrum most likely to use this technology—a child, an adolescent in transitional care and a 31-yr old adult patient, highlighting how looping has helped them self-manage diabetes within the routine of their lives and the challenges they faced
    corecore