3 research outputs found

    Mapping of possible prion protein self interaction domains using peptide arrays

    Get PDF
    Background The common event in transmissible spongiform encephalopathies (TSEs) or prion diseases is the conversion of host-encoded protease sensitive cellular prion protein (PrPC) into strain dependent isoforms of scrapie associated protease resistant isoform (PrPSc) of prion protein (PrP). These processes are determined by similarities as well as strain dependent variations in the PrP structure. Selective self-interaction between PrP molecules is the most probable basis for initiation of these processes, potentially influenced by chaperone molecules, however the mechanisms behind these processes are far from understood. We previously determined that polymorphisms do not affect initial PrPC to PrPSc binding but rather modulate a subsequent step in the conversion process. Determining possible sites of self-interaction could elucidate which amino acid(s) or amino acid sequences contribute to binding and further conversion into other isoforms. To this end, ovine ¿ and bovine PrP peptide-arrays consisting of 15-mer overlapping peptides were probed with recombinant sheep PrPC fused to maltose binding protein (MBP-PrP). Results The peptide-arrays revealed two distinct high binding areas as well as some regions of lower affinity in PrPC resulting in total in 7 distinct amino acid sequences (AAs). The first high binding area comprises sheep-PrP peptides 43¿102 (AA 43¿116), including the N-terminal octarepeats. The second high binding area of sheep-PrP peptides 134¿177 (AA 134¿191), encompasses most of the scrapie susceptibility-associated polymorphisms in sheep. This concurs with previous studies showing that scrapie associated-polymorphisms do not modulate the initial binding of PrPC to PrPSc. Comparison of ovine ¿ and bovine peptide-array binding patterns revealed that amino acid specific differences can influence the MBP-PrP binding pattern. PrP-specific antibodies were capable to completely block interaction between the peptide-array and MBP-PrP. MBP-PrP was also capable to specifically bind to PrP in a Western blot approach. The octarepeat region of PrP seems primarily important for this interaction because proteinase K pre-treatment of PrPSc completely abolished binding. Conclusion Binding of MBP-PrP to PrP-specific sequences indicate that several specific self-interactions between individual PrP molecules can occur and suggest that an array of interactions between PrPC-PrPC as well as PrPC-PrPSc may be possible, which ultimately lead to variations in species barrier and strain differences

    Mapping functional prion-prion protein interaction sites using prion protein based peptide-arrays

    No full text
    Protein-protein interactions are at the basis of most if not all biological processes in living cells. Therefore, adapting existing techniques or developing new techniques to study interactions between proteins are of importance in elucidating which amino acid sequences contribute to these interactions. Such new insights may in turn lead to improved understanding of the processes underlying disease and possibly provide the basis for new therapeutic approaches. Here we describe the novel use of an ovine prion protein-based peptide-array normally used for determining prion-specific antibody epitopes, with the prospect that this would yield information on interaction sites between its PrP moiety and the ovine prion protein derived linear peptides. This adapted application of the peptide-array shows, by incubating the mature part of ovine (ARQ) PrPC fused to maltose binding protein (MBP), binding with between the PrP moiety and the ovine prion derived peptides occurs and indicates that several specific self-interactions between individual PrP molecules can occur; hereby illustrating that this adapted application of a peptide-array is a viable method to further specify which distinct amino acid sequences are involved in protein-protein interaction

    Reconstructing the Discontinuous and Conformational β1/β 3-Loop Binding Site on hFSH/hCG by Using Highly Constrained Multicyclic Peptides

    Get PDF
    Making peptide-based molecules that mimic functional interaction sites on proteins remains a challenge in biomedical sciences. Here, we present a robust technology for the covalent assembly of highly constrained and discontinuous binding site mimics, the potential of which is exemplified for structurally complex binding sites on the "Cys-knot" proteins hFSH and hCG. Peptidic structures were assembled by Ar(CH2Br)(2)-promoted peptide cyclizations, combined with oxime ligation and disulfide formation. The technology allows unprotected side chain groups and is applicable to peptides of different lengths and nature. A tetracyclic FSH mimic was constructed, showing >600-fold improved binding compared to linear or monocyclic controls. Binding of a tricyclic hCG mimic to anti-hCG mAb 8G5 was identical to hCG itself (IC50= 260 vs. 470 pm), whereas this mimic displayed an IC50 value of 149 nm for mAb 3468, an hCG-neutralizing antibody with undetectable binding to either linear or monocyclic controls
    corecore