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Abstract
Background: The common event in transmissible spongiform encephalopathies (TSEs) or prion diseases
is the conversion of host-encoded protease sensitive cellular prion protein (PrPC) into strain dependent
isoforms of scrapie associated protease resistant isoform (PrPSc) of prion protein (PrP). These processes
are determined by similarities as well as strain dependent variations in the PrP structure. Selective self-
interaction between PrP molecules is the most probable basis for initiation of these processes, potentially
influenced by chaperone molecules, however the mechanisms behind these processes are far from
understood. We previously determined that polymorphisms do not affect initial PrPC to PrPSc binding but
rather modulate a subsequent step in the conversion process. Determining possible sites of self-
interaction could elucidate which amino acid(s) or amino acid sequences contribute to binding and further
conversion into other isoforms. To this end, ovine – and bovine PrP peptide-arrays consisting of 15-mer
overlapping peptides were probed with recombinant sheep PrPC fused to maltose binding protein (MBP-
PrP).

Results: The peptide-arrays revealed two distinct high binding areas as well as some regions of lower
affinity in PrPC resulting in total in 7 distinct amino acid sequences (AAs). The first high binding area
comprises sheep-PrP peptides 43–102 (AA 43–116), including the N-terminal octarepeats. The second
high binding area of sheep-PrP peptides 134–177 (AA 134–191), encompasses most of the scrapie
susceptibility-associated polymorphisms in sheep. This concurs with previous studies showing that scrapie
associated-polymorphisms do not modulate the initial binding of PrPC to PrPSc. Comparison of ovine – and
bovine peptide-array binding patterns revealed that amino acid specific differences can influence the MBP-
PrP binding pattern. PrP-specific antibodies were capable to completely block interaction between the
peptide-array and MBP-PrP. MBP-PrP was also capable to specifically bind to PrP in a Western blot
approach. The octarepeat region of PrP seems primarily important for this interaction because proteinase
K pre-treatment of PrPSc completely abolished binding.

Conclusion: Binding of MBP-PrP to PrP-specific sequences indicate that several specific self-interactions
between individual PrP molecules can occur and suggest that an array of interactions between PrPC-PrPC

as well as PrPC-PrPSc may be possible, which ultimately lead to variations in species barrier and strain
differences.
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Background
Transmissible spongiform encephalopathies (TSEs) are
fatal neurodegenerative disorders characterized by forma-
tion and accumulation of partially protease resistant
prion protein (PrPSc) mainly in tissues of the central nerv-
ous system. TSEs (or prion diseases) include (among oth-
ers) familial, sporadic and variant Creutzfeldt-Jacob
disease in humans, bovine spongiform encephalopathy
(BSE) in cattle, and scrapie in sheep. Formation of PrPSc is
a posttranslational process and involves refolding (con-
version) of the host-encoded prion protein (PrPC) into
partially protease resistant forms (PrPSc) [1]. Since no
other proteins are known to be involved in this conver-
sion, the existence of a specific and probably efficient self
interaction between PrP molecules must be considered.

The molecular mechanism involved in PrP conversion is
not well understood, but polymorphisms in PrP have
been shown to be of importance in both interspecies and
intraspecies transmissibilities [2] and cell-free conversion
of PrPC provides an excellent in vitro model in which rela-
tive amounts of produced proteinase K (PK) resistant PrP
reflect important biological aspects of TSEs at the molecu-
lar level [2-9]. Whereas differences in susceptibility of-
and transmissibility in sheep can largely be explained at
the molecular level by the effects of single polymorphisms
in PrPC or PrPSc on PrP conversion [6,10-12], the exact
molecular mechanism of disease development modula-
tion by polymorphisms is still unknown, however we pre-
viously showed that disease associated polymorphisms
do not affect the initial binding of PrPC to PrPSc [13]. Höls-
cher et al showed by deletion of residues 114–121 (mouse
PrP) the necessity of the highly amyloidogenic
AGAAAAGA motif in conversion of PrPC to PrPSc [14].
Many other studies have revealed the importance of the
PrP regions encompassing amino acid sequence (AA) 90–
120 (which confirms the importance of AGAAAAGA) [15-
17] and 132–156 [8,15,18-27]. However, to our knowl-
edge no attempts have been made to systematically map
all possible AA involved in PrP interaction (During review
of this manuscript a study with complementary results
directed at the identification of regions of PrPC that tightly
bind to PrPSc by using a limited set of sequential 24-mer
polypeptides motif grafted onto an antibody was pub-
lished [28]. Our study has its focus however, on systemat-
ical domain mapping at the single amino acid level by
using a complete set of overlapping 15-mer PrP derived
peptides). In order to elucidate which AA of PrP capable
of interaction are involved in the primary interaction of
PrPC to PrPSc, a peptide-array based on linear PrP
sequences comprising the complete PrP sequence was uti-
lized to determine which residues of PrP are capable of
interacting with PrPC.

Results
MBP-PrP expression and analysis
Expression of maltose binding protein N-terminally fused
to PrP (MBP-PrP) revealed a mainly soluble recombinant
MBP-PrP of approximately 70 kDa (Fig. 1, lanes 1 & 2)
and is readily detected in Western blot using a PrP-specific
antibody (9A2, Fig. 1B) or a MBP specific antibody (Fig.
1C). The MBP-PrP fusion-protein could be purified using
the amylase-resin column and the naked PrP protein
could be obtained by digestion with protease Factor Xa,
indicating accessible folding (Fig. 1, lanes 3–6). After 24
hours approximately 45% of MBP-PrP was digested by
factor Xa, however when aided by addition of 0.01% SDS
factor Xa completely digested MBP-PrP within 24 hours
(data not shown). Monoclonal (9A2 and 94B4, Table 1)
and polyclonal (R521, epitope AA100–102 [29,30]) PrP-
specific antibodies (Table 1) with specificity for epitopes
dispersed throughout the PrP-protein detected MBP-PrP
in Western blot. MBP expressed without additional fusion
protein (PrP), which frequently served as negative control
in this study, was also of homogeneous quality (Fig 1,
lane 7) and of expected size (MBP-β-gal α fragment, 50.8
kDa) which is somewhat larger (as expected) than MBP
cleaved from the fusion protein after factor Xa digestion
(42.5 kDa). Though we did not study its physical state, the
soluble MBP-PrP product used is most likely in a mono-
meric or low oligomeric state representative for PrPC, with
a secondary structure that is high in alpha helix and ran-
dom coil and low in beta-sheet [31,32].

Binding domains of ovine PrP
Using solid-phase arrays of 15-mer overlapping peptides
systematically covering the whole mature part of PrPC,
MBP-PrP was allowed to bind with the peptide-array, with
the prospect that this would yield information on interac-
tion sites between its PrP moiety and the linear peptides.
Indeed interaction between the individual PrP sequences
(peptides) and MBP-PrP was sufficient for immunodetec-
tion, resulting in a reproducible binding pattern (Fig. 2,
line graph). This binding pattern, expressed in relative
density values (Fig. 2, column graph), was characterized
by two distinct high binding areas (peptides 43–102 and
134-177 respectively) as well as some lower binding areas.
Analysis of the correlating peptide sequences revealed that
these areas usually were characterized by consensus
sequences which suggested the existence of the following
interaction domains for the mature part of PrPC (Fig 3).
Two consecutive binding peaks with peptides 22–28 +
29–33 (Fig. 3A) have [33-GWNTG-37] (ovine protein
sequence position used throughout) as their consensus
domain, followed by two consecutive minor binding
peaks with peptides 35–38 + 39–42 (Fig. 3B) with [42-
PGQGSPGG-49] as the common domain. The first high
binding area is comprised of peptides 43–102, and
encloses only two likely consensus domains: on the one
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hand peaks 43–52 (Fig. 3C), 53–60 (Fig. 3D), 61–68 (Fig.
3E), 69–77 (Fig. 3G) and 78–87 (Fig. 3H) each recognized
an octarepeat with [PxGG, x = Q or H] as the consensus
domain and on the other hand peaks 90–93, 94–97, 98–
102 (Fig. 3I) with [102-WNK-104] as a common domain.
The second high binding area is comprised of peptides
134–177 and encloses three likely consensus sequences.
The shared sequence for peptides 134–136, 137–140 (Fig.
3J) is [140-PLIHFGNDY-148], for peptides 141–151 (Fig.
3K, AA152–154) and 153–155, 156–158, 59–164 (Fig.
3L, AA165–167) is [YYR] and for peptides 165–168, 170–
173, 174–177 (Fig. 3M) is [177-NFV-179] respectively.
The remaining lower binding areas also enclose three
likely binding domain consensuses; [183-
VNITVKQHTVT-193] for peptides 179–183 (Fig. 3N),
[192-TTTTKGENFT-202] for peptides 188–193 (Fig. 3O)
and [225-SQAY-228] for peptides 214–217, 219–221,
222–225 (Fig. 3P).

Ovine versus bovine peptide-array
To further assess the extent of the specificity of the binding
pattern found, MBP-PrP was also tested against a bovine
PrP peptide-array. This yielded a rather similar binding
pattern compared to the results with ovine PrP peptide
array but with some differences. The binding pattern on
the bovine peptide-array (Fig. 3, red bars) was compared
to that on the ovine peptide-array (Fig. 3, blue bars). As
expected an extra octarepeat was found (Fig. 3F), and of
the six amino acid differences between the ovine – and
bovine peptide arrays only two resulted in a difference in
binding. Binding with the peptides containing the ovine
to bovine substitutions S98A (ovine numbering used
throughout, Fig. 3H–I), S146A (Fig. 3J) and Y158H (Fig.
3K) were comparable on both the ovine and bovine pep-
tide-array, whereas the S100G (Fig. 3I) and Q189E (Fig.
3N) did result in altered binding patterns. No binding was
found with peptides containing the I208M substitution
(data not shown). Some differences in binding without a
direct apparent reason were observed. Differences in the
relative level of binding was observed with peptides 165–

177 (Fig. 3M, bo# 173–785), 187–193 (Fig. 3O, bo# 195–
201) and 220–222 (Fig. 3P, bo# 227–229), but these dif-
ferences did not translate in differences in the determined
consensus domains. However, binding with the array of
bovine peptides 35–42 (Fig. 3B) remained below the cut-
off value (3 times background), whereas low binding with
peptides 103–105 (Fig. 3I) was observed with the bovine
peptide-array but not with the ovine peptide-array.

Peptide-array controls
Several control tests were carried out to determine the via-
bility of the peptide-array to obtain PrP-specific binding
patterns. Only minor non-significant differences in bind-
ing pattern were seen as a result of varying concentration
of MBP-PrP (except for the expected difference in optical
density value [o.d.v.]), storage buffers for MBP-PrP, pep-
tide synthesis methods, or peptide-array batches (Fig. 4).
Also, no significant binding was observed with each sepa-
rate antibody or in the combination used for detection
(thus in the absence of MBP-PrP). Furthermore no bind-
ing of MBP with the PrP peptide-array was observed. Inter-
estingly the o.d.v. decreased after prolonged storage of
MBP-PrP in PBS + 0.1% SB3–14. Further examination of
the isolate showed that MBP-PrP had precipitated, indi-
cating that interaction between the peptides and MBP-PrP
only occurs when the latter is soluble. Furthermore, MBP-
PrP was tested on an unrelated peptide-array containing
overlapping peptides covering the sequence of VP2 of
canine parvovirus yielding not any significant binding
domains. All these controls confirm that binding of MBP-
PrP to the PrP-peptides was as a result of the PrP moiety
of MBP-PrP, and that this binding was PrP-specific.

Antibody blocking of peptide-array binding pattern
To find a correlation with structural properties, the rela-
tive binding pattern of MBP-PrP on the peptide array was
compared to the Kyte-Doolittle hydrophilicity plot of
mature PrPC revealing a high correlation between
hydrophilic (exposed) regions of PrPC and binding pat-
tern regions (Fig. 5). Even though the correlation was not

Table 1: Monoclonal antibody overview

antibody epitopea positionb blockingC (μg/ml) referenced

100B3 KRPKP 26–30 ~0,5 Thuring, 2005 [30]
SAF32 QPHGGGW e 54–92 25,0 Feraudet, 2005 [51]
9A2 WNK 102–104 4,0 Langeveld, 2006 [47]
6C2 HVAGAAA 114–120 20,0 this paper
6H4 DYEDRYYRE 147–155 1,0 Korth, 1997 [18]
94B4 HTVTTTTK 190–197 10,0 Thuring, 2004 [52]
M7 QQSYGQEP n.a. n.a. Bakker, pers. comm.

a amino acid sequence of the reported antibody epitope using peptide mapping techniques
b position of the antibody epitope(s) in the ovine protein sequence
c concentration at which the antibody completely blocked binding on the peptide-array
d publication in which the epitope mapping results are reported
e epitope of octarepeat (partially); occurs as 5 respectively 6 successive sequences in ovine and bovine PrP
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absolute, it was necessary to determine if the binding pat-
tern could be blocked with PrP-specific antibodies. There-
fore several monoclonal antibodies with epitopes at
different sites throughout PrPC (Table 1, Fig. 5) were
tested. Pre-incubation (1 hour at room temperature) of
MBP-PrP with all the tested PrP-specific monoclonal anti-

bodies resulted in a concentration-dependant blocking of
MBP-PrP binding over the whole set of PrP-peptides,
albeit at different antibody concentrations (Table 1). No
blocking of the MBP-PrP binding pattern occurred after
pre-incubation with the unrelated Mycobacterium specific
antibody M7. To ensure that blocking of the binding pat-

Analysis of MBP-PrP and MBP expression and MBP-PrP digestion by Factor XaFigure 1
Analysis of MBP-PrP and MBP expression and MBP-PrP digestion by Factor Xa. Lane 1 contains untreated MBP-
PrP, whereas lane 2 contains a mock digestion of MBP-PrP. MBP-PrP was digested with 1% w/w factor Xa and during digestion 
samples were taken at 2, 4, 7 and 24 hours (lanes 3,4,5 and 6 respectively). All samples were run on SDS-PAGE and the gel was 
stained with Sypro Orange (total protein stain, panel A) before western blotting and subsequent immunodetection using either 
a PrP-specific monoclonal antibody (9A2, panel B) or MBP-specific monoclonal antibody (α-MBP, panel C). Expression of MBP, 
expressed from the pMAL-c2X vector with no insert (MBP-β-gal α fragment), was analyzed by Western Blot using either 9A2 
or α-MBP (lane 7, panel A & C respectively)
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tern is a result of immune-complex formation between
antibody and MBP-PrP and not of incidental aspecific
aggregation of MBP-PrP, a Mab-aggregation test for each
PrP-specific antibody was carried out. Comparative
amounts of MBP-PrP and antibody (necessary for block-
ing) were incubated. The soluble and insoluble fraction
were separated by centrifugation at 20.000 × g and ana-
lyzed on SDS-PAGE, resulting in 75 ± 16% of MBP-PrP
and 85 ± 7% of antibody detected in the supernatant frac-
tion (data not shown), indicating that if an immune-com-
plex is formed this complex remains soluble. Therefore
formation of a soluble immune-complex must be respon-
sible for loss of binding in the peptide-array instead of
diminished binding as a result of aspecific aggregation. In
addition preliminary results indicate that some selected
peptides are also capable of blocking MBP-PrP binding to
the peptide-array, confirming that binding of MBP-PrP to
the PrP-peptides was as a result of the PrP moiety of MBP-
PrP and PrP-specific.

MBP-PrP mediated detection (reverse detection) of PrP in 
Western blot
To further confirm the specificity of the observed PrP-PrP
interaction, MBP-PrP was used as a detector in Western
blot to further study its affinity towards intact PrPC in a

brain homogenate. MBP-PrP could be used to detect
recombinant His-tagged PrP (Fig. 6B, left panel lane
marked HP) and intact PrP in both scrapie positive and
negative brain homogenates (Fig. 6A, left panel lanes
marked nt), albeit with a lower sensitivity under the
standard Western blot conditions using monoclonal anti-
body 9A2 (Fig. 6A, compare left and right panel). MBP-
PrP seems to preferably detect the un-glycosylated PrP in
the scrapie negative brain homogenate (in contrast to the
scrapie positive homogenate). Correspondingly PNGase F
treatment of the brain homogenates did not alter the
capability of MBP-PrP to detect PrP in brain homogenates
(Fig. 6A, right panel lanes marked PF) even though detec-
tion with 9A2 showed decreased levels of glycosylated PrP
(Fig. 6A, left panel lanes marked PF). MBP-PrP detection
of PrP in the PNGase F treated scrapie positive homoge-
nate still shows some detection of the different glycosyla-
tion forms (Fig. 6A, right lower panel lane marked PF).
Comparison of MBP-PrP detection of PrP in the PNGase F
treated – and non-treated scrapie positive brain homoge-
nate samples shows that after PNGase F treatment the
amount of di-glycosylated PrP has decreased while mono-
glycosylated PrP has increased. Therefore the detection of
PrP glycoforms after PNGase treatment is not due to aspe-
cific binding of MBP-PrP, but rather a result of incomplete

Peptide-array binding pattern of MBP-PrPFigure 2
Peptide-array binding pattern of MBP-PrP. Dual plot of MBP-PrP binding to the ovine PrP peptide-array. The relative 
density value (r.d.v.) was calculated by dividing the optical density value (o.d.v.) by the background and binding was considered 
relevant when at least 3 consecutive peptides showed binding values of at least 3 times the background. The unprocessed opti-
cal density values (left X-axis) of each peptide (Y-axis, peptide number) are plotted in the graph, while relative density values 
(right X-axis) of each peptide are plotted in the column graph.
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Correlation of relative binding pattern, peptide amino acid sequence and species variation between ovine and bovine PrPFigure 3
Correlation of relative binding pattern, peptide amino acid sequence and species variation between ovine and 
bovine PrP. Horizontal bars represent r.d.v of each peptide in a binding region with the position of each peptide indicated for 
ovine (left numbers) and bovine (right numbers) peptide array. Amino acid sequences are the ovine peptide sequences of all 
peptides in designated binding regions. The consensus domains found within each binding region for the ovine sequence are 
boxed and the consensus domains of the corresponding peaks found with the bovine peptide-array are in bold font. Blue bars 
represent r.d.v of ovine peptide-array, red bars r.d.v. of bovine peptide-array. Substitutions in bovine PrP are mentioned at 
right top side of each panel (panels H, I, J, K, N).

ov# bov# ov# bov#

A 3 7 11 15 # I 3 7 11 15 # aa100 S > G

22 22 G L S K K R P K P G G G W N T 90 98 G G G W G Q G G S H S Q W N K

23 23 L S K K R P K P G G G W N T G 91 99 G G W G Q G G S H S Q W N K P

24 24 S K K R P K P G G G W N T G G 92 100 G W G Q G G S H S Q W N K P S

25 25 K K R P K P G G G W N T G G S 93 101 W G Q G G S H S Q W N K P S K

26 26 K R P K P G G G W N T G G S R 94 102 G Q G G S H S Q W N K P S K P

27 27 R P K P G G G W N T G G S R Y 95 103 Q G G S H S Q W N K P S K P K

28 28 P K P G G G W N T G G S R Y P 96 104 G G S H S Q W N K P S K P K T

29 29 K P G G G W N T G G S R Y P G 97 105 G S H S Q W N K P S K P K T N

30 30 P G G G W N T G G S R Y P G Q 98 106 S H S Q W N K P S K P K T N M

31 31 G G G W N T G G S R Y P G Q G 99 107 H S Q W N K P S K P K T N M K

32 32 G G W N T G G S R Y P G Q G S 100 108 S Q W N K P S K P K T N M K H

33 33 G W N T G G S R Y P G Q G S P 101 109 Q W N K P S K P K T N M K H V

102 110 W N K P S K P K T N M K H V A

103 111 N K P S K P K T N M K H V A G

104 112 K P S K P K T N M K H V A G A

105 113 P S K P K T N M K H V A G A A

ov# bov#

B 3 7 11 15 #

35 35 N T G G S R Y P G Q G S P G G ov# bov# aa146 N > S

36 36 T G G S R Y P G Q G S P G G N J 3 7 11 15 #

37 37 G G S R Y P G Q G S P G G N R 134 142 G S A M S R P L I H F G N D Y

38 38 G S R Y P G Q G S P G G N R Y 135 143 S A M S R P L I H F G N D Y E

39 39 S R Y P G Q G S P G G N R Y P 136 144 A M S R P L I H F G N D Y E D

40 40 R Y P G Q G S P G G N R Y P P 137 145 M S R P L I H F G N D Y E D R

41 41 Y P G Q G S P G G N R Y P P Q 138 146 S R P L I H F G N D Y E D R Y

42 42 P G Q G S P G G N R Y P P Q G 139 147 R P L I H F G N D Y E D R Y Y

140 148 P L I H F G N D Y E D R Y Y R

ov# bov#

K 3 7 11 15 # aa158 Y > H

ov# bov# 141 149 L I H F G N D Y E D R Y Y R E

C 3 7 11 15 # 142 150 I H F G N D Y E D R Y Y R E N

43 43 G Q G S P G G N R Y P P Q G G 143 151 H F G N D Y E D R Y Y R E N M

44 44 Q G S P G G N R Y P P Q G G G 144 152 F G N D Y E D R Y Y R E N M Y

45 45 G S P G G N R Y P P Q G G G G 145 153 G N D Y E D R Y Y R E N M Y R

46 46 S P G G N R Y P P Q G G G G W 146 154 N D Y E D R Y Y R E N M Y R Y

47 47 P G G N R Y P P Q G G G G W G 147 155 D Y E D R Y Y R E N M Y R Y P

48 48 G G N R Y P P Q G G G G W G Q 148 156 Y E D R Y Y R E N M Y R Y P N

49 49 G N R Y P P Q G G G G W G Q P 149 157 E D R Y Y R E N M Y R Y P N Q

50 50 N R Y P P Q G G G G W G Q P H 150 158 D R Y Y R E N M Y R Y P N Q V

51 51 R Y P P Q G G G G W G Q P H G 151 159 R Y Y R E N M Y R Y P N Q V Y

52 Y P P Q G G G G W G Q P H G G 152 160 Y Y R E N M Y R Y P N Q V Y Y

ov# bov#

ov# bov# L 3 7 11 15 #

D 3 7 11 15 # 153 161 Y R E N M Y R Y P N Q V Y Y R

52 Y P P Q G G G G W G Q P H G G 154 162 R E N M Y R Y P N Q V Y Y R P

53 53 P P Q G G G G W G Q P H G G G 155 163 E N M Y R Y P N Q V Y Y R P V

54 54 P Q G G G G W G Q P H G G G W 156 164 N M Y R Y P N Q V Y Y R P V D

55 55 Q G G G G W G Q P H G G G W G 157 165 M Y R Y P N Q V Y Y R P V D Q

56 56 G G G G W G Q P H G G G W G Q 158 166 Y R Y P N Q V Y Y R P V D Q Y

57 57 G G G W G Q P H G G G W G Q P 159 167 R Y P N Q V Y Y R P V D Q Y S

58 58 G G W G Q P H G G G W G Q P H 160 168 Y P N Q V Y Y R P V D Q Y S N

59 59 G W G Q P H G G G W G Q P H G 161 169 P N Q V Y Y R P V D Q Y S N Q

60 60 W G Q P H G G G W G Q P H G G 162 170 N Q V Y Y R P V D Q Y S N Q N

163 171 Q V Y Y R P V D Q Y S N Q N N

164 172 V Y Y R P V D Q Y S N Q N N F

ov# bov#

E 3 7 11 15 # ov# bov#

61 61 G Q P H G G G W G Q P H G G G M 3 7 11 15 #

62 62 Q P H G G G W G Q P H G G G W 165 173 Y Y R P V D Q Y S N Q N N F V

63 63 P H G G G W G Q P H G G G W G 166 174 Y R P V D Q Y S N Q N N F V H

64 64 H G G G W G Q P H G G G W G Q 167 175 R P V D Q Y S N Q N N F V H D

65 65 G G G W G Q P H G G G W G Q P 168 176 P V D Q Y S N Q N N F V H D S

66 66 G G W G Q P H G G G W G Q P H 169 177 V D Q Y S N Q N N F V H D S V

67 67 G W G Q P H G G G W G Q P H G 170 178 D Q Y S N Q N N F V H D S V N

68 68 W G Q P H G G G W G Q P H G G 171 179 Q Y S N Q N N F V H D S V N I

172 180 Y S N Q N N F V H D S V N I T

173 181 S N Q N N F V H D S V N I T V

174 182 N Q N N F V H D S V N I T V K

ov# bov# 175 183 Q N N F V H D S V N I T V K Q

F 3 7 11 15 # 176 184 N N F V H D S V N I T V K Q H

69 69 G Q P H G G G W G Q P H G G G 177 185 N F V H D S V N I T V K Q H T

70 70 Q P H G G G W G Q P H G G G W

71 P H G G G W G Q P H G G G W G

72 H G G G W G Q P H G G G W G Q ov# bov#

73 G G G W G Q P H G G G W G Q P N 3 7 11 15 # aa189 Q > E

74 G G W G Q P H G G G W G Q P H 179 187 V H D S V N I T V K Q H T V T

75 G W G Q P H G G G W G Q P H G 180 188 H D S V N I T V K Q H T V T T

76 W G Q P H G G G W G Q P H G G 181 189 D S V N I T V K Q H T V T T T

182 190 S V N I T V K Q H T V T T T T

183 191 V N I T V K Q H T V T T T T K

ov# bov#

G 3 7 11 15 # ov# bov#

69 77 G Q P H G G G W G Q P H G G G O 3 7 11 15 #

70 78 Q P H G G G W G Q P H G G G W 187 195 V K Q H T V T T T T K G E N F

71 79 P H G G G W G Q P H G G G W G 188 196 K Q H T V T T T T K G E N F T

72 80 H G G G W G Q P H G G G W G Q 189 197 Q H T V T T T T K G E N F T E

73 81 G G G W G Q P H G G G W G Q P 190 198 H T V T T T T K G E N F T E T

74 82 G G W G Q P H G G G W G Q P H 191 199 T V T T T T K G E N F T E T D

75 83 G W G Q P H G G G W G Q P H G 192 200 V T T T T K G E N F T E T D I

76 84 W G Q P H G G G W G Q P H G G 193 201 T T T T K G E N F T E T D I K

77 85 G Q P H G G G W G Q P H G G G

ov# bov#

P 3 7 11 15 #

ov# bov# 214 222 E Q M S I T Q Y Q R E S Q A Y

H 3 7 11 15 # aa98 S > T 215 223 Q M S I T Q Y Q R E S Q A Y Y

78 86 Q P H G G G W G Q P H G G G G 216 224 M S I T Q Y Q R E S Q A Y Y Q

79 87 P H G G G W G Q P H G G G G W 217 225 S I T Q Y Q R E S Q A Y Y Q R

80 88 H G G G W G Q P H G G G G W G 218 226

81 89 G G G W G Q P H G G G G W G Q 219 227 T Q Y Q R E S Q A Y Y Q R G A

82 90 G G W G Q P H G G G G W G Q G 220 228 Q Y Q R E S Q A Y Y Q R G A S

83 91 G W G Q P H G G G G W G Q G G 221 229 Y Q R E S Q A Y Y Q R G A S V

84 92 W G Q P H G G G G W G Q G G 222 230 Q R E S Q A Y Y Q R G A S V I

85 93 G Q P H G G G G W G Q G G S 223 231 R E S Q A Y Y Q R G A S V I L

86 94 Q P H G G G G W G Q G G S H 224 232 E S Q A Y Y Q R G A S V I L F

87 95 P H G G G G W G Q G G S H S 225 233 S Q A Y Y Q R G A S V I L F S
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de-glycosylation of PrP in this particular sample. In con-
trast, PK treatment of the brain homogenate abrogated
MBP-PrP detection (Fig. 6A, lanes marked PK) whereas
immunodetection using monoclonal antibody 9A2
clearly shows the presence of PK-resistant PrPSc (Fig. 6A,
right panel lane marked PK) in the scrapie positive brain
homogenate. As a control the same samples were tested in
Western blot using free MBP, resulting in no detectable
signal with either His-PrP or any of the brain homogenate
samples (Fig. 6, center panels). Only MBP-PrP (or MBP)
was detected (Fig. 6B, center panel, positive detection con-
trol), thus proving that the detection with MBP-PrP was
PrP-specific.

Discussion
Binding domains of ovine PrPC

Probing for possible PrP interaction domains using MBP-
PrP and a solid-phase PrP peptide-array resulted in PrP
specific interaction between specific PrP-sequences (pep-
tides) and MBP-PrP. This probing revealed several likely
interaction domains encompassed in two distinct high
binding areas and some lower binding areas which will be
discussed below in relation to structural features of PrPC.

Suggested properties in conversion, the species barrier and
self-interaction sites as hypothesized in structural models
will be discussed.

The first distinct high binding area contains two different
interaction domain consensuses. The domain [PHGG] is
repeated five times in the ovine peptide-array and six
times in the bovine peptide-array (Fig. 3C–H) and is part
of the octarepeat sequence PHGGGWGQ, except for the
first octarepeat (Fig. 3C) where H is replaced with a Q.
This substitution is considered neutral [33], confirmed by
the lack of effect on the binding pattern found, even
though Q is a polar residue and the weak positive charge
of H is neutralized. The octarepeats are an epitope for anti-
bodies inhibiting PrPSc propagation in cell culture [26].
This study further reveals domain [102-WNK-104] (Fig.
3I) as a domain involved in PrP-PrP interaction. These
three AAs are part of the epitope of the motif-grafted anti-
body containing mouse AA 89–112, which is capable of
selective immuno-precipitation of infectivity [34].

The second high binding area contains 3 different interac-
tion domain consensuses. This area also includes most of

Peptide array controlsFigure 4
Peptide array controls. Optical density value plot of MBP-PrP isolate 1 measured on minicard 1 (black line), MBP-PrP isolate 
2 on minicard 1 (black dotted line), and MBP-PrP isolate 1 on minicard 2 (white line) and of MBP (background, grey dotted line) 
on peptide-array. For differences between isolates, compare black and white line. For differences between peptide synthesis 
batches compare black and black dotted line.
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the polymorphisms found in sheep PrPC. The domain
[140-PLIHFGNDY-148] (Fig. 3J) is situated between the
first β-sheet (Fig. 5, S1) and first α-helix (Fig. 4, H1; the D
and the Y are actually the first AA in α-helix 1) in PrPC and
is part of the epitope of the motif-grafted antibody con-
taining mouse AA 136–158 (together with [152-YYR-
154]), capable of selective immuno-precipitation of prion
infectivity [34]. This domain encompasses the two amino
acid positions which appear to fully control species-spe-
cific kinetics of PrP23–144 [35] by affecting amyloid fibril
conformation, thus limiting which PrPC molecule can
adapt to the conversion seed. Therefore this domain is
most likely involved in the species barrier and/or indi-
rectly determines the susceptibility of sheep PrP to scrapie,
maybe by influencing the accessibility of this domain and
thus the adaptability of PrPC to the conversion seed.
Involvement of this region in adaptability between species

was also concluded for human, mouse and hamster pri-
ons [35]. The [YYR] sequence occurs twice in the PrP
sequence. AA [152-YYR-154] (Fig. 3K) is situated within
the first α-helix (Fig. 5, H1) and AA [165-YYR-167] (Fig.
3L) is situated within the second β-sheet (Fig. 5, S2) of
PrPC. The charged residues in the first α-helix, especially at
residues 151, 152 and 154 (D, Y and R respectively) have
also been shown to be a determinant of conversion [36];
substitutions of neutral amino acids or oppositely charged
residues impaired conversion. Furthermore, [152-YYR-
154] (together with [140-PLIHFGNDY-148]) is part of the
of the epitope of the motif-grafted antibody containing
mouse AA 136–158, capable of selective immuno-precip-
itation of prion infectivity [34]. The [YYR] domain has
also been described as the epitope of an antibody that
selectively recognizes PrPSc [37], and is part of several anti-
body (fragment) epitopes that prevent scrapie infection in

Overview of PrPC secondary structures and antibody epitopes versus peptide-array binding pattern and Kyte-Doolittle hydrophilicity plotFigure 5
Overview of PrPC secondary structures and antibody epitopes versus peptide-array binding pattern and Kyte-
Doolittle hydrophilicity plot. Schematic representation of PrPC showing signal sequences, β-sheets (S1, S2), α-helices (H1, 
H2, H3), disulfide bridge site (S-S), glycosylation sites (CHO) and relative positions of the antibodies used in this study. The 
sequence of PrP is lined up with both the Kyte-Doolittle hydrophilicity plot (negative = hydrophobic and positive = hydrophilic) 
and the relative binding pattern found with the ovine peptide-array.
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tissue culture [18,19,23,25,26] or in a mouse model [24].
The putative domain [177-NFV-179] is the common AA
sequence of three consecutive peaks of which the fist two
peaks encompass amino acids of a peptide (correspond-
ing to AA 163–176) that inhibits in vitro conversion [15].
However, because of the third peak it is more likely that
this domain is involved in self-interaction.

The remaining lower binding areas are more difficult to
interpret. The domain consensus for the peptides 22–33
(Fig. 3A) seems to be [33-GWNTG-37], but may be a
result of a cross-interaction with WN, instead of binding
to domain [102-WNK-104] within the first high binding
area. Binding with domain consensus [42-PGQGSPGG-
49] (Fig. 3B) is relatively low and may likely be due to
cross-interaction with the proline (P) and two consecutive
glycines (G) of these peptides, instead of binding to the
consensus octarepeat domain [PxGG]. Binding with the
domains [183-VNITVKQHTVT-193] (Fig. 3N) and [192-
TTTTKGENFT-202] (Fig. 3O) is also (very) low and these
domains comprise the second helix in PrPC (Fig. 5, H2)

which in turn may explain the relative low binding due to
the structured nature of this part of the protein. It is not
clear what the importance is of these domains, but part of
the latter domain is contained within a peptide (corre-
sponding to AA 197–220) that inhibits in vitro conver-
sion [15] as well. The last low binding domain found is
[225-SQAY-228], which (together with [YYR]) is part of
the non-linear epitope of the PrPSc specific monoclonal
antibody 15B3 [18].

Several studies identified antibodies [18,19,23-26] or
peptides [15] able to inhibit prion propagation. The bind-
ing domains found with the peptide-array containing AA
corresponding with these antibody epitopes or peptides
may also be (in)directly involved in conversion. However,
the inhibitory effects of antibodies seems simply due to
steric hindrance preventing any PrP interaction at all (also
confirmed by our peptide-array blocking results), making
the binding domains corresponding to the conversion
inhibiting peptides (Fig. 3M, peak1+2 and Fig. 3O) the
more likely candidate domains influencing conversion.

Interaction of recombinant MBP-PrP with various species of PrP in Western blotFigure 6
Interaction of recombinant MBP-PrP with various species of PrP in Western blot. Samples containing either brain 
derived PrP [A] or recombinant derived PrP [B] were analyzed by SDS-PAGE and subsequent Western blotting. PrP was 
detected using MBP-PrP (left panels), MBP alone (center panels) or PrP-specific antibody 9A2 (right panels). Refer to the Meth-
ods section on "reverse detection assay" for specific details concerning immunodetection of membrane bound PrP. Aliquots 
from PrPSc negative ([A] upper panels) and PrPSc positive brain ([A] bottom panels) homogenates were either treated with 
PNGase F (PF) or proteinase K (PK) and compared to non-treated (nt) aliquots of brain homogenate. His-PrP ([B], lanes 
marked HP) was used as a positive PrP-control and MBP-PrP ([B] lanes marked MP) was used as a positive detection control. 
Arrow heads indicate the approximate position of the un-glycosylated, mono- and di-glycosylated PrP isoforms.
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Our data are in line with a theoretical two rung β-helical
model described by Langedijk et al. [38], which tries to
explain how AA sequence and secondary structure could
explain strain properties and the species barrier. The bind-
ing domains found by peptide-array are all exposed in the
periphery of the proposed fibril. The first distinct high
binding domain makes up the incoming protein chain,
whereas the second distinct high binding area forms the
loop connecting the two-rung β-helical core with the α-
helices (the outgoing protein chain). Furthermore, no
binding is observed between the two distinct high binding
areas and the AA sequence of these peptides correlate with
the predicted two rung β-helical core.

Our data provide insight in the possible interaction
domains of PrPC with itself or PrPSc, and most of the
domains identified are likely to be involved in PrPC self-
interaction. This may involve dimerisation of PrPC and/or
formation of a trimer of three PrPC molecules as suggested
in the theoretical two-rung β-helical model for PrP stack-
ing during PrPSc induced fibrillization [38]. If one of the
identified high binding domains is of influence on con-
version, this possibly is exerted during pre-oligomerisa-
tion, which is an inefficient process. On the other hand, a
direct effect on PrPC-PrPSc binding can not be excluded.

Ovine versus bovine peptide-array
In addition to the ovine peptide-array, a similar array of
overlapping 15-mer peptides bovine peptides was used.
Since there are several sequential differences between
bovine and ovine PrP this may be of influence on the
overall binding pattern found with MBP-PrP (ovine PrP).
Generally it seems that binding of MBP-PrP is somewhat
less efficient (strong) with the bovine peptide-array com-
pared to binding with the ovine peptide-array. However,
this had no significant effects on the relative binding pat-
tern. In the amino acid sequence of bovine PrP there is an
extra octarepeat as well as six amino-acid substitutions.
Only the largest differences will be discussed here. The
non-discussed differences may well be the result of minor
methodological variations when producing the peptide-
arrays.

As expected, an extra octarepeat (Fig. 3F) was evident that
confirmed the octarepeats consensus binding domain
[PHGG]. Only two out of six amino acid substitutions
were of influence on the binding pattern. At first glance
the amino acid substitutions at AA 98 and 100 (sheep
numbering used throughout) are seemingly both of influ-
ence on binding with peptides 93–97 (Fig. 3I, bo# 98–
113), allowing detection of the consensus binding
domain [102-WNK-104] only when these AA were no
longer present in the peptides. The supposedly neutral
substitution of glycine for serine at AA 100 is most likely
responsible for the observed differences in binding and

may be attributed to the greater conformational flexibility
of G, affecting availability of other AA's for interaction
with MBP-PrP. Taking this in account, binding with pep-
tides 90–92 should be a result of cross-binding with two
consecutive Glycines present in these peptides in stead of
binding with the consensus octarepeat domain. Glutama-
tic acid only contains an oxygen in place of the amido
group in glutamine and therefore these AA's are consid-
ered readily interchangeable [33]. However we observed
that the substitution of glutamatic acid for glutamine at
AA 189 did affect binding (Fig. 3N) on the bovine pep-
tide-array with peptides 179–183; Both AA's are polar, but
where glutamine interacts with other polar or charged
atoms with its polar side chains, glutamatic acid is nega-
tively charged and is frequently involved in salt-bridges
and/or glutamatic acid interacts with positive charged
AA's to form hydrogen bonds. These differences in AA
reactivity are most probably responsible for the observed
difference in binding between ovine and bovine PrP pep-
tide sequences.

Analysis and comparison of the relative (consensus) ovine
– and bovine peptide-array revealed that the detection of
potential PrP-PrP interaction domains using this method
is robust as well as sensitive to differences in structural
flexibility and/or amino acid differences. Therefore, this
peptide-array approach provides a possibly valuable tool
to assess the influence of disease associated polymor-
phisms on available interaction domains and to test for
PrP-PrP binding inhibitors potentially useful in therapy
(i.e. antibodies or peptides).

Antibody blocking of peptide-array binding pattern
All monoclonal antibodies (mab) recognizing PrP (Table
1, Fig. 5) are capable of blocking the complete binding
pattern. Differences in the antibody concentration neces-
sary for complete blocking are likely due to epitope avail-
ability and/or affinity for PrP. Complete blocking of the
binding pattern can best be explained by steric hindrance
of the antibodies preventing any interaction. It has been
described that binding of a monoclonal antibody at the
N-terminus of human PrP influences epitope availability
at the C-terminus [39] and similar events may also
attribute to completely abolishing the binding pattern.
Furthermore, structural studies of PrPSc that resulted in
prion propagation/fibrillization models [38,40,41], sug-
gest that PrP-PrP interaction depends on the structure of
the whole protein (not just the trimer or dimer core).
These findings corroborate the notion that antibodies
inhibiting prion propagation probably do so by prevent-
ing the interaction between PrPC and PrPSc or between
PrPC molecules themselves in the pre-oligomerisation
phase.
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MBP-PrP mediated detection (reverse detection) of PrP in 
Western blot
By using MBP-PrP as the detecting agent in Western blot
we showed that binding of MBP-PrP to the peptide-arrays
is PrP specific and indicative of a PrP-PrP interaction.
MBP-PrP seems to preferably detect un-glycosylated PrPC

in the scrapie negative brain homogenate. The exact rea-
son for this preference is unclear, but does not seem to be
due to the lack of glycosylated isoforms in the brain
homogenate (except after de-glycosylation with PNGase
F) as shown by immuno-detection with 9A2. It may be
possible that the determined interaction domains do not
(only) interact with the same amino acid motif (self-self),
but that an intramolecular cross-interaction between dif-
ferent domains can also occur. The peptide-array data has
revealed two high binding areas, one of which contains
the N-terminal octarepeats and the other contains the first
α-helix, second β-sheet up to the second α-helix directly
adjacent to the glycosylation sites (Fig. 5). When PrPC in
the homogenate is glycosylated this may sterically hinder
binding of MBP-PrP to PrPC. Glycosylation is suggested to
have a role in prion strain maintenance and the species
barrier [42] by modulating the fidelity of interaction,
which may explain the favorable binding of un-glyco-
sylated PrP by MBP-PrP (which is also un-glycosylated,
indicating that binding preferably occurs between com-
patible glycosylated molecules) in the scrapie negative
homogenate. However, in the scrapie positive brain
homogenate detection of PrP by MBP-PrP is more diffuse
and might suggest that MBP-PrP detection of PrP in West-
ern blot is due to interaction with both full-length PrPC as
well as full length denatured PrPSc, which is comparable
to PrPC. Alternatively, PrPSc might be partly endogenously
truncated resulting in more heterogeneous binding of
MBP-PrP to all glycosylation forms. In contrast, MBP-PrP
detects un-glycosylated PrP as well as both mono – and di-
glycosylated PrP in the scrapie positive homogenate, even
though un-glycosylated PrP usually is the lesser compo-
nent in the PrP-triplet of scrapie sheep brain samples,
which may be indicative for preferable binding of un-gly-
cosylated PrP in the scrapie positive homogenate. How-
ever interpretation of these results is difficult and in order
to elucidate the precise effects of glycosylation on binding
between PrP molecules, interaction should be studied
under more native conditions. When proteinase K treat-
ment was applied MBP-PrP did not detect PK-resistant
PrPSc. This indicates that in order for MBP-PrP to detect
PrP in brain homogenates (under the conditions used)
full length (at least containing the high binding area with
octarepeats) PrP molecules are required. It may be
hypothesized that the first high binding area containing
the octarepeats aids in stabilization of PrP self-interaction,
perhaps by intramolecular interaction with other mapped
interaction domains. This extra stabilization in turn
allows further immunodetection in Western blot (under

the conditions used). These results combined with the
results obtained by peptide-array analysis support the
concept of self-interactive domains of PrPC.

Conclusion
In summary, probing for possible interaction domains in
PrP using a solid phase PrP peptide-array revealed that
specific interactions take place between individual PrP
molecules. Ten possible consensus binding domains were
found, which includes one domain that likely is due to a
cross-reaction with the octarepeat domain consensus –
and for two domains it remains unclear what their impor-
tance is. The remaining seven domains are most likely
involved in PrPC self-interaction. Furthermore, MBP-PrP
was also capable to specifically bind to full length PrPC

and PrPSc bound PrPC in Western blot confirming PrP-PrP
specific interaction. Together these results indicate that in
addition to direct PrPC-PrPSc interactions several other
molecular interactions between PrPC molecules/
sequences themselves may also be possible, facilitating
initial steps in the oligomerisation process.

The PrP peptide-array may additionally facilitate in gain-
ing insight into effects of disease associated polymor-
phisms in PrP on PrP-PrP binding, and the subsequent
molecular conversion of PrPC into PrPSc. The (self-)inter-
action domains described here may ultimately prove use-
ful in the design of therapeutics interfering in the PrP-PrP
binding process.

Methods
MBP-PrP construct
In order to obtain the PrP gene suitable for cloning into
the pMAL Protein Fusion and Purification System (New
England Biolabs), the mature part of the sheep PrP (ARQ)
open reading frame (ORF) was PCR amplified using prim-
ers ShBo-F-DraI (GGTGGTTTTAAAAAGCGACCAAAAC-
CTGG) and Sh-R-STOP
(GGTGGTCTATGCCCCCCTTTGGTAATAAGCC). The
resulting PrP (AA25–233), without its N -and C-terminal
signal sequences, was cloned into a general TA-cloning
vector (Invitrogen) and sequenced to exclude PCR arti-
facts. The PrP fragment was subsequently sub cloned
using DraI and EcoRI into the pMAL-c2X expression vec-
tor, resulting in the maltose binding protein (MBP) fusion
to the N-terminus of PrP (MBP-PrP).

MBP-PrP expression and purification
Expression and purification by affinity chromatography
was performed as described in the manual of the pMAL
Protein Fusion and Purifications System (method I; New
England Biolabs) To improve binding of MBP-PrP to pre-
vent formation of interchain disulfide upon lysis (as sug-
gested in the protocol), β-mercaptoethanol was added.
Quantity and quality of the eluted MBP-PrP was deter-
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mined by SDS-PAGE (12% NuPAGE, Invitrogen). After
separation the gel was either stained with Sypro Orange
(total protein stain, Molecular probes) or analyzed by
Western blotting and immunodetection of MBP-PrP with
polyclonal antiserum R521-7 specific for PrP. To obtain
MBP for cross-reaction aspecificity tests, the pMAL-c2x
expression vector without insert was expressed and puri-
fied as described above.

Peptide-array analysis
Synthesis of complete sets of overlapping 15-mer peptides
were carried out on grafted plastic surfaces, covering the
ovine or bovine PrP amino acid sequence of mature PrP
(residues 25–234 of ovine and 25–242 of bovine PrP)
[43]. The plastic surface consisted of 455, 3 μl wells on a
credit-card size plastic (minicard) carrier. Peptide-arrays
covering the ovine or bovine PrP amino acid sequence of
mature PrP were custom synthesized through two differ-
ent synthesis techniques: either all peptides of the array
were synthesized in situ to the grafted plastic surface by
step-by-step amino acid coupling or the peptides were
synthesized separately and coupled as complete 15-mer
peptides to each well at their C-terminus [44-46]. In sub-
sequent ELISA analyses on the minicards, MBP-PrP was
incubated as an antigen followed by immuno-screening
with mouse anti-MBP monoclonal antibody (Mab)
obtained from New England Biolabs and rabbit anti-
mouse-IgG-peroxidase, or a rabbit anti-MBP Mab and
swine anti-rabbit-IgG-peroxidase (from DAKO, Den-
mark). Blocking studies were performed by pre-incubat-
ing the MBP-PrP with a PrP-specific Mab before
incubating the mixture as the antigen on the minicard.
The background was determined by calculating the mean
value of 20 peptides with low density values of which at
least 5 peptides were in consecutive order. The relative
density value (r.d.v.) was calculated by dividing the opti-
cal density value (o.d.v.) by the background and binding
was considered relevant when at least 3 consecutive pep-
tides showed binding values of at least 3 times the back-
ground.

Production of monoclonal antibody 6C2
Monoclonal antibody 6C2 was newly prepared using PrP-
knockout mice immunized with peptide KTNMKHVA-
GAAAAG (ovine PrP109–122), conjugated through a
cysteine at its C-terminus to Keyhole limpet hemocya-
nine, using previously described procedures for synthesis
and screening [47]. In ELISA and Western blot antibody
6C2 binds respectively to ovine – and bovine recom-
binant PrP and ovine – and bovine PrPres at the approxi-
mate residues HVAGAAA as determined by peptide
mapping analysis using an ovine peptide-array.

Antibody aggregation test
Each reaction contained 500 ng MBP-PrP and mono-
clonal antibody in PBS containing 0.05% Tween80. For
each antibody the inhibitory concentration as well as an
excess concentration (max. 25 μg/ml) was tested. The
reaction was incubated for 1 hour at room temperature
and subsequently centrifuged for 30 minutes at 20,000 ×
g. Most of the supernatant was transferred to a new tube
except approximately 3–5 μl to prevent disturbance of the
pellet. The pellet fraction was dissolved in 0.1% SDS by
sonification. Both fractions were subjected to methanol
precipitation and analyzed by SDS-PAGE (12%,
NuPAGE), Western blot and immunodetection using
either R521-7 (rabbit anti-PrP serum [48]) and swine anti-
rabbit-IgG-peroxidase (PrP detection) or rabbit anti-
mouse-IgG-peroxidase (antibody detection). The relative
amount of MBP-PrP or antibody band(s) detected as fluo-
rescent signal (f.s.) in Western blot was determined by
using the ECF substrate for detection and the Molecular
Dynamics ImageQuant software for quantification. Sub-
sequently the mean percentages of MBP-PrP or antibody
in the soluble (supernatant) fraction (f.s.sup/(f.s.sup+f.s.pel)
were calculated.

PrPSc purification and analysis
PrPSc was isolated from brain tissue of clinically ill scrapie
sheep. PrP genotypes were determined by Sanger sequenc-
ing of the full PrP-ORF as described before [49]. PrPSc was
purified by ultracentrifugational pelleting from sarcosyl-
homogenated brains as described previously [3,50]. The
final pellets were sonicated in phosphate-buffered saline
containing 1.0% SB 3–14. Yields of PrPSc were quantified
by SDS-PAGE (12% NuPAGE) and Western blotting using
antiserum R521-7.

Reverse detection assay
Confirmed scrapie positive and negative 10% sheep brain
homogenates were digested with either proteinase K (PK)
or PNGase F and compared to the non-treated samples. A
separate aliquot of 10% brain homogenate was treated
with 35 μg/ml PK for 1 hour at 37°C. Another aliquot was
denatured by adding 1/10 volume denaturing buffer (5%
sodium dodecyl sulphate and 10% β-mercaptoethanol in
20 mM Tris-HCl- 150 mM NaCl- 2 mM EDTA [pH 7.5])
for and subsequent heating 10 min. at 96°C. This aliquot
was de-glycosylated in the presence of 1000 U PNGase F/
ml for at least 36 hours at 37°. Untreated, PK treated –
and PNGase F treated brain homogenates samples were
analyzed by SDS-PAGE and Western blot. As positive con-
trols His-PrP (positive PrP control) and MBP-PrP (positive
detection control) were included. Reverse detection of PrP
was accomplished by incubating the Western blot for 1
hour at room temperature with approximately 2 ng/μl
MBP-PrP followed by immunodetection using mouse
anti-MBP monoclonal antibody and rabbit anti-mouse-
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IgG-peroxidase (RAMPO). PrP was also detected on West-
ern blot using the PrP-specific monoclonal antibody 9A2
and RAMPO. To determine if detection is PrP specific, a
Western blot was carried out with MBP alone instead of
MBP-PrP.
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