16 research outputs found

    Lu-Hf isotopic memory of plume-lithosphere interaction in the source of layered mafic intrusions, Windimurra Igneous Complex, Yilgarn Craton, Australia

    No full text
    Most layered mafic intrusions (LMI) are formed via multiple magma injections into crustal magma chambers. These magmas are originally sourced from the mantle, likely via plume activity, but may interact with the overriding lithosphere during ascent and e

    Molybdenum isotope systematics in cumulate rock of the 2.8 Windimurra layered intrusion: A test for igneous differentiation and the composition of the Archean mantle

    No full text
    Molybdenum isotopes (reported as δ98Mo relative to NIST-3134) show resolvable isotope differences in igneous rocks with the continental crust being markedly heavier in isotope composition than mid-ocean ridge lavas, lunar basalts or the Earth's mantle. The tholeiitic differentiation series at the intra-plate Hekla volcano (Iceland) shows no resolvable Mo isotope differences from basaltic to rhyolitic compositions. In contrast, convergent margin lavas show a transition from isotopically lighter mantle to heavy continental crust, suggesting that subduction processes drive continental crust towards heavier values. Archean komatiitic lavas, presumed probes of the Archean mantle, have Mo isotope values identical to modern depleted mantle, raising the questions if and how the Mo isotope crust-mantle disparity developed so early in Earth's history. Here we present new Mo isotope data for a set of cumulate rocks from the Upper Zone of late Archean (2.8 Ga) Windimurra Igneous Complex, a mafic/ultramafic layered intrusion. The intrusion is not subduction related and contains no apparent primary hydrous minerals. We tested the effect of crystal fractionation on Mo isotopes in relatively dry melt along a tholeiitic liquid line of descent by using the cumulate effect of normally anhydrous minerals in the layered intrusion. Near mono-mineralic olivine-pyroxene-rich, feldspar-rich and Fe-Ti-rich oxides show small variations (~0.15‰) in Mo isotope signatures. This is consequently to predominantly isotopically light Fe-Ti-oxide-rich and isotopically heavier feldspar-rich rocks, respectively. This is suggesting minor Mo isotope fractionation, even in dry, tholeiitic systems, which however, counterbalance each other and thus potentially remain undetected. On average, the Windimurra mantle source is indistinguishable, or slightly isotopically lighter than the Mo isotope signature of komatiites. This is reinforcing an isotopically light Mo isotope signature of Archean mantle sources of high-degree mantle melts and is extending these signatures to predominantly mafic Archean crust. It remains to be tested if Archean felsic crust resembles modern continental crust in its heavy isotope values and to which extend the mantle was already isotopically depleted in Mo isotopes at Mesoarchean time

    Ti–V magnetite stratigraphy of the Upper Zone of the Windimurra Igneous Complex, Western Australia

    No full text
    Layered mafic intrusions (LMI) are stratified igneous bodies, with many examples that are economically significant for a number of metals including chromium, platinum group elements, vanadium, titanium, and iron. The Windimurra Igneous Complex (WIC) of the central Murchison Domain, Western Australia, the largest layered mafic intrusion in Australia, comprises a giant (2500 km2) LMI, with an interpreted thickness of approximately 11 km. The Upper Zone is free of primary hydrous minerals and contains ore-grade Fe-enrichment discoveries up to 66.6 wt% FeOt. Elevated Ti, V and Cr in magnetite at the base of the Upper Zone, and high Cr in the Middle Zone, combined with structural observations in the field, are consistent with injection of two separate magmatic pulses. In this study, four deep diamond drill cores and 92 reverse circulation drill holes from the Upper Zone and uppermost Middle Zone of the WIC sample a near continuous section of 820 m in the Upper Zone, including numerous magnetite-rich horizons. An increase in the whole-rock TiO2/V2O5 upward in the Upper Zone, a decrease in the frequency of magnetite-rich horizons, and an increase upwards in P content, have been used in combination with airborne magnetic surveys, to develop a magnetic stratigraphy for the Upper Zone. The stratigraphy reflects the prospectivity for magnetite, vanadium and chromium, all of which are more abundant at or near the base of the Upper Zone. Such exploration vectors can be used to better target local iron, vanadium as well as chromium mineralization, much of which appear spatially associated with the Upper Zone’s basal contact.The project was funded by an Australian Research Council linkage grant to RJA and John Mavrogenes (Australian National University) in collaboration with Maximus Resources Ltd, and the GSWA

    Upper zone of the Archean Windimurra layered mafic intrusion, Western Australia: Insights into fractional crystallisation in a large magma chamber

    No full text
    Layered mafic intrusions (LMI) are large, stratified igneous bodies of great economic significance. The constitutive crustal magma chamber(s) supplied by mantle-derived magma pulses exhibit complex mineralogical and chemical layering. Current magma chamb

    Upper zone of the Archean Windimurra layered mafic intrusion, Western Australia: Insights into fractional crystallisation in a large magma chamber

    No full text
    Layered mafic intrusions (LMI) are large, stratified igneous bodies of great economic significance. The constitutive crustal magma chamber(s) supplied by mantle-derived magma pulses exhibit complex mineralogical and chemical layering. Current magma chamb

    Platy pyroxene: New insights into spinifex texture

    Get PDF
    New evidence has emerged for a different type of platy spinifex texture that has not previously been documented in the existing literature, in this case from 2.8 Ga high-Mg basalts in the Murchison Domain of the Yilgarn Craton, where petrographic and geochemical evidence shows that the dominant platy mineral is pyroxene, rather than olivine. In our samples, two scales of plates are evident. Larger plates have lengths and widths that are approximately equal and range from ~1000 to 15 000 mm, with thicknesses typically ≲120 mm. These plates have ≲25 mm thick augite rims, and cores that are now a mixture of low-temperature hydrous alteration minerals. They occur in sets of similarly oriented crystals, and typically intersect other sets of crystals at oblique angles. A second population of smaller augite-only plates occur within the interstices of the larger plates; they have lengths and widths that range from 200 to 1500 mm, and thicknesses that are typically ≲50 mm. Pyroxene dendrites are also a typical component of this texture and represent a third scale of crystal growth, which probably crystallized shortly before the remaining liquid quenched to glass. All scales of pyroxene contained within this texture exhibit skeletal features and are considered to have crystallized rapidly. We discuss possible conditions that led to the crystallization of platy habits instead of the typical acicular ones. The exposed volcanic sequence in our study area is volcanologically similar to other Archean komatiites, such as those from the 2.7 Ga Abitibi greenstone belt, for example, and has probably experienced a similar cooling history; however, apart from having similar textures, we cannot demonstrate a komatiitic association. Liquid compositions, estimated from chilled flow margins, are distinctly lower in MgO (14.4-15.8wt %) and higher in SiO2 (50.9-52.1wt %) than those for most platy olivine spinifex-textured komatiites; from these compositions, we calculate dry liquidus temperatures of 1312-1342°C and mantle potential temperatures of 1440-1480°C. On the basis of these temperatures we question whether a mantle plume is a necessary element of their petrogenesis. 'Platy olivine spinifex' is an igneous texture that characterizes komatiites and its observation in outcrops or drill core (typically prior to, or in lieu of chemical analysis) leads geologists to classify a rock as a komatiite. Field descriptions may therefore drive assumptions and interpretations surrounding the prevailing tectonic or geodynamic setting at the time of emplacement. We emphasize the importance of careful discrimination between a variety of spinifex textures within a local volcanological framework and caution against the habit of making direct interpretations of rock type based on the existence of spinifex textures alone. © The Author 2017.British Geological Survey, Australian Research Council, University of Sydney, University of Western Australia, Western Universit

    Time-temperature evolution of microtextures and contained fluids in a plutonic alkali feldspar during heating

    No full text
    Microtextural changes brought about by heating alkali feldspar crystals from the Shap granite, northern England, at atmospheric pressure, have been studied using transmission and scanning electron microscopy. A typical unheated phenocryst from Shap is composed of about 70 vol% of tweed orthoclase with strain-controlled coherent or semicoherent micro- and crypto-perthitic albite lamellae, with maximum lamellar thicknesses 700°C, and after >48 h at 700°C, all such regions were essentially compositionally homogeneous, as indicated by X-ray analyses at fine scale in the transmission electron microscope. Changes in lamellar thickness with time at different T point to an activation energy of ~350 kJmol-1. A lamella which homogenised after 6,800 h at 600°C, therefore, would have required only 0. 6 s to do so in the melting interval at 1,100°C. Subgrains in patch perthite homogenised more slowly than coherent lamellae and chemical gradients in patches persisted for >5,000 h at 700°C. Homogenisation T is in agreement with experimentally determined solvi for coherent ordered intergrowths, when a 50-100°C increase in T for An1 is applied. Homogenisation of lamellae appears to proceed in an unexpected manner: two smooth interfaces, microstructurally sharp, advance from the original interfaces toward the mid-line of each twinned, semicoherent lamella. In places, the homogenisation interfaces have shapes reflecting the local arrangements of nanotunnels or pull-aparts. Analyses confirm that the change in alkali composition is also relatively sharp at these interfaces. Si-Al disordering is far slower than alkali homogenisation so that tweed texture in orthoclase, tartan twinning in irregular microcline, and Albite twins in albite lamellae and patches persisted in all our experiments, including 5,478 h at 700°C, 148 h at 1,000°C and 5 h at 1,100°C, even though the ensemble in each case was chemically homogeneous. Nanotunnels and pull-aparts were modified after only 50 min at 500°C following the simulated40Ar/39Ar step-heating schedule. New features called 'slots' developed away from albite lamellae, often with planar traces linking slots to the closest lamella. Slot arrays were often aligned along ghost-like regions of diffraction contrast which may mark the original edges of lamellae. We suggest that the slot arrays result from healing of pull-aparts containing fluid. At 700°C and above, the dominant defects were subspherical 'bubbles', which evolved from slots or from regions of deuteric coarsening. The small degree of partial melting observed after 5 h at 1,100°C was often in the vicinity of bubbles. Larger micropores, which formed at subgrain boundaries in patch perthite during deuteric coarsening, retain their shape up to the melting point, as do the subgrain boundaries themselves. It is clear that modification of defects providing potential fast pathways for diffusion in granitic alkali feldspars begins below 500°C and that defect character progressively changes up to, and beyond, the onset of melting

    Time-temperature evolution of microtextures and contained fluids in a plutonic alkali feldspar during heating

    No full text
    Microtextural changes brought about by heating alkali feldspar crystals from the Shap granite, northern England, at atmospheric pressure, have been studied using transmission and scanning electron microscopy. A typical unheated phenocryst from Shap is composed of about 70 vol% of tweed orthoclase with strain-controlled coherent or semicoherent micro- and crypto-perthitic albite lamellae, with maximum lamellar thicknesses 700°C, and after >48 h at 700°C, all such regions were essentially compositionally homogeneous, as indicated by X-ray analyses at fine scale in the transmission electron microscope. Changes in lamellar thickness with time at different T point to an activation energy of ~350 kJmol⁻¹. A lamella which homogenised after 6,800 h at 600°C, therefore, would have required only 0.6 s to do so in the melting interval at 1,100°C. Subgrains in patch perthite homogenised more slowly than coherent lamellae and chemical gradients in patches persisted for >5,000 h at 700°C. Homogenisation T is in agreement with experimentally determined solvi for coherent ordered intergrowths, when a 50-100°C increase in T for An₁ is applied. Homogenisation of lamellae appears to proceed in an unexpected manner: two smooth interfaces, microstructurally sharp, advance from the original interfaces toward the mid-line of each twinned, semicoherent lamella. In places, the homogenisation interfaces have shapes reflecting the local arrangements of nanotunnels or pull-aparts. Analyses confirm that the change in alkali composition is also relatively sharp at these interfaces. Si-Al disordering is far slower than alkali homogenisation so that tweed texture in orthoclase, tartan twinning in irregular microcline, and Albite twins in albite lamellae and patches persisted in all our experiments, including 5,478 h at 700°C, 148 h at 1,000°C and 5 h at 1,100°C, even though the ensemble in each case was chemically homogeneous. Nanotunnels and pull-aparts were modified after only 50 min at 500°C following the simulated ⁴⁰Ar/³⁹Ar step-heating schedule. New features called 'slots' developed away from albite lamellae, often with planar traces linking slots to the closest lamella. Slot arrays were often aligned along ghost-like regions of diffraction contrast which may mark the original edges of lamellae. We suggest that the slot arrays result from healing of pull-aparts containing fluid. At 700°C and above, the dominant defects were subspherical 'bubbles', which evolved from slots or from regions of deuteric coarsening. The small degree of partial melting observed after 5 h at 1,100°C was often in the vicinity of bubbles. Larger micropores, which formed at subgrain boundaries in patch perthite during deuteric coarsening, retain their shape up to the melting point, as do the subgrain boundaries themselves. It is clear that modification of defects providing potential fast pathways for diffusion in granitic alkali feldspars begins below 500°C and that defect character progressively changes up to, and beyond, the onset of melting.26 page(s

    A new period of volcanogenic massive sulfide formation in the Yilgarn: a volcanological study of the ca 2.76 Ga Hollandaire VMS deposit, Yilgarn Craton, Western Australia

    No full text
    The Archean Hollandaire volcanogenic massive sulfide deposit is a felsic–siliciclastic VMS deposit located in the Murchison Domain of the Youanmi Terrane, Yilgarn Craton, Western Australia. It is hosted in a succession of turbidites, mudstones and coherent rhyodacite sills and has been metamorphosed to upper greenschist/lower amphibolite facies and includes a pervasive S1 deformational fabric. The coherent rhyodacitic sills are interpreted as syndepositional based on geochemical similarities with well-known VMS-associated felsic rocks and similar foliations to the metasediments. We offer several explanations for the absence of textural evidence (e.g. breccias) for syn-depositional origins: 1) the subaqueous sediments were dehydrated by long-lived magmatism such that no pore-water remained to drive quench fragmentation; 2) pore-space occlusion by burial and/or, 3) alteration overprinting and obscuring of primary breccias at contact margins. Mineralisation occurs by sub-seafloor replacement of original host rocks in two ore bodies, Hollandaire Main (~125 x >500 m and ~8 m thick) and Hollandaire West (~100 x 470 m and ~5 m thick), and occurs in three main textural styles, massive sulfides, which are exclusively hosted in turbidites and mudstones, and stringer and disseminated sulfides, which are also hosted in coherent rhyodacite. Most sulfides have textures consistent with remobilisation and recrystallisation. Hydrothermal metamorphism has altered the hangingwall and footwall to similar degrees, with significant gains in Mg, Mn and K and losses in Na, Ca and Sr. Garnet and staurolite porphyryoblasts also exhibit a footprint around mineralisation, extending up to 30 m both above and below the ore zone. High precision thermal ionisation mass spectrometry of zircons extracted from the coherent rhyodacite yield an age of 2759.5 ± 0.9 Ma, which along with geochemical comparisons, places the succession within the 2760–2735 Ma Greensleeves Formation of the Polelle Group of the Murchison Supergroup. Geochemical and geochronological evidence link the coherent rhyodacite sills to the Peter Well Granodiorite pluton ~2 km to the W, which acted as the heat engine driving hydrothermal circulation during VMS mineralisation. This study highlights the importance of both: detailed physical volcanological studies from which an accurate assessment of timing relationships, particularly the possibility of intrusions dismembering ore horizons, can be made; and identifying synvolcanic plutons and other similar suites, for VMS exploration targets in the Youanmi Terrane and worldwide
    corecore