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Abstract 

Newlands and Bobbejaan kimberlites, South Africa, contain suites of highly chromian, 
garnet-rich peridotites amongst their xenolith population and an investigation of these xenoliths has 
been targeted because there is an overlap of mineral compositions with the garnet-chromite-olivine 
paragenesis found as inclusions in diamonds. A high proportion of garnets and chromites in these 
rocks plot in the diamond facies fields on Cr 203-CaO and Cr 203-MgO wt. % plots respectively. 
However, it has also been found that many Cr-rich assemblages are clinopyroxene-bearing 
(lherzolitic) as well as harzburgitic (i.e. forming a range of chromite-garnet peridotite assemblages). 
Many samples have garnets with inclusions of serpentine ± chromite (+ clinopyroxene inlherzolitic 
samples) whose arrangement are sometimes indicative of exsolution or annealed exsolution textures. 
Initial bulk REE patterns were calculated for the pre-exsolution, pre-metasomatism, high-Cr garnets. 
The patterns found are humped for harzburgitic samples and relatively flat for lherzolitic ones. These 
appear to be closely linked to the concentration of Ca in garnet indicative of a single-stage formation 
process for the humped profiles. The profiles were later modified by exsolution of pyroxenes (with a 
clear link between Ca content of garnet and the garnet/clinopyroxene partition coefficients) and, in a 
few cases, by metasomatism causing a zonation of REE. 

Most of the garnets have strongly developed zonation patterns which are a result of diffusion 
towards the matrix (external zonation) followed by zonation towards inclusions (internal zonation). 
Cr-Al and Mg-Ca inter-diffuse in both types of zonation; Ti may also be strongly zoned, whereas Fe is 
not distinctly zoned in any sample. External zonation may be divided into 'P-T re-equilibration' and 
'metasomatic' types, where the former type conforms to down-P-T garnet-spinel transition reaction 
simulations and the latter does not. All internal zonations conform to down P-T reaction simulations. 
All the zonation profiles conform well to diffusion controlled reaction models. External P-T re-
equilibration is modelled to have occurred on an order of magnitude greater timescale than internal 
zonation (-5 Ma compared to —0.5 Ma using DM2 = 10 20m2/s). Metasomatic zonation occurs over the 
longest diffusion distances and is modelled to have timescales up to 20 Ma. Based upon the 
geometries of chemical heterogeneity in the minerals analysed, a sequence of events has been 
proposed for the evolution of the Newlands and Bobbejaan samples: (1) Earliest known mineralogy. 
There is little evidence for the events prior to and during this stage. However, the modal mineralogy is 
postulated to have been more garnet and olivine-rich than seen in the samples and the crystals more 
chemically homogeneous. The P and Tin samples are modelled to have the highest Ps and Ts of all 
stages (potentially > 65kb and> 1350°C). (2) Exsolution. This stage represents the initiation of an 
event which significantly lowered P and T where spinel and pyroxene exsolved from garnet. (3a) 
External zonation - P-I re2equilibration and metasomatism. These events are contiguous with stage 2 
and P-T estimates for this stage indicate further lowering of P and T. This is accompanied by 
modification of a few samples by the infiltration of metasomatic fluid. (3b) Internal zonation - P-T re-
equilibration. This stage represents the final lowering of P and T, yielding final P-I estimates on 
clinopyroxene inclusion-garnet boundaries of 38-50 kb and 900-1150°C. These P-I estimates place 
samples plot on a relatively cool continental steady state geotherm. (4) Kimberlite eruption. 

The initial formation of the garnet-rich rock types with their (calculated) highly chromian 
composition and particular initial REE compositions appears to be related to a major depletion event 
with subsequent burial. Differential interaction with a CO 2-bearing fluid would generate the range of 
harzburgitic and lherzolitic compositions found. However it is acknowledged that this is difficult to 
determine and constrain because of the lack of preservation of evidence prior to Stage 2.The down-P-
T event has a similar timescale and associated uplift rate to be related to continent-continent collision 
according to the timescales for diffusion. The contemporaneous metasomatism leads to postulation 
that the event may have been related to the continental accretion of the eastern and western parts of 
the Kaapvaal craton in the late Archaean. In terms of the relation to diamond, it was found that 
samples with high-Cr harzburgitic garnets tended to yield P-T estimates that were most substantially 
into the diamond stability field based upon the Cr-Al partitioning between garnet and spinel and also 
modelling the samples using the computer programme known as 'Perplex'. Clinopyroxene-bearing 
samples (i.e. those with a bulk rock composition higher in Ca) tended to indicate higher temperatures 
of equilibration. Cr-spinels from the harzburgitic paragenesis have higher Mg and lower Ti than the 
lherzolitic Cr-spinels, but overlapping Cr compositions at high Cr and may be differentiated on Cr-Mg 
and Cr-Ti compositional plots. 
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1. Introduction 

1.1 Background 

After discovery of the 'type-locality' kimberlite in Kimberley, South Africa, 120 

years ago, it was noted that a particular suite of minerals were associated with 

kimberlites. Wagner (1914) used the principles of crystal chemistry and crystal 

structure to suggest that some of these minerals were high-pressure phases that likely 

crystallised in the upper mantle. These crystals and associated rounded ultramafic 

inclusions were interpreted as accidental inclusions (i.e. xenocrysts and xenoliths) in 

the kimberlite magma because of their ultrabasic nature compared to the K-, CO3-

rich host. The controversy arose as to whether diamond was a xenocryst in kimberlite 

or a kimberlite phenocryst. 

The discovery of diamondiferous xenoliths was made by Bonney (1899), which 

confirmed that most diamond is likely to be derived from disaggregated mantle 

material and thus a xenocryst in kimberlite. Further strong evidence for a xenocrystal 

origin came with dating evidence (e.g. Richardson et al., 1984) that diamonds were 

thousands of millions of years older than their host kimberlites. Kimberlite-hosted 

diamondiferous xenolith rock types have been desbribed petrographically in 

Williams (1932) and more recent chemical data are as follows for different diamond-

bearing rock types: 

• eclogite, e.g. Rickwoodetal. (1969) 

• garnet lherzolite, e.g. Dawson and Smith (1975) 

• garnet dunite, e.g. Sobolev et al. (1969) 

• garnet harzburgite, e.g. Viljoen et al. (1994) 

Diamond inclusion mineral sets broadly conform to these main parageneses with a 

major distinction between eclogitic and peridotitic parageneses (Meyer, 1975). 
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However, in detail the dominant peridotitic inclusion suite in diamonds is more 

refractory than that seen in many peridotite xenoliths - it commonly lacks 

clinopyroxene and contains chromite together with other minerals characterised by 

low Ca, high Cr and high MgI(Mg+Fe). Thus explanations of the origin of these 

refractory compositions have been sought (e.g. Harte et al., 1980; Schulze, 1986; 

Sobolev et al., 1969). The distinctive peridotitic paragenesis in diamond may be 

referred to as the diamond-chromite-ifarnet harzburgite assemblage. This project 

has been concerned with a wider range of chromite-garnet peridotite assemblages 

where peridotite may be.harzburgitic or lherzolitic. 

High pressure and temperature experimental studies on mantle rock compositions 

have given rise to an ever expanding set of geothermometers and geobarometers that 

utilise temperature- and pressure-sensitive compositional parameters in minerals to 

estimate temperature and pressure. More recent studies have been successful at 

linking pressure and temperature estimates from suites of mantle xenoliths to 

geophysical heat flow models for the change in temperature with depth e.g. 

McKenzie et al. (2005). 

The development of highly sensitive analytical techniques has allowed investigators 

to accurately determine the concentrations of major and trace elements and isotopes 

in mantle minerals. The electron microprobe (EMP) and ion microprobe (secondary 

ionisation mass spectrometry (SIMS) technique) have the advantage of being able to 

measure major and trace element concentrations (respectively) in situ on a polished 

rock surface with a C 30 Am diameter analysis volume. This means that the spatial 

context of chemical variation in minerals can be recorded with high precision and 

minimal contamination effects. The harzburgitic diamond inclusion paragenesis has 

been analysed by these techniques (e.g. Harte et al., 1980 by EMP and Shimizu and 

Richardson, 1987 by ion microprobe SIMS). Additionally, isotope ratios have been 

determined by means of mass spectrometry techniques for syngenetic inclusions (e.g 
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Sm-Nd by Richardson et al., 1984 and Re-Os by Pearson et al., 1997) which have 

yielded isochron and model ages for the harzburgitic diamond inclusion paragenesis. 

The thrust of this thesis is to define and account for the formation of the chromite -

garnet yeridotite assemblages (CGPA) in terms of their petrography and 

geochemistry utilising modem analytical techniques. This is achieved by the study of 

collections of xenoliths from Newlands and Bobbejaan kimberlites that commonly 

contain chromite and, in some cases, minerals of comparable composition to those 

found as diamond inclusions. The application of phase equilibria and thermodynamic 

models to the emergent data allows further appreciation of the nature of the diamond-

chromite-gãmet harzburgite paragenesis and an appreciation of the role it plays in a 

wider mantle context. 

1.2 Overall Aims of the Thesis 

The aims of the thesis are as follows: 

To establish the petrographic constraints of the CGPA. i.e. modal mineralogy, 

texture, grain size of the rocks. 

To quantify the composition of the CGPA. i.e. major, minor trace element 

chemistry of minerals and any zonation that may be present. 

To interpret compositional information in its spatial/petrographic context and 

in relation to coexisting phases. This will be done using major and trace 

element concentrations analysed in coexisting minerals to estimate P-T 

conditions of formation and equilibration. Trace elements will also be used to 

assess the role of melts/fluids as modifying agents in the COPA of the 

mantle. 

To assess existing models for their ability to explain compositional and 

petrographic features noted for the CGPA, and clarify which mechanisms 

should be invoked for generating and modifying Archaean sub-continental 

lithospheric mantle. 
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5. Endeavour to supplement information for identifying regions of diamond 

stability in the lithosphere and identifying distinctive geochemical trends. 

1.3 Thesis Layout 

The thesis comprises 10 chapters each having figures embedded into the text. Each 

chapter has an introductory part designed to give the reader an idea of the particular 

focus and aims of the chapter and any relevant literature that the chapter builds on. 

Additionally, comment is made on the importance the chapter has for understanding 

the chromite-garnet-peridotite assemblages. At the end of each chapter is a summary 

of the main emergent points that are used for synthesis in the final chapter. Since the 

chapters are reasonably specific, a reference list is provided at the end for each 

individual chapter. 

1.4 Chapter Synopsis 

Chapter 2 - Previous Work and Project Rationale 

An overview of the current state of knowledge about the sub-continental mantle 

lithosphere is presented. This includes methods for estimating the composition of the 

upper mantle, the depth of the lithosphere-asthenosphere boundary, the variation of 

temperature with depth (and hence the constraints on diamond stability), the age and 

modifying processes acting on the mantle rocks themselves. The way in which this 

thesis relates to previous studies is explained and the aims of the thesis justified in 

terms of the new information it will add to existing mantle knowledge. 

Chapter 3—Sampling and Petrography 

Information about the sampling localities is presented and a description of the style 

of sampling is made. The petrography section starts with a guide to the nomenclature 

used for rock type definition. Then the quantification of the grain size, mineralogy, 

modal mineralogy and texture of the samples is presented. These data are used to 

define rock types (i.e. garnet harzburgite/lherzolite) and to make a necessary 

classification of 'sample types', which is important for justifying chemical 
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relationships in later chapters. Individual samples that illustrate the differences 

between each of the sample types are described in more detail. 

Chapter 4- Major Element Compositions 

The chapter compares electron microprobe analyses of garnet, spinel, clinopyroxene, 

olivine and orthopyroxene from Newlands and Bobbejaan kimberlite concentrate to 

analyses from other kimberlites in the 'Barkly West region' (Leicester and Frank 

Smith kimberlites). These are compared with databases of analyses from southern 

African kimberlite concentrate and also a concentrate from glacial till in a 

diamondiferous source region in the Northwest Territories of Canada. Existing 

compositional classifications are used and compared with the petrology and major 

elefnent chemistry of the Newlands and Bobbejaan samples. 

Chapter 5 - Major Element Zonation in Minerals 

Electron microprobe traverses across minerals in samples are described with 

particular profiles and X-ray maps being referred to in Appendix II and III (on data 

CD). A subset of samples that display clear examples of garnet zonation trends are 

selected and described systematically in terms of the sample types that are affebted, 

the chemical substitution that occurs, and the core-rim direction of zonation shown 

on a Ca vs. Cr plot. The zonation types are classified using terminology that relates 

to the sample type classification in Chapter 3. The zonation types are compared to 

previous studies of mantle garnet zonation illustrating the overlap between 

classification schemes. 

Chapter 6— Phase Relations 

Firstly the equilibria associated with garnet peridotite are defined. Analyses of 

coexisting garnet, clinopyroxene and spine] are calculated as cation concentrations 

and cation ratios and are plotted in Cr-present compositional space using tie line on 

triangular and tetrahedral plots. The relationships discovered in the range of rock 

compositions present for Newlands and Bobbejaan samples are shown to conform to 

particular equilibria utilising specific reactions. The chapter provides grounds for the 

geothermobarometry in Chapter 7. 
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Chapter 7— Geothermobarometry 

Several appropriate, existing geothermometers and geobarometers are applied to the 

samples and the results plotted relative to major reaction lines and isopleths from 

experimental studies on peridotitic systems. The relation of coexisting mineral 

compositions to estimates of pressure and temperature for the samples is made with a 

suggestion as to potential use of a geothermobarometer for coexisting garnet-spinel 

and garnet-spinel-clinopyroxene in the system CMASCr. Additionally the result of 

thermodynamic modeling using a newly developed computer programme known as 

'Perplex' is presented. 

Chapter 8— Diffusion in Garnet 

Diffusion profiles are shown for particular zoned and unzoned initial garnets using 

information from experimental studies. An appraisal of existing major element 

diffusion coefficients in garnet from experimental studies is made. An error function 

model for diffusion is used in conjunction with a suitable diffusion coefficient for 

pressures and temperatures relevant to the samples (Chapter 7) and applied to their 

zonation profiles. Finally, the likely range of timescales over which diffusion is 

thought to operate is calculated and discussed. 

Chapter 9—Trace Element Compositions 

The range of trace element analyses of minerals from a subset of samples (described 

in chapter 3 and 5) by ion microprobe is documented. Data is presented as 

concentration/chondritic concentration spidergrams and also as divariant plots with 

samples divided into harzburgitic and lherzolitic groups, with the high-Ca varieties 

differentiated. Existing models for generating humped REE (rare earth element) 

profiles in garnets are reviewed and assessed and then compared to the garnet and 

clinopyroxene compositions in Newlands and Bobbejaan samples. 

Chapter 10— Synthesis, Wider Implications and Further Work 

In the final chapter the main emergent conclusions of the thesis are synthesised into a 

multi-stage history for the Newlands and Bobbejaan samples. The main conclusions 

are discussed with their relevance to current areas of mantle research and also to 
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commercial diamond exploration strategies. Finally there is discussion of the 

potential new lines of investigation that this study has uncovered in the 'Further 

Work' section. 

Appendices 

Appendix I - Analytical techniques comprises a summary of the analytical techniques 

including detailed documentation of the techniques involved in petrography, electron 

microprobe analysis and ion microprobe (SIMS) analysis. There is also 

documentation of the preparation procedure followed for the generation of a 

chromite standard. 

Appendix II - EMP Traverses comprises tabulated sample classification based on 

petrography and also tabulated measured diffusion distances from the EMP traverses. 

A summary of the core and rim compositions in garnets and of coexisting mineral 

compositions are shown. Annotated EMP traverses across minerals in samples are 

included on the data CD (see back cover). 

Appendix III X-ray Maps comprises a description of the technique and all the 

major element X-ray maps for samples with the individual analytical operating 

conditions for the EMP are included on the data CD (see back cover). 

Appendix IV - EBSD (electron backscatter diffraction) comprises the EBSD data 

used to establish mineral orientation in samples whose grain size was indeterminable 

from light microscopy. 

Appendix V - Trace Element Compositions comprises a summary table of trace 

element data for the samples analysed by ion microprobe SIMS with the complete 

analyses included on the data CD (see back cover). 

Appendix VI - Raw Data is a data CD-ROM (pocket at end of Appendices, inside 

the back cover) containing all EMP and IMP data obtained for the thesis in the form 

of Excel spreadsheets. Corel Draw files are provided for the X-ray map images for 

each sample analysed by this technique and the accompanying raw images may also 

be found in this folder. All petrographic photographs of the samples are also included 

on the CD. 
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2. Previous Work and Project Rationale 

This chapter aims to summarise the types of studies that have established the current 

understanding of the mineralogy, rock types, thermal structure and age of the mantle 

lithosphere. Previous work is summarised by looking at early knowledge of the 

mantle and then focussing on particular mantle samples such as diamond inclusions, 

kimberlite concentrate and mantle xenoliths. Particular emphasis is placed on the 

peridotitic minerals and mineral assemblages from diamond inclusions, kimberlite 

concentrate and mantle xenoliths. 

The current areas of mantle research are outlined subsequently with brief 

descriptions of the types of scientific advances that are currently being made. Lastly, 

the studies that specifically led up to this project are discussed with reference to the 

new questions they raise and, hence, providing the rationale for this study. 

2.1 Early knowledge of the mantle 

2i .1 Seismic evidence - boundary layers 

In 1909 Molioroviió discovered the boundary between the earth's crust and mantle, 

now called the Moho. It was discovered by the way that seismic P waves increase in 

velocity below this boundary. Therefore the mantle had to be primarily composed of 

solid material of a higher density than the crust. The depth of the Moho varies from 5 

km beneath mid ocean ridges to 75 km beneath continents. The uppermost mantle is 

relatively cold, cools by conduction and behaves in a rigid fashion and is called the 

mantle lithosphere. The lithosphere-asthenosphere boundary (LAB) was originally 

identified by a low seismic velocity zone at about 200 km beneath continents (Fig. 

2. 1), thought to represent a region of partial melting, hence a slowing of seismic 

waves. The asthenospheric upper mantle temperature-depth profile was modelled to 

as conductive and convective in 1950s and found to conform to the convective model 

in the 1960s according to Turcotte and Oxburgh (1972). McKenzie (1989) and 

McKenzie et al. (2005) provide models for the continental geotherm which takes into 
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account conduction and convection and also a model for the thermal conductivity of 

different crust and upper mantle rock compositions. 

temperature (°C) 

0 	 500 	 1000 	 150) 

	

mechanical boundary layer 	 I 

I 	 2 
I 	 I 

I0(F-- - - - ------ ----4 	 = 

I 

I 	 thermal boundary layer 	 ---------------------- 

1801 	 I 
1 	 0 

adiabatic interior 

Figure 2.1: Diagram from Hawkesworth et al. (1999), based on the model continental geotherm of 
McKenzie (1989). Summary of temperature variation with depth for the sub-continental lithosphere 
and asthenosphere. Note that the asthenosphere has a temperature that does not deviate far from a 
single potential temperature (Tp) and lies along an adiabatic decompression line. The rigid lithosphere 
is not able to cool convectively and so has a conductive geotherm and hence becomes cooler at a 
faster rate with decreasing depth. 

The lower mantle is separated from the upper mantle by a transition zone which 

represents another change in density associated with several phase transitions 

between 440 ion and 670 km. Including garnet and pyroxene forming a solid solution 

in the mineral majorite and olivine transforming to a cubic spinel structure 

(ringwoodite). These phase transitions have been determined experimentally using 

high-pressure apparatus (e.g. Ringwood, 1956; Ringwood and Major, 1971) 

The core-mantle-boundary was identified at approximately 2900 km depth by 

analysing the passage of earthquake wave paths through the earth. Here there is a 
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discontinuity in seismic wave velocities reflecting a distinct density change from 

solid silicate rock to liquid iron. The outer core is thought to be made of liquid 

because S waves appear to be strongly attenuated at these depths. 

2.1.2 Models for the mantle 

Whether the mantle convects as a whole, as two separate layers (upper and lower) or 

in a way defined by an alternative model has been a matter of debate for some time. 

Ringwood's megalith model (Ringwood, 1982) involves the ascent of plumes 

derived from the lower mantle and the descent and eventual detachment of subducted 

oceanic lithosphere until impingement on the 660 km discontinuity. This is where 

megaliths of eclogite are thought to reside. Using seismic tomography the lower 

velocity, cooler subducted slabs have been imaged in the mantle and there is 

evidence for both penetration of the transition zone and also for deflection of slabs to 

low angles at the transition zone (Karason and van der Hilst, 2000). 

2.2 Diamond Inclusions 

2.2.1 Mineral suites and compositions 

Analysis of diamond inclusions by electron microprobe (EMP) identified two min 

suites of inclusions: peridotitic (P-type) and eclogitic (E-type) e.g. Meyer and Tsai 

(1976a). Other rare suites such as a wehrlitic and a calc-silicate suite have also been 

identified. Multiple inclusions in single diamonds do not contain minerals from both 

suites. Harris and Gurney (1979) noted that peridotitic minerals in diamonds had 

more depleted compositions than minerals found in the most depleted peridotitic 

xenoliths. i.e. Lower CaJ(Ca+Mg), higher CrI(Cr+Al) and high Mg/(Mg+Fe) cation 

ratios which is suggestive that included minerals and host diamond equilibrated at 

high pressure and medium (900-1100°C) and in the absence of clinopyroxene (Harte 

et al., 1980). P-type inclusions were also noted for their low clinopyroxene 

abundance compared to common peridotite xenoliths. 
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More specifically the peridotitic paragenesis identified in many studies of peridotitic 

suites of inclusions in diamonds is therefore one of a harzburgite (olivine and 

orthopyroxene) together with low-Ca, high-Cr garnet. Magnesiochromite is a 

common member of this assemblage and clinopyroxene is typically absent. This 

therefore forms the characteristic diamond-chromite-s'arnet Izarzburgite 

assemblage. 	 - 

Trace element analyses of P-type garnets found as inclusions in diamond by Shimizu 

and Richardson (1987) identified very high Sr concentrations (>20 ppm) 

accompanied with light rare earth element (REE) enrichment. These features suggest 

alteration by incompatible element-enriched fluids and were ascribed to ancient 

metasomatic processes. A disequilibrium process involving the differential diffusion 

of the rare earth elements into garnet was the mechanism invoked for this 

metasomatism. A review of this and other models is presented in the final section of 

Chapter 9, 

2.2.2 Dating diamond inclusions 

Diamond inclusions have the potential to provide chemical isolation from interaction 

with their surroundings for long periods of time. Richardson et al. (1984) analysed 

diamond hosted P-type (Cr-rich, Ca-poor) garnets from Finsch and Kimberley pipes 

for Sm-Nd isotopic composition and yielded model ages of 3.2-3.3 Ga. Octahedral 

garnet crystal morphology in these inclusions is indicative of growth controlled by 

diamond structure (e.g. Harte et al., 1999). Therefore this date represents both 

inclusion mineral growth age and diamond growth age. 

More recent studies dating sulphides from diamond inclusions using the Re-Os 

isotope system have revealed that sulphide crystallisation has likely occurred over a 

wide range of ages from 1.1 —2.9 Ga (Pearson et al., 1998, underneath the 

Koffiefontein pipe, Kaapvaal Craton). 
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2.2.3 p-I estimates from diamond inclusions 

Isolated inclusions are unlikely to represent equilibrium mineral compositions but 

multiple minerals from the same diamond may be used in addition to touching 

mineral pairs to estimate the range of Ps and Ts of formation and equilibration 

respectively. 29 garnet-olivine inclusion pairs from Finsch kimberlite yield 

temperatures of 900-1100°C at around 50kb (Boyd et al., 1985) which plot close to a 

40 MW/M2 geotherm in the diamond stability field. Diamondiferous lherzolite 

xenoliths also plot close this geotherm, given that they equilibrated much more 

recently (Davis, 1977). Therefore in the Archaean the lithospheric root of the 

Kaapvaal craton must have been at least 150 km deep, extending into the diamond 

stability field and similar to low dT/dP geotherms to present day Precambrian shields 

(Boyd and Gurney, 1986). 

The studies of the inclusion suites found inside diamonds, including isotopic studies 

of their ages, have concluded that diamonds and their host kimberlites have separate 

origins. Many diamonds appear to be Precambrian (and even Archaean) in age, 

whilst most kimberlites belong to the Phanerozoic. 

2.3 KIMs (Kimberlite Indicator Minerals) 

Minerals that crystallise in the kimberlite magma are numerous. The principal 

minerals are olivine, phlogopite, calcite, perovskite and ilmenite but each are not 

always present (Mitchell, 1986). Of these only the ilmenite survives in the surface 

environment sufficiently to be used in kimberlite prospecting. There are two subsets 

of KIMs (i.e. minerals that are also indicative of kimberlite): Mantle indicator 

minerals and diamond indicator minerals (DIMs). 

Mantle minerals erupted as xenocrysts in kimberlite are not stable with respect to the 

kimberlite magma since the kimberlite liquid is highly volatile and mantle minerals 
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are highly depleted in volatiles. The minerals are able to survive, preserved in the 

crystalline matrix of the kimberlite rock, because of the short time between 

entrainment and magma crystallisation. They are also physically mantled by reaction 

rims e.g. the kelyphite rim, which is commonly present around garnet xenocrysts. 

The compositions of these minerals are highly magnesian and are indicative of a 

high-P, high-T origin in the mantle rather than the crust. Xenocrysts outweigh 

xenoliths 100:1 (Boyd and Gurney, 1986) and form concentrates due to their 

relatively high density in surface systems like alluvial gravels (hence their 

importance in kimberlite prospecting); they can also be found in great abundance in 

diamond mining concentrates. 

The other subset of kimberlite indicator minerals is the diamond indicator minerals. 

These are those minerals that have overlapping compositions with diamond 

inclusions. Peridotitic olivine, orthopyroxene, clinopyroxene, garnet and chromite in 

diamondiferous kimberlite concentrates show a range of compositions i.e. from that 

common in peridotitic xenoliths to that of P-type diamond inclusions (Gurney and 

Switzer, 1973; Gurney and Zweistra, 1995). 

Therefore olivine, orthopyroxene, clinopyroxene, garnet and Cr-spinel are the main 

diamond indicator minerals. However, only garnet and chromite have major element 

compositions that do not overlap strongly with non diamondiferous sources. They are 

also the two most resilient minerals mentioned and may survive transport away from 

a kimberlite source region. 

In southern Africa, the presence of low-Ca garnets in kimberlites coincides with the 

extent of Archaean cratons, indeed correlating with the presence of diamonds as well 

(see "Clifford's Rule"). Gurney (1984) correlated particular low-Ca garnets with the 

presence of diamond in kimberlites reinforcing this connection. Both low-Ca garnet 

and diamond appear to have originated in the same harzburgitic host rock beneath 
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Archaean crust. Additionally Fipke et al. (1995) shows compositions of chromite that 

have 'diamond inclusion affinity' on Cr-Ti and Cr-Mg plots. 

Due to their high abundance compared to diamonds, low-Ca garnets similar in 

composition to P-type diamond inclusions are thought to have crystallised in rocks 

rather than to represent escapees from diamonds. Furthermore, on consideration of 

the CaSiO3-MgSiO3-A1203 phase triangle (Fig. 2. 1), low-Ca garnet is likely to be in 

equilibrium with eristatite and without clinopyroxene, thereby indicating a 

harzburgitic rather than lherzolitic host rock, and thus reinforcing the notion of the 

diamond-chromite-Rarnet harzburgite paragenesis. 

e 

Py -I- En 

nstatita 
MgS1Q 

Figure 2.2: Schematic CaSiO 3 -MgSiO3-A1203  phase triangle at 1200°C and 50 kb illustrating the wide 
range of Ca compositions in pyrope for common lherzolitic compositions, compared to restricted low-
Ca compositions for harzburgites. Py = pyrope, Di = diopside, En = enstatite. Modified from Boyd 
(1970). 
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2.4 Mantle Xenoliths 

Ultramafic mantle xenoliths are found predominantly as rounded discrete nodules 

Within kimberlites, lamproites and alkali basalts. They are comprised essentially of 

the minerals found as xenocrysts (see last section on kimberlite indicator minerals) 

but with a petrological relationship to the other rock forming minerals evident. They 

range in size from a cluster of several minerals (1 cm diameter) to larger xenoliths up 

to I in diameter which may indicate cross-cutting 'field' relations (e.g. Harte et al., 

1993). Mantle xenoliths form the basis for defining the assemblages and modal 

proportions of minerals within mantle rocks, hence defining the larger scale 

composition and structure of the lithdspheric mantle. A thermal and lithological 

upper mantle structure may be suggested by pressure and temperature estimates via 

geothermobarometry involving the coexisting minerals present in xenoliths. 

2.4.1 Mantle rock types: Current nomenclature 

Peridotite is by far the most common mantle rock type found as xenoliths with 

eclogite being abundant in particular kimberlites. Table 2.1 summarises currently 

accepted definitions of the mantle xenolith types found in kimberlites with the main 

petrological and compositional features described. 

Type Description 

I - Coarse, Mg-rich cold Universal distribution and abundant (the common 'granular' 
peridotites peridotites xenoliths from kimberlite series eruptive rocks). 

Rocks largely of olivine and orthopyroxene with little 
clinopyroxene and garnet; may be with chromite. Grains 
typically > 2mm with equant or tabular shapes and somewhat 
irregular grain boundaries, but rarely granuloblastic (Harte, 
1977). Depleted major-minor element compositions, often with 
very small range in bulk and mineral compositions (but 
exceptions occur, e.g. Premier (Danchin, 1979). Estimated 
temperatures of formation below 1100-1150°C. 
Mg/(Mg+Fe)*100 = 91-95. CaJ(Ca+Mg)*100 = 43-51. 

II - Coarse, Fe-rich cold Widespread but usually very rare, mainly garnet lherzolites and 
peridotites and pyroxenites garnet websterites. Micro-structures and temperatures of 

formation as Type I, but sometimes layered. Wide bulk and 
mineral compositional range, with relatively high Fe, Ca, Al and 
Na compared with Type I, but variable Cr and low Ti and K. 
Possibly cumulates (sensu late) (Gurney et al., 1975). 
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III - Dunites. Widespread, sometimes common. Two varieties: (a) 
Mg/(Mg+Fe)* 100 = 93-95 and often coarse; (b) 
MgI(Mg+Fe)*100 = 88-90 and usually fine-grained. Of these 
(a) may be the most depleted rocks (restites) and (b) may be 
either cumulates or recrystallised megacrysts. 

IV - Deformed, cold peridotites Widespread and sometimes common. Micro-structures are 
and pyroxenites porphyroclastic or mosaic-porphyroclastic (Harte, 1977), but 

modal and chemical characteristics and estimated temperatures 
of fonnationare usually similar to those of Type I. 

V - Hot peridotites Widespread, but abundance highly variable, rare-absent in 
Group H kimberlites. Usually deformed and showing 
porphyroclastic and mosaic-porphyroclastic textures typically 
with very small neoblasts; rarely coarse and little deformed. 
Rocks and minerals commonly enriched with Fe and Ti by 
comparison with Type I and overlap with megacrysts (Type IX). 
Estimated temperatures of formation above 1150-1200°C. 
Mg/(Mg+Fe)* 100 = 87-92. Ca/(Ca+Mg)* 100 = 28-43. 

VI - Marid suite Widespread, sometimes common. Rocks consisting of: mica, 
amphibole (richterite), rutile, ilmenite, diopside and zircon. 
Probable igneous origin. Related to certain kimberlite and 
lamproitic magmas (Dawson & Smith, 1977; Waters 1986). 

VII - Pyroxenite sheets rich in Only reported from Matsoku (Harte et al., 1977; 1987). 
Fe-Ti Orthopyroxene- and clinopyroxene-rich rocks with widely 

variable olivine and garnet, often with ilmenite and phlogopite. 
From magmatic intrusions (<16cm thick) into Type! rocks 
which are metasomatised. 

VIII - Modal metasomatic Diverse, usually coarse, cold peridotites showing evidence of 
groups modal metasomatism in the form of minerals developing within 

pre-existing rock. Different types seen at different pipes: 
ilmenite-rutile-phlogopite-sulphide (!RPS) association at 
Matsoku; richterite-phlogopite-Cr-titanite association at 
Bultfontein; edenite-phlogopite association at Jagersfontein. 

IX - Eclogites and grospydites Universal distribution; usually rare but occasionally very 
common. Diamond and graphite accessory minerals: no olivine. 
Very wide range in bulk and mineral compositions. Increasingly 
thought to come from oceanic crust by subduction. Wide range 
in equilibration temperature. 

X - Megacrysts or discrete Cr-poor variety: widespread, occasionally very common, 
nodules 	- particularly involving the minerals orthopyroxene, 

clinopyroxene and garnet, sometimes olivine and ilmenite. Wide 
range in chemistry an equilibration temperature, which 
correlates with Mg/(Mg+Fe). Hotter megacrysts show chemical 
similarities to Type V; cooler megacrysts sometimes intergrown 
with ilmenite. Magmatic origin. 

Cr-rich variety: uncertain distribution and overall features. 
Mineral compositions overlap those of Type I (Eggler et al., 
1979). 

Various minerals (with or without exsolution features) which 
are not clearly associated with (a) or (b) and might represent 
disrupted peridotites and eclogites etc. 
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Xl - Diamonds and inclusions in Widespread; in southern Africa distribution related to cratons. 
diamonds 	 Inclusion suites divided into peridotitic and eclogitic. Peridotitic 

inclusions have restricted and depleted chemistry (Fo: 93-94, i.e. 
olivine MgI(Mg±Fe)*  100) and low-medium equilibration 
temperatures. Eclogitic inclusions have a wide range in 

Table 2.1: Major types of rock and mineral inclusions in kimberlite series eruptive rocks. (Largely based on 

descriptions and summaries given by Gurney and Harte (1980) and Harte (1983). Reproduced from Table 1.2 in 

Harte and Hawkesworth (1989), (see also Pearson et al., 2003). 

Mineralogically, the paragenesis of mantle xenoliths can be determined initially by 

the proportion of each of its constituent minerals (Fig. 2.3). When garnet is added to 

these minerals, garnet peridotite and eclogite may be considered and only rare 

phlogopite-, ilmenite-, amphibole-bearing rocks are not represented. 

0! 
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Iherzolite 
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Opx drthopyroxenite 	cilnopyroxenite Cpx 

Cpx + Grt = ECLOGITE 

Figure 2.3: Ultramafic rock type nomenclature based on olivine (01), orthopyroxene (Opx) and 
clinopyroxene (Cpx) modal abundance. 

Texturally the xenolith may be coarse with no foliation evident, fine-grained with 

coarse porphyroclasts indicative of deformation or structured on a large scale. 

Structured xenoliths may contain veins or possess modal layering. Major element 

chemical analysis allows determination of cation ratios and the application of 

geothermobarometry and thus confirmation of xenolith origin. However, most 

classification is possible in hand specimen. 
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2.4.2 Compositional variation and trace element data 

Trace elements vary from depleted to primitive (pyrolitic) to enriched compositions 

in peridotite xenliths. Normal peridotitic garnets tend to have low (cl*chondrite) 

LREE to medium (_âO* chondrite) HREE concentrations. If modal metasomatic 

minerals such as phlogopite, ilmenite, rutile, edenite, richterite are present then 

peridotitic minerals may be locally affected by having increased Ca, Al, Fe', Ti and 

LREE concentrations. Garnet is the most useful of the peridotitic minerals in this 

case since it may attain measurable quantities of most of these elements. 

Recent studies (e.g. Burgess and Harte, 2004; Griffin et al., 1999b) indicate that bulk 

rock major element depleted harzburgitic xenoliths with minerals of similar 

composition to P-type diamond inclusions have low-Ca and high-LREE garnets. 

Particular garnet zonation from the low-Ca core to a high-Ca, high-Ti rim is 

recorded. Therefore the authors attribute these features to ancient major element 

depletion and subsequent trace-element enrichment within certain harzburgitic 

garnets derived from kimberlite xenoliths. This is an example of cryptic 

metasomatism, and these studies indicate it's accompaniment with incompatible 

trace element enrichment in these garnets expressed as humped REE patterns. 

2.4.3 Peridotitic xenoliths that conform to P-type diamond inclusion 
compositions 

Rocks fitting diamond inclusion-based constraints (type XI in Table 1) and with 

chemistries like those described in Gurney (1984) and Fipke et al. (1995), for garnets 

and chromites respectively, are very rarely found. The recognised localities are: 

Newlands, Kaapvaal craton (this project; Clarke and Carswell, 1977; Menzies, 

2001), Udachnaya, Siberian craton (Pokhilenko et al., 1977) and Arnie kimberlite, 

Northwest Territories, Canada (Doyle, 2002). Some mechanism, therefore, has to be 

invoked for the disruption of these rocks so that they are not so commonly preserved 

as articulated xenoliths in kimberlite. Several workers (e.g. Wyllie et al., 1983; Luth, 

indirect communication) suggest that some form of disseminated magnesite may 

have been present in these harzburgites prior to eruption. Magnesite is modelled to 
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undergo explosive decomposition during decompression in kimberlitic systems, 

however no magnesite has been reported in these rocks on examination at the 

surface. 

The discovery of diamondiferous xenoliths was made by Bonney (1899), who 

described a diamondiferous eclogite. More recently described diamondiferous 

xenoliths include: Eclogite by Rickwood et al. (1969), garnet lherzolite by Dawson 

and Smith (1975), garnet dunite by Sobolev et al. (1969) and garnet harzburgite by 

Viljoen et al. (1994) and Menzies (2001). The minerals in these peridotitic xenoliths 

conform closely to the compositions found as P-Type diamond inclusions. Menzies 

(2001) confirms that diamond inclusions from garnet-chromite harzburgite hosted 

diamonds conform to the diamond-chrornite-garnet harburgite yaraRenesis. Since 

these inclusions have been armoured potentially for up to 3.3 billion of years 

Richardson etal. (1984), the question arises as to how compositionally different 

minerals inside diamond are compared to the rock-forming minerals. This provides a 

pre- and post-diamond formation geochemical history to examine. 

2.4.4 P-I estimates and mantle xenoliths-derived geotherms 

Coexisting minerals in equilibrium within xenoliths are modelled through 

geothermobarometric formulations to originate at various temperatures and pressures 

within the mantle, forming 'xenolith geotherms' for particular kimberlites and 

sometimes larger kimberlitic regions (e.g. Northern Lesotho, Carswell and Gibb, 

1987). The xenoliths can be divided on this basis into ones that have equilibrated at 

low (c  900°C), medium (900-1100°C) and high temperatures (> 1100°C). Low-I 

xenoliths tend to plot close to model cratonic geotherms of 40mW/m 2, whereas high-

T xenoliths tend to plot to the high-temperature side of this geotherm as though 

perturbed to higher temperatures (Fig. 2.4). 
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Figure 2.4: Temperature-depth profiles derived from xenolith suites, On craton suites: A from Finsch, B from 
Northern Lesotho, are perturbed at -180 km. Off craton profiles from adjacent mobile belts: C & D are perturbed 
at depths> 120 km. Duplicated from Boyd and Gurney (1986) using conductive geotherm of 40mW1 m of 
Pollack and Chapman (1977). 

Calculated depths for high-T xenoliths within craton margins are greater than those 

outside the margins and the transition between low- and high-T xenoliths is also 

deeper (170-190 km rather than -440 km for low-Ts) within the cratons e.g. 

kaapvaal craton, Boyd and Gurney (1986). Fig. 2.5 illustrates how xenoliths are 

derived from the diamond stability field underneath the Kaapvaal cratonic root in 

southern Africa i.e. a theoretical plane exists within the mantle separating rocks that 

have equilibrated above and below about 1100 °C, which corresponds to the volatile-

present mantle solidus at close to 50 kb. Nixon and Boyd (1973) and Gurney et al. 

(1979) point out that megacrysts may reflect pre-kimberlitic melting at the base of 

the lithosphere, hence Harte (1983) suggested that this may be metamorphosing low-

T xenoliths at temperatures above 1100 °C prior to eruption. Previous authors have 

suggested temperature perturbation by convective asthenospheric overturn and 

incorporated this into a conductive-convective geotherm model (e.g. McKenzie, 

1989). 
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Figure 2.5: NW-SE cross-section through southern African lithosphere based on kimberlite xenolith-derived 
geothermometry indicating the diamond stability field in the craton root. F = Finsch, FS = Frank Smith in the 
Barkly-West district, NL = Northern Lesotho, EG = East Griqualand. Line A-A' = postulated lithosphere-
asthenosphere boundary based on high-T/low-T xenolith division. From Boyd and Gurney (1986). 

2.5 Summary of Key Areas of Current Research 

Approximately 70 new kimberlites per year are discovered with -=1/100 being 

economic for gem diamond production. More xenolith data is becoming available 

from previously unrepresented parts of the globe and more extensive databases are 

being set up to document the range of mineral compositions found as xenoliths, 

xenocrysts, diamond inclusions and diamonds themselves. There are several key 

areas of research that workers are attempting to resolve by further study of these new 

and also existing sample sets. High micro-scale spatial resolution is also possible 

with the latest analytical techniques such as the electron and ion microprobes that can 

be used for in situ major and trace element and isotopic analysis. 

2.5.1 Thermal structure of the mantle lithosphere 

The aim of this area of research is to establish more accurate knowledge of the 

temperature variation of rocks with depth. This aids diamond exploration since it is 

able to make predictions about whether particular kimberlites can sample material 

from the diamond stability field and hence assess the diamond-carrying potential of 

kimberlites. Therefore finding and analysing more samples that have well 

equilibrated minerals suitable for geothermobarometric calculations will help to 

delineate a pre-kimberlitic geotherm. 
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The formulation of additional barometers and thermometers enables more mantle 

material to be characterised in terms of P and T. But major element equilibria 

between mineral pairs has been thoroughly assessed as to their P-T dependence so 

single grain techniques (e.g. Ni-in-garnet and Cr-in-clinopyroxcne) are enabling 

more diamond inclusions and single minerals in alluvial concentrate to be given P-T 

estimates. Although there is less accuracy involved in the single grain techniques, 

since they rely on a coexisting mineral of assumed composition, they are especially 

applicable to alluvial and glacial gravel samples. 

The addition of new end member molecules and hence the ability to compute more 

components in thermodynamic models allows the potential to explore a wider range 

of bulk rock compositions and their behaviour on changing pressure and temperature 

more accurately. Further experimental studies in relevant systems will also help to 

refine these techniques and improve accuracy. 

2.5.2 Lithological structure 

Further descriptions of obducted peridotitic and eclogitic massifs discovered on land 

will add to the current understanding of larger scale cross cutting and lithological 

layering expected in the mantle lithosphere. On a larger scale Schulze (1986), for 

example, associated wedges of eratonic crust seen in the field in Ontario with lower 

lithosphere accretion mechanisms. This is echoed in South Africa by Re-Os studies 

that date Kimberley block accretion of the Kaapvaal craton with its crustal 

expression being the Colesberg magnetic lineament (Shirey et al., 2002). However it 

is the mantle sample of kimberlites that is still relied upon to provide multiple 

'pseudo bore holes' through the sub-continental mantle lithosphere. Therefore further 

data on geobarometric depth estimates for particular rock types will give resolution 

to ± 5 or 10 km on the lithologieal layering. Improved resolution on seismic 
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reflectors should aid delineation of underplated and layered regions of the sub-

continental lithospheric mantle with strong density contrasts. 

Large scale, cross-craton correlations have been used to identify differences and 

similarities in worldwide mantle properties. Two such examples are: The 

composition of worldwide diamond inclusions as a marker for pre- and syn-diamond, 

depleted peridotite lithologies and appears to be relatively consistent worldwide. A 

second example is the identification and extent of development of potentially under-

plated pyroxenitic horizons e.g. xenoliths from alkali basalts in xenolith suites from 

Scotland (Halliday et al., 1993). Many institutes and companies have started 

collating large-scale databases of kimberlite indicator mineral analyses in an attempt 

to produce estimates of mantle conditions underneath cratons using a 'mantle 

mapper' approach. 

Many similarities have been found between different cratons, but because of the vast 

amount of data and the lack of accompanying petrography, interpretations are still at 

an early stage. Large-scale investigations are important in indicating the extent of the 

occurrence of diamond-harzburgite and diamond-eclogite assemblages especially. 

2.5.3 Composition of metasomatic fluids affecting mantle rocks 

The effect of metasomatism has been an important line of investigation ever since its 

widespread occurrence was identified in 1970s by authors such as Harte et al. (1975) 

and Bailey (1982). Classifications such as Dawson and Smith (1975) and Harte 

(1983) separated metasomatism into modal (i.e. the addition of a phase) and cryptic 

(i.e. major element enrichment or isolated trace element enrichment) types. Therefore 

current studies, through the study of xenoliths and the characterisation of these types 

of metasomatism, are gathering data on the range of compositions expected to be 

introduced into peridotitic/eclogitic mantle by fluid infiltration. Partition coefficients 

for elements between minerals and melt are required for modelling this process and 
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preliminary experimental results are being examined and assessed in current 

literature. 

The quantification of the oxygen fugacity of metasomatic fluids is also important in 

order to assess the stability of diamond compared to different types of metasomatic 

melt. i.e. whether the melt will consume diamond by being too reduced or oxidised 

for the diamond buffer. e.g. studies by Deines (1980); McCammon et al. (1998); 

Luth (1993). 

2.5.4 Timescales for craton formation, diamond growth phases, metasomatism 
and pressure-temperature re-equilibration 

Establishing timescales for processes in the mantle has always been a problem given 

that most isotopic systems are reset at mantle temperatures. At high temperatures 

diffusion is also faster so only chemical information from relatively recent events are 

likely to be preserved. 

Os is extremely compatible in mantle rocks and its concentration remains effectively 

constant once trapped in mantle phases even if partial melting and metasomatism 

were to occur. Therefore the Re-Os isotope system is relatively robust compared to 

Sm-Nd and has the ability to provide an isotope ratio that will reflect the timing of 

original melt extraction and mantle rock formation (Walker and Morgan, 1989b; 

Pearson et al., 1995). If reliable mineral or whole rock isochrons can be obtained, an 

age can be derived, otherwise a model age may be derived (see Pearson et al., 1995). 

Diamond inclusion sulphides may be dated using the Re-Os isotope system to date 

diamond formation events (e.g. Westerlund et al., 2004). This timing has been 

compared to large scale events such as subduction and craton suturing affecting the 

Kaapvaal and Zimbabwe cratons. Shirey et al. (2002) combine deep seismic 

structural information with ages of major crustal events in the Archaean and 

Proterozoic (De Wit et al., 1992). At least three diamond formation events seem to 
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correspond to various pans of southern African craton formation, stabilisation and 

modification history. Whether diamond formation is truly episodic or actually 

relatively continuous is a current debate that is being resolved from study of diamond 

and xenoliths in African and worldwide cratonic regions. 

Diffusion coefficients for major and trace elements have been established 

experimentally (Ganguly et al., 1998; van Orman et al., 2002) and refined 

empirically (Carlson 2006) in recent years. This has allowed researchers to examine 

'stranded' diffusion profiles in minerals to estimate the iimescale for chemical 

heterogeneity more accurately. Bulk modification of harzburgite by fluids may be 

tracked and the extent of its conversion to lherzolite is being documented e.g. in 

Griffin et al. (1999b) and in Burgess and Harte (1999). These issues will continue to 

be debated. 

2.6 Formulation of a Tractable Problem 

2.6.1 Previous studies on high-Cr, low-Ca garnet-bearing xenoliths 

The Barkly-West district of kimberlites comprises Newlands, Frank Smith, Leicester 

and Bellsbank situated 40-80 km northwest of Kimberley (Fig. 2.6). All of these 

kimberlites are currently being mined for diamonds. The discovery of 

diamondiferous garnet—chromite harzburgite xenoliths by John Gurney at Newlands 

kimberlite prompted preliminary analysis by Menzies (2001) who additionally 

studied diamondiferous eclogites and a wide variety of mantle material from the pipe 

in a detailed initial survey. Menzies' (AH) study yielded promising comparisons to 

the harzburgitic diamond inclusion suite in terms of the major and minor elements 

compositions of minerals from garnet harzburgite xenoliths. Two of the 

diamondiferous peridotites studied are shown in Fig. 2.7a and b. Doyle (2002) also 

describes xenoliths from Arnie kimberlite, Canada, showing similar properties but 

they are not diamond-bearing (Fig. 2.7c-e). 
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Figure 2.6: Map of the sampled kimberlites in the area north of Kimberley, Western Cape Province, 
Republic of South Africa (Figure adapted from Menzies, 2001). 

Clarke and Carswell (1977) first announced the presence of unusual garnets with 

both high-Cr and high-Ca (i.e. rich in the uvarovite end member) from Newlands 

kimberlite and noted that garnets of these compositions are relatively scarce, being 

only known from Newlands and some of the Yakutian kimberlites. It is now known 

from mining concentrate analysis that several other southern African kimberlites also 

possess these garnets (Belisbank included). 

Newlands garnet macrocrysts have been analysed by electron probe spot analyses by 

Menzies (2001) (3 10 garnets with 30 coexisting clinopyroxenes and 31 coexisting 

chromites) and Bobbejaan garnet macrocrysts by van der Westhuizen (1992) (53 

garnets, 10 coexisting clinopyroxenes, 1 coexisting orthopyroxene and 18 coexisting 
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chromites). These analyses provide a guide to compositional variation of garnet, 

chromite and clinopyroxene from individual xenolith fragments. The garnet analyses 

of Menzies (2001) indicate a wide range of Ca compositions at high-Cr values. The 

analyses from both studies however lack detailed spatial information within the 

samples, hence the likely variation within each sample is not known. 

In 1999 John Gurney collected additional samples to the xenoliths studies by 

Menzies (AH). The samples are 5-20 mm in diameter and contain predominantly 

garnet with lesser chromite, olivine and orthopyroxene +1- clinopyroxene often as 

inclusions in garnet. The rationale behind the collection of these microxenoliths was 

to sample a wide range of bulk rock compositions, with the end product being the 

examination of mineral equilibria between their coexisting minerals (garnet and 

chromite ± clinopyroxene). Clinopyroxene-bearing samples were collected and 

analysed in order to provide comparison of the harzburgitic samples to higher-Ca 

bulk rock compositions. 
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Figure 2.7: (a) and (b) Photos of fresh surfaces of diamond-chromite-garnet harzburgites from 
Newlands kimberlite, RSA by Menzies (2001). In (b) . (c), (d) and (e) Photos of chromite-garnet 
harzburgites from Arnie kimberlite, NWT, Canada by Doyle (2002), Photograph widths are (a) 90 
mm, (b) 100 mm, (c) 100 mm, (d) 110 mm, (e) 80 mm. 

2.6.2 Formulation of a tractable problem 

Therefore, given the extent of previous studies, it is clear that a detailed petrographic 

and geochemical study of the polymineralic assemblages present in the Newlands 
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and Bobbejaan high-Cr garnet-rich samples is required in order to gain information 

on the chromite-garnet peridotite assemblages (CGPA). This knowledge will provide 

a P-T framework for the samples will allow general mantle-evolution context to be 

placed upon this rock type which was only known from isolated mineral inclusions in 

diamond and isolated geochemical analyses of single grains over a narrow range of 

bulk rock compositions. 

Hence, the aims of the thesis (as stated in Chapter 1) are as follows: 

To establish the petrographic constraints of the CGPA. i.e. modal mineralogy, 

texture, grain size of the rocks. 

To quantify the composition of the CGPA. i.e. major, minor trace element 

chemistry of minerals and any zonation that may be present. 

To interpret compositional information in its spatial/petrographic context and 

in relation to coexisting phases. This will be done using major and trace 

element concentrations analysed in coexisting minerals to estimate P-T 

conditions of formation and equilibration. Trace elements will also be used to 

assess the role of melts/fluids as modifying agents in the CGPA of the 

mantle. 

To assess existing models for their ability to explain compositional and 

petrographic features noted for the CGPA, and clarify which mechanisms 

should be invoked for generating and modifying Archaean sub-continental 

lithospheric mantle. 

To endeavour to supplement information for identifying regions of diamond 

stability in the lithosphere and identifying distinctive geochemical trends. 
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3. Sampling and Petrography 

3.1 Sampling 

3.1.1 Locality selection 

As a premise for the project the concentrates from Newlands and Bobbejaan were 

known to contain a significant number of GlO garnets (i.e. with diamond-garnet-

chromite harzburgite affinity) (John Gurney pers. comm.). Previous work on 

Newlands by Menzies (2001) and on Bobbejaan by van der Westhuizen (1992) also 

indicated that GI  garnets existed in polymineralic samples. During field work other 

kimberlites in the Kimberley area were examined but found not to contain the same 

abundance of samples with GlO gamets. In particular the concentrates from the 

nearby Frank Smith and Leicester kimberlites were found to contain individual red 

'megacryst suite' garnets and only very rarely lilac G9/G10 garnets. Only one of the 

lilac garnet-bearing samples from Leicester was polymineralic and displayed phase 

relations. Thus this study has focused on material from Newlands and Bobbejaan. 

3.1.2 Newlands and Bobbejaan kimberlite xenolith population 

The xenoliths from Newlands and Bobbejaan investigated here are not the common 

coarse peridotite xenoliths of many localities. Thus the question that arises of 

whether the samples suggest something markedly different from other kimberlites in 

South Africa or the rest of the world? In other words, have Newlands and Bobbejaan 

kimberlites sampled a different type of mantle to other kimberlites? 

Considering broad petrographic definitions the answer to this question in general 

seems to be no. Variations in percentages of a few rock types and the presence of 

some rare rock types are expected for most kimberlites. Menzies (2001) notes the 

abundance of various xenolith rock types in general at Newlands (see Fig. 3.1). 
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Figure 3.1: n =  - 500, data reprocessed from Menzies (2001). Note that all rock types are relatively 
well represented (most> 10 %) except for websterites (C  1 %). The Bobbejaan xenolith population is 
thought to be similar to Newlands. 

The xenolith population at Newlands and Bobbejaan is similar to the average South 

African kimberlite in that they have a reasonably normal proportion of harzburgite, 

lherzolite, garnet harzburgite, eclogites and spinel peridotites. However Newlands 

and Bobbejaan clearly have distinctive features; namely: 

. Garnet lherzolite xenoliths containing extensive amounts of olivine and 

orthopyroxene are much lower in abundance at Newlands and Bobbejaan. 

. Newlands has no recorded deformed peridotite or marid-suite peridotites. 

. Newlands and Bobbejaan kimberlites have high proportions of 'peridotitic 

garnet macrocrysts" 

Macrocrysts are generally <1 cm and megacrysts are generally >1cm (Mitchell, R. H. (1986). 
Kimberlites- Mineralogy, geochemistry, and petrology. New York, Plenum Press.) 
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3.1.3 Newlands 

Sampling at Newlands was undertaken initially by John Gurney and Trish Doyle in 

1999 and in March 2003 by the author, John Gurney, Ben Harte and Ben Garden. 

Sampling permission was granted by the mine owner who also took John Gurney and 

the author on a tour of the underground workings. The two sessions made collections 

predominantly from several piles of heavy concentrate. Additional samples of 

kimberlite and other xenoliths were gathered from dumps containing newly mined 

kimberlite. The concentrate piles are known to be derived from 'Blow 2' (Fig. 3.2). 

Newlands is currently -owned by Dwyka Diamonds Limited as or 2004. 
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Figure 3.2: Reproduced from Van Heerden and Gurney (1994) showing the en-echelon style of the 
fissures at Newlands and the compass direction to nearby kimberlites. 
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3.1.4 Bellsbank 

Sampling at Bélisbank was undertaken with the owner's permission (Mr. J. Davison) 

in March 2003 by the author, John Gurney, Ben Harte and Ben Garden. Heavy 

concentrate piles (obtained by reworking former dumps on the mine floors) were 

sampled from close to the plant and are known to be derived from the Bobbejaan 

Fissure (Fig. 3.3). 
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Figure 3.3: Map of the surface exposures of the Belisbank fissures from Gurney (1997). North is 

vertical towards the top of map. NNE-trending Bobbejaan fissure to SE of map. 

3.1.5 Sampling strategy 

During the sampling procedure all mantle rocks/minerals were collected and the 

following types were yielded: 

Garnet peridotites (additionally containing one or more of: Cr-spinel, 

serpentine and Cr-diopside) 
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Lilac garnet macrocrysts (derived from peridotites) 

Eclogites (containing omphacitic clinopyroxene and orange garnet) 

Cr-diopside megacrysts (derived from 'megacryst suite' magmatic rock) 

Orthopyroxene megacrysts (derived from 'megacryst suite' magmatic rock) 

Red garnets (derived from 'megacryt suite' magmatic rock) 

. Individual orange garnets (derived from eclogites) 

Fresh orthopyroxene is dark grey-brown and is only found as megacrysts and not 

within the peridotites. Altered orthopyroxene is a dark green-brown colour in 

transmitted light. Fresh olivine is only found as kimberlite xenocrysts rather than part 

of the garnet macrocryst mineralogy and is light green-yellow in colour. Altered 

olivine (mainly serpentine) is found as part of the garnet macrocryst assemblage and 

is pale yellow and not as translucent as fresh olivine. Garnet, chromite, 

clinopyroxene, olivine and orthopyroxene were collected from concentrates at 

Newlands, Bobbejaan and Leicester. Newlands concentrate was readily available for 

analysis from Mineral Services sampling (Gurney, pers. com .) and therefore made up 

the majority of concentrate grains. 

3.1.6 Sample size 

Since the average specimen size from concentrate was small (C 0.5 cm long 

dimension) effort was made to search for larger samples (- 1 cm) that were more 

likely to contain mineral grain boundaries and textural information. Larger 

specimens were given sample numbers and saved for textural examination and 

sectioning before commencement of microanalysis. The smaller specimens were put 

into labelled bags for their particular collection locations and reserved for direct 

mounting for concentrate analysis by electron microprobe 
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Figure 3.4: Size distribution of samples chosen for textural analysis from Newlands and Bobbejaan 
kimberlites. 

Fig. 3.4 illustrates that Newlands samples have a strong preponderance of finer 

material and Bobbejaan has a more normal distribution across the size range. The 

data of Fig. 3.4 are controlled by a combination of factors: 

Actual xenolith size in the natural kimberlite - some samples have not been 

changed by any subsequent mining factors. 

Crush size at the mines (which is known to be smaller at Newlands) and the 

varieties of concentrate from various stages of processing available for 

collection during field work. 

Sample selection from concentrate at the mines where grains> 5 mm were 

preferentially picked. 

Sample selection where by larger samples were preferred to smaller ones for 

textural analysis. 

The resultant average long dimension of samples investigated in this chapter is 11.4 

mm for Newlands and 18.9 min for Bobbejaan. 
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3.2 Petrography 

3.2.1 Introduction 

Petrographic observations are principally all the features observable by transmitted 

or reflected light using petrographic and fixed-stage microscopes at 20X to 200X 

magnification. These observations provide the basis for definition of rock types, 

modal mineralogy and texture. In addition the textures allow some assessment of the 

state of equilibrium to be made and provide the spatial context for electron and ion 

microprobe analysis. Information may also be gained about the effect of fluids 

(metasomatism) on the samples either in the igneous or metamorphic environment or 

by surface weathering processes. 

The modal mineralogy of the samples was recorded to define bulk rock 

compositions. A textural classification scheme was devised to differentiate the 

samples as effectively as possible using simple criteria without necessarily implying 

the presence of particular processes. It was very important to use these methods 

carefully in the case of many of the present samples because the sample size was 

often similar to the original crystal size. - 

Use of geothermobarometry (see chapter 7) requires thermodynamic equilibrium to 

be the case. It is therefore beneficial to note whether the samples show a good 

approach to textural equilibrium or not. Samples showing disequilibrium features 

such as exsolution or recrystallisation have to be described with care to know 

whether use of thermodynamic equations to make geothermobarometric predictions 

is justified. 

3.2.2 Methodology 

300 samples from Newlands, 200 from Bobbejaan and 40 from Leicester were 

selected for their large size (> 0.5 cm) and potential for displaying phase relations. 
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The samples were then examined using a binocular microscope at low magnification 

in their sampled state and notes made on approximate modal proportions of minerals 

and any texture of note observable at the surface. Certain features were photographed 

and then a selection of about 100 samples from Newlands, about 70 from Bobbejaan 

and 15 from Leicester were made to either break in half for further examination or to 

directly mount and polish ready for electron probe analysis. Certain samples (e.g. 

NEWSP) were ground to a particular level to expose inclusions for analysis. 

The polished surfaces of all mounted samples were examined so that the mineralogy, 

modal proportions and texture could be recorded. The samples were then 

photographed in transmitted and/or reflected light to record mineral spatial 

information and to provide navigation sheets for microanalytical purposes (electron 

and ion microprobe). 

Additionally EBSD (Electron Backscatter Diffraction) was carried out on some 

polished samples by SEM to gain garnet crystal orientation information and to 

determine whether the samples were polygranular or monogranular (see Appendix I). 

This was particularly useful on samples that had suffered veining and cracking which 

made it impossible to be sure of the garnet grain size from reflected/transmitted light 

microscopy alone. 

3.2.3 Nomenclature adopted 

Fig. 3.5 shows the basic IUGS classification of ultramafic rock types based on modal 

mineralogy. Peridotitic rock compositions are those that contain more than 40 % 

olivine and pyroxenitic rocks are those with less than 40 % olivine. >90% of one of 

olivine, orthopyroxene and clinopyroxene requires a different rock name as shown. 

<5 % of one mineral also requires a unique rock name as shown. 
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This classification scheme does not cater for the minerals garnet and chromite 2 , 

however, and so poses a problem given that garnet is always present and in many of 

the samples garnet is predominant. Therefore the rock types 'gamet-harzburgite' or 

'garnet-chromite-harzburgite' and 'garnet-lherzolite' or 'garnet-chromite-lherzolite' 

are used depending on the presence or absence of clinopyroxene and ebromite for 

most samples. These rock types often show substantial alteration of their olivine and 

pyroxene phases, but are considered to be peridotitic rather than pyroxenitic because 

the alteration material is always serpentine rich. However, again it must be 

emphasized that, because of the small size of the samples and the common 

abundance of garnet, the use of the term peridotite, harzburgite and lherzolite does 

not imply 60% or more olivine. Because of its petrogenetic importance 'diamond' is 

added as a prefix to the above rock names if present. 

It is often the convention in mantle petrology to refer to rocks with any 

clinopyroxene as lherzolites and only those completely without evident 

clinopyroxene as harzburgites, unlike the 5 % clinopyroxene limit shown in Fig. 3.5. 

This system will be used in the present study to be consistent with other similar 

studies in the academic literature. One has to bear in mind that there may be a few 

instances where clinopyroxene is present in very small amounts and not exposed on 

the surface of a sample; therefore a sample may be recorded as harzburgitic when it 

should be lherzolitic. 

2 'chromite' and 'diopside', referred to in this chapter and Chapter 2, are end member names from the 
spinel and pyroxene mineral groups. These are often referred to in the diamond exploration-related 
literature as 'chromite' and 'Cr-diopside' but note that they will be referred to specifically depending 
on their compositions in later chapters (e.g. see section 4.2.1.2, Chapter 4), 
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Figure 3.5: Modified from Streckeisen (1980). 01 = Olivine, Opx = orthopyroxene, Cpx = 
clinopyroxene, Grt = garnet. 

Because the sample size is usually small compared to crystal size the samples have 

been divided into those where the garnet crystal size is? sample size (monogranular 

garnet samples) from those where it is C sample size (polygranular garnet samples). 

This distinction simply divides those samples that have the appearance of a rock 

from those that are largely a single garnet crystal, and does not imply at the outset 

any differences in mineral abundances or composition. Having made these and 

subsequent subdivisions (below) some tentative comments will be made about the 

nature of the original rock textures and their overall mineralogy. 

For polygranular (P) garnet samples subdivisions are made according to types of 

matrix present (see also Fig. 3.6): 

• Ps 	Serpentine ± chromite (i.e. harzburgitic): the matrix may contain 

serpentine alone but it never contains chromite alone and is therefore defined 
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as having serpentine ± chromite mineralogy. Matrix chromite is sometimes a 

separate grain to serpentine but may be attached to it in the matrix. 

• Pd 	Diopside, serpentine ± chromite (i.e. lherzolitic): the matrix may 

contain diopside alone with both serpentine and chromite being 

accompaniments to diopside either together or alone. 

• Pg 	Garnet-garnet grain boundaries are present as a continuous network 

and thus garnet dominantly resides in a matrix of garnet. 

Note that in polygranular samples the matrix constituents always relate to mineralogy 

of the inclusions in garnets (i.e. a case was not observed of a lherzolitic matrix to the 

garnet with only harzburgitic inclusions inside garnet or vice versa). 

Monogranular garnet samples are subdivided according to the mineralogy of 

inclusions present (see also Fig. 3.6): 

Ms 	Serpentine ± chromite (i.e. harzburgitic): Inclusions may be 

serpentine alone but only very rarely (2 examples) chromite alone and is 

therefore defined as having serpentine ± chromite inclusions. When chromite 

is present it is nearly always contained within a serpentine inclusion and very 

rarely occurs as isolated, monomineralic inclusions. 

• Md 	Diopside ± serpentine ± chromite (i.e. lherzolitic): Inclusions may be 

thonomineralic with any combination of minerals present (i.e. di, di+serp, 

di+chr or di+srp+chr). Polymineralic inclusions maybe present in any 

combination in addition or exclusively to monomineralic inclusions. 

• M 	Monogranular garnet with no inclusions (i.e. no affinity observable) 
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x:y:z, of 0.8:1:1.3. This is indicative of a uniform erosive/reactive action attributed to 

the kimberlite magma. The Newlands samples have mean z = 8 mm (11.4 mm for 

those used to provide textural information) given the 5 mm lower cut off size. At 

Belisbank however the mean z = 11 mm (18.9 mm for those used to provide textural 

information). 

Samples possess a 1-3 n-im radial thickness of kelyphite rim at the contact with 

kimberlite (where it is preserved). Many show kelyphitic rims without attached 

kimberlite. Also evident on the surface is the presence of many fractures and veins 

filled predominantly with white calcite. 

The minority (-20%) of the samples show evidence for the nature of the grain 

boundaries present in the original rock where garnets are bounded by serpentine 

(probably once olivine/orthopyroxene). From this it is clear that estimates of modal 

proportion are not likely to be reliable and that olivine and orthopyroxene may well 

have been higher in the larger rocks samples prior to eruption. 

3.2.4.2 MINERAL COLOURATION 

Garnets from concentrate from Newlands and Bobbejaan show a wide variety of 

colouration. Eclogitic gamets associated with green omphacitic clinopyroxene vary 

from yellow-orange to red-orange; whereas'peridotitic garnets tend to be purple-lilac 

but may vary from salmon pink to lilac to deep magenta (see Fig. 3.8a). Deep red 

garnets occur rarely and have been found to have chemical composition 

characteristics of the megacryst suites found at many kimberlite pipes. 
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Figure 3.8: (a) 2.54 cm round mount of pendotitic garnet concentrate in transmitted light. Note subtle 
variations in hue and the abundance of fractures in most garnets. (b) 2.54 cm round mount of green 
minerals from concentrate in transmitted light. Lighter yellow-green is olivine, darker grey-green is 
omphacitic clinopyroxene associated with orange garnet at bottom. Darker varieties of deep green are 
Cr-diopsides. 

Some garnets within samples display the 'alexandrite effect' where high levels of 

chromium in combination with high-calcium are probably responsible for the shift 

from green-blue under sunlight or fluorescent light to purple under incandescent 

light. (Alexandrite is a Cr3tbearing  beryl which displays this effect). About 1 % of 

concentrate garnets from Newlands and Bobbejaan clearly display this effect. 

Slight variation in the deepness of green in Cr-diopsides was also evident and may 

also be due to certain samples having particularly elevated chromium contents. 

Olivine and orthopyroxene crystals have nearly entirely been pseudomorphed by 

yellow serpentine and a brownish green bastite respectively (see Fig. 3.8b). 

3.2.4.3 MODAL PROPORTIONS 

Proportions of minerals observable on polished sample surfaces were recorded. Both 

poly- and monogranular samples are divided into clinopyroxene present (lherzolitic) 

assemblages and clinopyroxene absent (harzburgitic) assemblages in the proportions 
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shown in Fig. 3.9. This indicates sample affinity to a harzburgitic or therzolitic 

paragenesas. 

Figure 3.9: Number of lherzolitic and harzburgitic garnet samples from Newlands and Bobbejaan 
kimberlites (for both P and M sample types). 

The modal mineralogy of polygranular samples from both kimberlites is shown in 

Fig. 3.10. Most samples therefore fall into either garnet (± chromite) harzburgite or 

lherzolite categories. Four samples may be classed as garnetite since they have> 90 

% garnet. 
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Figure 3.10: Average modal mineralogy of harzburgitic (a) and lherzolitic (b) polygranular samples. 

The modal mineralogy of inclusions present in gamets from all samples with 

inclusions present is shown in Fig. 3.11. It is possible to call these samples garnet 

samples with lherzolitic or harzburgitic affinity based on the inclusion mineralogy 

because this is observed to correspond to matrix mineralogy in polygranular samples. 

However a rock name cannot be applied because only one crystal is present, but the 

samples do indicate affinity to a peridotitic paragenesis rather than an eclogitic one. 

Inclusions present within garnets in P samples have similar proportions to those from 

M samples. This is indicative of M (single crystals) being derived from P rocks. This 

data is not graphed because of the low number of P samples. Additionally the 

presence of diamond was noted in sample B0B404. The diamond is a filamentous 

aggregate of white octahedra growing in a vein within garnet and is - 300 gm long. 

(a) 
	 Lhsnolltic Xenolith Inclusion. 

	
Flsrzburglttc XenoIith Inclusions 

serpentin 

clinopyronene 

  

serpentrne 

Figure 3.11. Modal mineralogy of inclusions present within gamets from polygranular and 
monogranular samples of harzburgitic (a) and Iherzolitic (b) affinity. 
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A check was made to see whether there was a significant sample size effect on the 

number of phases (in garnet and matrix and inclusions) seen per sample. Fig. 3.12 

illustrates that polygranular samples are, in general larger than monogranular 

samples, but that there is not a substantial bias towards larger samples of either type 

having more phases observable. 

0 	1 	2 	3 	4 	5 
Number of phases noted in sample 

Figure 3.12: Number of phases noted vs. size of monogranular and polygranular samples. 

3.2.4.4 PETROGRAPHIC EXAMPLES 

3.2.4.4.1 Polygran ular Garnet Samples 

Polygranular garnet samples have multiple garnet crystals and other minerals 

forming a matrix around the garnets (section 3.2.2.2). This leads to a garnet-, 

serpentine- or clinopyroxene-rich matrices and examples of these types are described 

below. 
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Ps (NEW308 and B0B063) 

NEW308 (Fig. 3.13) possesses garnet-garnet and garnet-serpentine grain boundaries. 

Each of the three large garnets possesses its own rounded serpentine inclusion C I 

mm diameter. The areas of serpentine have reasonably smooth grain boundaries 

suggestive of 1200  grain triple junctions with garnet. Although the sample size is 

limited, these observations suggest a coarse polygonal-granoblastic or granuloblastic 

teiture (see Harte, 1977). 

Figure 3.13: Reflected light photo of sample NEW308 (long dimension 11.5 mm). Palest grey is 
garnet, dark grey is serpentine, and black areas are veins/cracks. 

Serpentine is more abundant in samples such as B0B065 where it forms more of a 

continuous network that surrounds garnets. Serpentine-serpentine-garnet contacts are 

distinctly granuloblastic in this sample (see Fig. 3.14). 
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Figure 3.14: Tracing of photograph' of 80B065 (long dimension 18 mm). Garnet is in white and 
serpentine is in grey with striations (potentially cleavage) of different orientations (thin lines) 
reflecting different original crystal orientations. Thick lines represent interpreted grain boundaries. 

Pd (NEW303) 

Fig. 3.15 shows sample NEW303 which comprises approximately equal proportions 

of serpentine, clinopyroxene and garnet as matrix minerals. Garnet and 

clinopyroxene appear euhedral and the serpentine appears more interstitial but may 

have been formed from several orthopyroxene crystals prior to alteration. Note the 

presence of rounded inclusions of both serpentine and clinopyroxene within the 

garnet as millimetre to sub-millimetre crystals. 

Note that full quality photographs of all samples are included in Appendix VI (data CD). 
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Figure 3.15: Reflected light image of NEW303. Serpentine forms both as a matrix mineral (dark grey 
with cleavage in the centre of the sample, Srp) and as an inclusion in garnet (black, Srp(i)). 
Clinopyroxene also forms as significant part of the matrix (Cpx) in lighter grey and as an inclusion in 
garnet (Cpx(i)). Garnet (Grt) is lightest grey in reflected light and has two differently orientated 
crystals (EBSD results) to the top left and bottom right of the sample. 

Pg (NEW059) 

Figure 3.16: Composite image of two reflected light photographs of NEW059 (long axis = 10.5 mm). 
Bright white is chromite, light grey is garnet and darker grey is serpentine. There are at least 10 garnet 
crystals with different crystallographic orientations according to EBSD work. Their grain boundaries 
are picked out by veins. Ignore speckled nature of the garnet (relic of siton polishing). 
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NEW059 illustrates the garnet-rich nature of the Pg rocks in a relatively fine-grained 

example where garnet grains size varies from> 1 t c 5 mm (Fig. 3.16). Garntt is the 

predominant matrix mineral wheieas the serpentine and chromite grains are small 

and isolated. A granuloblastic texture is particularly well expressed in NEW059. 

3.2.44.2 Monogranular Garnet Samples 

Monogranular garnet samples comprise one garnet crystal which may or may not 

enclose inclusions of other minerals. The maximum size of inclusions within garnet 

is 3 mm down to sub-millimetre size. The inclusions may be monomineralic or a 

composite of 2-3 minerals (i.e. either serpentine + chromite, clinopyroxene + 

chromite or all three). The inclusions are normally rounded to subhedral but may 

have straight crystal contacts with garnet. When chromite is part of a rounded or 

subhedral polymineralic inclusion it is usually euhedral inwards to the inclusion and 

rounded at the contact with the garnet. Examples of samples from each monogranular 

type are presented below. 

Ms (NEW074, B0B304) 

Figure 3.17: Tracing of photograph of NEW074 (long dimension 11 mm). 
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Figure 3.18: Thin section scan of 80B304 (width = 24 mm). A single garnet crystal makes up the 
majority of the slide in medium grey and poikilitically encloses serpentine inclusions which are darker 
grey on the image. Note the serpentine inclusions to the right of the slide that appear to show evidence 
for previous Mg-silicate-Mg—silicate grain boundaries now altered to serpentine. 

NEW074 is a monogranular garnet sample containing a subhedral inclusion of 

serpentine which itself encloses a smaller euhedral chromite at its margin (Fig. 3.17). 

Other examples, such as BOB304, have as many as 20 angular to rounded serpentine 

inclusions dispersed throughout the 20 mm garnet host crystal. Some of the 

serpentine inclusions appear to have been composed of multiple olivine crystals due 

the presence of 'ghost grain boundaries' (see Fig. 3.18). 

Md (NEWSP, B55, B013403, NEW078) 

Monogranular samples with inclusions of clinopyroxene, serpentine and chromite 

vary from those with polymineralic inclusions such as NEWSP containing diopside, 

serpentine and chromite (Fig. 3.19) to those with only monomineralic inclusions (e.g 

NEW 107). Inclusions are predominantly rounded. 
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Figure 3.19: Tracing of photograph of sample NEWSP (long dimension = 19 mm). The host garnet 
has inclusions of predominantly rounded and bimineralic containing clinopyroxene and chromite (or 
Cr-spinel black). The serpentine at the bottom of the photograph is part of a relatively straight-edged 
inclusion also containing clinopyroxene and euhedral chromite. 
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Figure 3.20: Tracing mineral arrangement in sample B55 from back scattered electron mosaic of 
images. The single garnet crystal is host to inclusions of is clinopyroxene, chromite (or Cr-spinel) and 
serpentine (a darker brown serpentine that appears to have been orthopyroxene). Directions of the 
three main Cr-spinel mineral orientations are shown with dashed arrows (1-3). 
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Figure 3.23: Tracing of photograph of NEW003 (long dimension = 12 mm). Single garnet crystal. 

The outline shape of many of the monogranular garnet samples appears to be 

controlled mainly by the kimberlitic erosive force which has rounded most samples 

approximately into oblate spheroids. Samples such as NEW003 (see Fig. 3.23) show 

modified sample outlines that appear to be shaped in similar ways to garnets from 

polygranular samples e.g. NEW059 (see Fig. 3.16) i.e. with curvy-planar surfaces. 

These may therefore have once been garnet-garnet grain boundaries affecting the 

shape of the garnet sample. 
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3.2.5 Alteration 

3.2.5.1 KIMBERLITE VEINING 

Kimberlite veining is ubiquitous within the sample set. Variation exists from samples 

with a few fine veins present to samples with as much as 30 % volume occupied by 

veining. The grain size of the veins also varies from <50 p.m in fme veins to> 1 mm 

with coarse crystals pervading the sample. Figure 3.24 shows a typical instance of a 

200 tm wide vein of kimberlitic material pervading a garnet crystal with finer scale 

(-10-50 p.m) multiple bifurcating accompanying veins. Veins are often phiogopite-

rich and may also contain chrome-spinel, serpentine, calcite and other minor phases 

(Fig. 3.25). 

Figure 324: PPL thin section photograph of kimberlite vein intruding pink garnet from NEW30I. The 
brown, cleaved mineral is phiogopite and opaque mineral is an Fe oxide. Fov = 1 mm. 
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Figure 3.25: Photograph of garnet macrocryst B47 showing extensive kimberlitic intrusion (black 
(phiogopite) and white (calcite) areas), Fov width = 13 mm. 

When samples are still set in kimberlite it is apparent that the veins are aligned with 

the strike of veining in the host kimberlite in Blow 2 at Newlands (Fig. 3.26). Veins 

in kimberlite follow a strike to NNE. This aligns with the dominant dextral trend of 

en-echelon kimberlite dykes at Newlands and Belisbank (see Figs. 3.3 and 3.4). 

- - ;__' -,;. v 	• 

Figure 3.26: North-north-easterly view of a tunnel roof inside the Newlands mine at Blow 2. Blue-
grey host rock is kimberlite. White veins oriented approximately NNE are calcite-filled. Top of 
picture is close to 1 m across; veins are 1-20 mm wide and en-echelon along strike. 
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3.2.5.2 KELYPHITISATION 

Many samples (all those with attached kimberlite) display a kelyphite rim at their 

margins between garnet and kimberlite. These range in thickness from 200 jim to I 

mm and occur all or most of the way around the sample unless chipped off by the 

mine crushing procedure. The kelyphite is composed of phiogopite and other 

accessory phases forming fibrous crystals radially disposed around the sample (see 

Figs. 3.27 and 3.28 for details). The kelyphite is clearly distinguishable from the 

sample itself by its fine grained radial texture, its green appearance in transmitted 

light and its light brown appearance in reflected light. 

Figure 3.27: Thin section photograph in plain polarised light of the edge of sample B0B302 with 
kimberlite at the bottom (brown is fine grained groundmass, yellow rounded shape is altered olivine 
macrocryst). A kelyphite rim can be seen as a green band separating kimberlite from garnet (note the zD 

absence of kelyphite where a serpentine inclusion is exposed to kimberlite magma). Note second band 
of kelyphite along region of more intense kimberlitic invasion through the middle of the field of view. 
The black box indicates the field of view for Fig.3.28. 
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Figure 3.28: Enlargement from Fig. 3.27 of kelyphite rim (MIL). Fibrous radial growth can be seen 
within the kelyphite along with included euhedral fine oxide minerals. Note displacement of 
kelyphite rim and garnet contact by intruding kimberlite veins to the left and right of the image. 

3.2.5.3 SERPENTINISATION 

Figure 3.29: XPL thin section photograph of serpentine window-texture' replacing a magnesium 
silicate mineral (most likely olivine) at the edge of sample B0B302. Circle field of view is 500 i4m. 
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Serpentine group minerals pervasively replace olivine in kimberlite (Fig. 3.29) and 

olivines and orthopyroxenes within samples. Clinopyroxene is also replaced by 

serpentine in a few cases (see Fig. 3.23). Serpentinisation has occurred to such an 

extent as to leave no fresh olivine/orthopyroxene in any sample in this study. 

3.3 Discussion 

3.3.1 Modal mineralogy: Worldwide localities with similarities 

With regard to the garnet-rich xenoliths in this study it is important to note any 

similarities with previously studied samples from other kimberlites and to assess how 

unique they are. This should provide a means to place the samples in context if there 

appears to be a continuum of rock types with similar bulk rock compositions. 

3.3.1.1 PREVIOUS NEWLANDS SAMPLING 

Menzies (2001) studied a selected xenolith population which comprised diamond-

bearing and diamond-free eclogites and peridotites. The mineralogy of the 

diamondiferous garnet macrocrysts that Menzies studied can be seen to be very 

similar to mineral modes recorded for all harzburgitic polygranular samples in this 

study (compare Fig. 3.30 to Fig 3,1Ob). 11/18 of these are harzburgitic garnet-

chromite samples with the rest being garnets with harzburgitic affinity. Menzies' 

samples were on average larger (1-3 cm in diameter) and polygranular. Diamond is 

present in these samples with an average concentration of 1 % which is several 

orders of magnitude greater than most diamondiferous kimberlites. 
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Approximate relatie abundance of minerals in diamondiferous garnet 
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Figure 3.30: n = 18, data reprocessed from Menzies (200 1) 

The diamond-free samples in this study at Newlands and Bobbejaan produce similar 

modal proportions to Fig. 3.30 but have the additional feature of clinopyroxene in 

approximately 30 % of garnet macrocryst samples. 

3.3.1.2 PREVIOUS BOBBEJAAN SAMPLING 

23 samples from Bobbejaan were studied petrographically by van der Westhuizen 

(1992) and he recognized the equivalent of polygranular and monogranular sample 

types distinguished here. One mode for a polygranular sample was made and 

recorded as 2 % clinopyroxene, 3 % phiogopite, 40 % spine! and 55 % garnet. This 

mode is similar, disregarding alteration products such as phiogopite, to lherzolites 

from Newlands and Bobbejaan examined in this study and appears to have come 

from the same kimberlite sample set as those from Bobbejaan in this study. 

3.3.1.3 COMPARISON TO ARNIE SAMPLES 

The modal mineralogy of the samples in this study is exceptionally garnet-rich 

compared to the majority of xenoliths from kimberlite. The only locality in the 

literature with similar garnet-rich, chromite-bearing harzburgite samples are those 

that have been noted at Arnie kimberlite in Canada by Doyle (2002). Sample 
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ARNO19 is shown in Fig. 3.31 (a) where a resemblance can be seen to NEW059 

(Fig. 3.16) and NEW308 (Fig. 3.13) in their similar abundances of garnet and 

serpentine. The Arnie samples also bear textural resemblance to the Newlands and 

Bobbejaan samples by having subhedral serpentine grain outlines and a similar 2-3 

mm average crystal size with smaller (- 250 l.tm) euhedral chromites. Some more 

granoblastic textures are also noted (see Fig. 3.3 ib). 
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Figure 3.31: (a) Photograph of garnet sample ARNO 19 from Arnie kimberlite, NWT, Canada from 
Doyle (2002) (width of photo = 7 mm). The altered Mg-silicate is serpentine (yellow-brown), the 
garnet is the host mineral comprising 60 % of the sample surface (magenta) and chromite occurs at the 
margins of the serpentine inclusions as small, euhedral black crystals. (b) Photograph of garnet sample 
ARN0059 from Arnie kimberlite, NWT, Canada from Doyle (2002) (width of photo = 7 mm). Purple 
garnet and brown serpentine with a granular appearance. 

3.3.1.4 COMPARISON TO RUSSIAN LOCALITIES 

Some xenoliths from the Yakutian kimberlites show some features of similarity to 

the Newlands and Bobbejaan samples. Of the 18 diamondiferous specimens from 

Udachnaya pipe studied by Pokhilenko and Sobolev (1986), 16 have 95 % olivine 

(i.e. dunites) and they record 6 olivine-pyrope assemblages, 6 olivine-pyrope-

chromite, 3 olivine-pyrope-enstatite-chromite and 1 olivine-enstatite-chromite. The 

rocks are said to be megacrystalline implying a large (> 5 mm) crystal size. 

However, 16 out of 18 samples have> 95 % olivine and fresh olivine is present in 
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most samples and fresh orthopyroxene is present in two. A similar sample set is 

apparent at the Aykhal pipe also from Yakutia, Sobolev et al. (1969). Therefore these 

samples are different to Newlands and Bobbejaan samples in their high percentage 

olivine present, but they do contain garnet macrocrysts and relatively commonly 

have chromite and diamond. 

3.3.1.5 COMPARISON TO ALKREMITES 

Alkremites are spinel-garnet rocks high in Al, Si and Mg (Ponomarenko, 1975). 

Garnet is high in all these elements (even given their chromium-rich nature, see 

Chapter 4) and, in the Newlands and Bobbejaan samples garnet can comprise around 

90% of polygranular samples the bulk compositions of the samples imply A1 203.rich 

rocks. It is therefore worth comparing the modal mineralogy and to some extent the 

resultant bulk rock chemistry with some aluminous assemblages identified by 

various authors, e.g. the corundum-bearing assemblages identified in the 

Jagersfontein xenolith suite by Mazzone and Haggerty (1986), which are similar to 

some of the Newlands and Bobbejaan samples in having 50-80 % garnet. However 

the alkremite bulk rock compositions plot in very Ca-undersaturated compositional 

space i.e. to the low-Ca area of the basalt field. In terms of Al, the alkremites are far 

richer in Al than basalts and plot to higher Al than eclogites. Interestingly the 

Udachnaya pipe in Yakutia also has xenoliths of this unusual nature. 

Alkremites also contain spinel but the abundance of the spinel phase is very high and 

is also a different (Al-rich, Cr-poor) composition. Alkremites also lack appreciable 

amounts of olivine and pyroxenes which are noted in this study. One High-Cr garnet 

has been mentioned as part of the Alkremite-suite xenoliths from Bellsbank by 

Nixon et al. (1978) which seems to overlap the Bobbejaan sample set from this study 

in terms of modal mineralogy, texture and composition (see chapter 4). By and large 

samples referred to as alkremitic in the literature do not bear as close resemblance to 

the samples in question because of their high spinel modal abundance and distinct 

bulk compositions. Therefore Newlands and Bobbejaan samples are unique in that 
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they are the only sample set to display garnet-rich harzburgitic/lherzolitic mineralogy 

± chromite and diamond. 

3.3.2 Textures 

GENERAL FEATURES 

The samples from Newlands and Bobbejaan are divided into monogranular and 

polygranular samples, but we have seen that because of inclusions within garnets, 

both possess a similar range of mineralogy and textural features and they appear to 

be inherently derived from the same set of rocks. Essentially the textures are coarse; 

garnets are equant with curvy-linear grain boundaries and from polygranular samples 

the crystal contacts usually approach equilibrium (-120°). Only a small proportion of 

samples display distinctly cuspate grain boundaries. Inclusion textures vary from 

rounded to equant and poly- to mono-mineralic. 

As mentioned in section 3.3.1.3 there is a textural resemblance of some Newlands 

and Bobbejaan samples to small xenoliths from the Arnie kimberlite, which are 

defined by Doyle (2002) as 'equilibrium textures'. Most of her samples do show 

evidence for a good approach to textural equilibrium in their having 120 0  grain 

boundaries. 

Compared to textures described by Harte (1982), the samples would most closely fall 

into the 'Type I, Coarse, Mg-rich, cold' category with grains typically> 2 mm with 

equant or tabular shapes and showing smooth to more irregular grain boundaries 

(referred to as the common 'granular' peridotites xenoliths from kimberlite series 

eruptive rocks). There is no evidence in the Newlands and Bobbejaan sample set for 

deformed textures comprising porphyroclasts and neoblasts. 
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3.3.2.1 AN EXSOLUTION ORIGIN FOR TEXTURES 

Some samples show evidence for the exsolution of chromite, clinopyroxene and 

sometimes olivine or orthopyroxene (now serpentine) from garnet. This is most 

clearly suggested in sample B55 (Fig. 3.20). These samples are readily identifiable 

where chromite and sometimes clinopyroxene show a preferred orientation within a 

single garnet crystal. According to Haggerty and Sautter (1990) the cubic 

crystallography of garnet and its cylindrical stacking produces rods that connect Al 

sites in the structure oriented at 0°, 120 1  and 240° (when looking down a triad axis) 

that are compositionally amenable to the exsolution of clinopyroxene. The size of the 

clinopyroxenes in B55 is much greater than those noted by Haggerty and Sautter 

(1990) for their Jagersfontein samples (up to 2mm rather than a maximum of 200 

Am). B55 also contains abundant chromite that is orientated in three main directions 

that correspond to some of the clinopyroxene lamellae and, therefore, also seem to be 

controlled by the garnet structure in an exsolution process. The lamellar chromites 

appear to originate from more euhedral chromites within the polyrniricralic 

clinopyroxene-chromite inclusions, which could imply that there is a polyphase 

exsolution where a secondary chromite growth phase is more lamellar. However, 

both morphologies of chromite have the same chemical composition as analysed by 

electron microprobe. Haggerty and Sautter (1990) infer that the Jagersfontein 

exsolved garnets have an ultra-deep origin at 120-130 kbar and have compositionally 

re-equilibrated at 45 kbar at about 900°C over millions of years. 

Sample BOB301 has smaller, well-formed chromites with less marked preferred 

orientation and no evidence for exsolved clinopyroxene. Therefore potentially 

different exsolution chemistries are apparent in the present samples: One suggests 

chromite alone and another suggests clinopyroxene and chromite ± orthopyroxene. 

On the other hand the preservation of obvious lamellae with marked preferred 

orientation depends upon the absence of textural maturing or annealing processes 

which might be expected at mantle temperatures. Partial annealing may be evident in 

sample NEW078 as rounded lamellar chromites. Some samples such as BOB065 
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have rounded serpentine inclusions evenly spaced through the single garnet host. 

This has the appearance of 'blebby exsolution' in minerals such as pyroxene and 

alkali feldspar. 

3.3.3 Conclusions 

The samples in this study are unique in their garnet-rich and identifiably 

peridotitic mineralogy and display a relatively narrow range of modal 

abundances and textures. 

The samples fall into two categories: Those possessing multiple garnet 

crystals (polygranular garnet samples) and those comprising one garnet 

crystal (monogranular); though inclusions are common in the garnets of 

both types. However these two categories do not appear to be intrinsically 

different; most probably they reflect the degree of disagregation (grain 

dissolution and separation) from their source rock. 

The samples are garnet-rich rocks with distinctive modal mineralogy that 

includes olivine, orthopyroxene, clinopyroxene and chromite. Their 

closest comparison is to certain harzburgitic samples from Arnie 

kimberlite in Canada. Their broad peridotitic mineralogy and 

megacrystalline aspect is similar to Yakutian garnet-dunites but their 

modal abundances are very different. 

The samples are divided into lherzolitic or harzburgitic samples based on 

the presence or absence, respectively, of clinopyroxene. The Newlands 

sample set is unique in having a strong bias towards harzburgitic rock 

types (i.e. without elinopyroxene). 

The following'samples types are recognized: Polygranular (Ps, Pd, Pg) 

and monogranular (Ms, Md, M), see Fig. 3.6. 
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6) 	Texturally the majority of the samples appear to be derived from rocks of 

coarse grain size with reasonably smooth (granuloblastie) grain 

boundaries. Coarse garnet grains may poikilitically enclose inclusions of 

serpentine, clinopyroxene or chromite either as mono- or poly-mineralic 

inclusions. 

7) 	A small subset of the samples show large garnets enclosing inclusions 

that have preferred orientation which suggest an origin by exsolution. 
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4. Major Element Compositions 

4.1 Introduction 

4.1.1 Aims and objectives 

The first aim is to assess the chemical composition of peridotitic mineral concentrate 

from the kimberlites in this study relative to that from other southern African 

diamondiferous kimberlites. General context for concentrate will be provided by a 

database of heavy mineral concentrate from till sampling for diamond exploration in 

Northwest Territories of Canada. The second aim is to judge how the chemistry of 

minerals from the samples differs from the concentrate datasets. 

The Newlands, Bobbejaan and Leicester concentrate essentially consists of single 

crystals of garnet, chromite', clinopyroxene, orthopyroxene and olivine (C - 5 mm). 

These grains were mounted in bulk and analysed on 1-2 points per grain by electron 

microprobe. An appraisal of the deviation of their compositions from other 

kimberlite concentrate was made to provide a means to discriminate sample types 

and parageneses and further broaden the basis for diamond prospecting via major 

element analysis. 

In particular, analysis of Newlands concentrate minerals adds to the Kimberlite 

Research Group (KRG, Univ. of Cape Town) database of kimberlitic mantle 

minerals from the Barkly West area. The KRG database includes kimberlite heavy 

mineral concentrate analysis from many kimberlites in southern Africa and provides 

'Chromite' is the Fe-Cr end member spinel and is used in literature to denote a chromium-rich 
spinet. See section 4.2.1.2 for the terminology used for this mineral in this study. 
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worldwide diamond inclusion analyses for multiple phases from published work. The 

comparison of the bulk mantle sample from Newlands and Bobbejaan kimberlites 

with this data should provide a means to assess the usefulness of various chemical 

discriminants in diamond exploration. 

4.1.2 Geochemical classification 

Systems for classifying mineral compositions are discussed in Chapter 2. In this 

chapter the '85 % line' imposed by Gurney (1984) onto the garnet Cr 203 -CaO plot 

shall be utilised to differentiate G9 from GlO garnets. This line essentially equates to 

the line of Sobolev (1973) that separates harzburgitic, clinopyroxene- free garnet 

bearing xenoliths from lherzolitic, clinopyroxene present ones. Grutter et al. (2004) 

provide compositional parameters for many of the garnet classes, GI through to G12, 

of Dawson and Stephens (1975) (see Table 4.1). Grutter's classification takes Cr, Ca, 

Mg, Fe, Ti and Na into account and adds the 'diamond-graphite constraint' (DGC) 

which is a sub-horizontal line on CaO vs. Cr203 graph positioned to divide the G 1 

garnets into those occurring in diamond-bearing peridotite xenoliths and those 

occurring in graphite-bearing peridotite xenoliths. This formulation is based upon the 

Cr and Ca compositions of garnets from diamond and graphite-bearing xenoliths 

largely using data from Roberts Victor in Viljoen et al. (1994). 

Fields from Fipke et al. (1995) are used to identify potential diamond facies 

chromites in Cr-Mg and Cr-Ti space. A broader appraisal of chromites, based on the 

spinel prism, will also be made. Clinopyroxenes can be given an initial 

compositional assessment based on their location in the pyroxene quadrilateral in 

CaO-MgO-FeO space. Cr-Al and Cr-Na plots shall be used to assess jadeite 

(NaAlSiO3) and kosmochlor (NaCrSiO 3) end-member activities. Due to the absence 

of fresh orthopyroxene and olivine in samples it is only for the concentrate that the 

compositional classification of these minerals shall be required. The Mg:Fe ratio is 

the most commonly cited factor plotted in the literature for both minerals since it 

provides information as to the degree of depletion of the parent rock. Ni-in-olivine 
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and Ca-in-orthopyroxene shall also be discussed since these minor constituents bear 

some relation to the P-T conditions of formation (see chapter 7). 

Class Paragenesis Cr203  CaO Ti02  MgO FeO 

GO Unclassified 0.00-1.00 0.00-2.60 n/a n/a n/a 

01 Low-Cr 0.00-3.67 
Megacrysts  

3.74-6.83 0.31-0.87 16.2-22.2 6.15-12.18 

02 High-Ti 0.21-2.80 
Peridotitic  

4.20-5.30 0.89-1.28 19.5-21.7 6.62-11.17 

03 Eclogitic 0.00-3.96 2.50-14.00 0.00-0.57 8.46-18.60 11.27-22.95 

04 Pyrokenitic & 0.00-0.20 
websteritic  

5.35-16.20 0.64-1.38 2.95-13.70 14.50-30.54 

05 Pyroxenitic 0.00-0.13 1.07-5.66 0.00-0.35 5:26-10.90 24.96-29.94 

06 Eclogitic 0.08-0.51 9.15-9.10 0.08-0.51 5.17-16.19 5.71-13.95 

07 Wehrlitic 7.16-14.90 18.80-26.00 0.18-0.47 5.86-10.50 4.56-6.43 

08 Eclogitic 0.00-0.12 19.92-30.13 0.01-0.65 2.94-7.01 4.32-8.74 

09 Lherzolitic 0.24-9.15 3.67-8.36 0,00-0.45 13.60-24.2 5.42-11.80 

010 Harzburgitic 3.01-15.90 0.27-3.80 0.00-0.25 20.70-25.58 4.71-8.46 

011 High-Ti02  
Peridotitic 

5.60-13.55 5.90-15.40 0.21-0.80 11.40-20.44 4.65-11.35 

012 Wehrlitic 12.20-18.90 5.89-19.80 0.00-0.54 10.30-19.20 I 6.45-8.57 

Table 4.1: Summary of garnet classes from Dawson and Stephens (1975). Paragenetic terms are taken 
from Schulze (2003) and GrUtter et al. (2004). Concentrations of oxides expressed in weight percent. 

4.1.3 Processing of spot analysis data 

For full operating conditions and summary of the Electron Microprobe technique 

used see Appendix I: Analytical Techniques. Using weight percent oxide values 

output from the electron probe, the number of cations for each mineral analysis was 

calculated on a cation basis so that they summed to 6 in spinel, 8 in çr-diopside and 

8 in garnet2 . The advantage of this method is that the mineral formulae are satisfied 

most closely since there are always a total of 8 cations and 12 oxygens in garnet for 

2 Two main differences between the 'sum to 12 oxygens' and 'sum to 6 cations' methods emerge on 
cation plots: Firstly, a tighter distribution is present in garnet and chromite from concentrate using the 
latter method (Fig. 4.19 shows this for chromites). Secondly there is a better fit to total site occupancy 
e.g. for garnets (Fig.I.1, Appendix I). 
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example. To make a stoichiometric estimate of Fe 2 : Fe 3+ ratios the number of 

charges was then summed assuming all Fe as Fe 2+  Then the charges were corrected 

by creating the appropriate amount of Fe 3+  The formulation adopted follows Ryburn 

et al. (1975) using the formula for clinopyroxenes (garnet and chromite use a similar 

method) where: 

Fe 3+ = 4 - (2Si + 2Ti + Al + Cr) + (Na + K) 

and Fe2  = Fe - Fe 3+  

This method was preferred to that of Droop (1987) because it means the number of 

cations and oxygens do not deviate away from their whole number values. However 

it was found that the Fe 3+  estimates varied markedly with some negative values being 

generated. This variation is attributed to the known inaccuracies of measuring major 

elements especially abundant like Si on electron microprobe. Therefore, in the 

appendices and in all calculations of compositional parameters, all Fe analyses are 

expressed as Fe (total iron). 

In this thesis cation concentrations are generally calculated and used for further 

processing and assessment of compositional variation. However, much current 

literature quotes concentrations in weight percent for particular parameters. This is a 

product of diamond exploration companies quoting electron microprobe analyses in 

their raw form of weight percent when investigating kimberlite indicator minerals. In 

order to make direct comparisons with other work certain weight percent (wt. %) 

plots shall also be made in this chapter. Figure 4.1 a shows a cation plot of 

Cr/(Cr+Al) vs. CaJ(Ca+Fe+Mg) fofgarnets and shows that it is virtually identical 

spatially to a standard Cr203 vs. CaO garnet wt. % plot. This is indicative of the fact, 

that for the garnets considered, cation Cr is directly proportional to (2-Al) and Ca 

directly proportional to (2-Mg) since Fe(presumably both Fe 2  and Fe3 ) remains 

relatively constant. 
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Figure 4.1: Garnet traverses from this study. (a) Cr/(Cr+Al) vs CaJ(Ca+Mg+Fe) cations plot 
compared to (b) Cr vs Ca cation plot and (c) Cr 203  vs CaO wt. % plot for Newlands garnet sample 
traverses. The Iherzolite line (LL, solid, Gurney (1984), which has 010 garnets to the low-Ca side and 
09 garnets to the high-Ca side) and diamond-graphite constraint (DOC, dashed, GrUtter et al. (2004), 
which has diamond facies garnets plotting to the high Cr side of the line) are shown in (c). 
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Using the method of Rickwood (1968) garnet end member calculation was made 

assuming low Fe 3+ , Ti, Y and V (C  0.1 formula unit) in the calculation, values for 

pyrope, almandine, spessartine, uvarovite and knorringite were calculated for 

selected garnets to show the range of end-member compositions present and to 

compare with diamond inclusion garnet compositions and previously reported 

compositions. Low-Ca harzburgites are expected to have a relatively high knorringite 

(Mg3Cr2 Si 3 Oj2) component and high-Cr, high-Ca garnets are expected to have a high 

uvarovitc (Ca3Cr2Si3Oi2) component. 

The samples displaylittle variation in almandine end member compared to uvarovite, 

pyrope and knorringite. The cation ratio plot of Cr/(Cr + Al) vs. Ca/(Ca + Fe + Mg) 

vs. Mg/(Mg + Fe) furns out to be essentially equivalent to a garnet end member plot 

of knorringite vs. uvarovite vs. pyrope. The three cation ratios mentioned are, 

therefore, proxies for the ratios of respective end member compositions. 
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4.2 Major Element Composition of Barkly West Kimberlite 

Concentrate 

Three main. datasets of concentrate analyses are compared in this section: 

NWT - A large dataset of concentrate from North West Territories of Canada 

glacial till sampling (Open Report 2001-2002 conducted by John Armstrong, 

htt.p:/Iwww.nwtgeoscience.ca ). This dataset was chosen for its large size and 

diverse source material, which is known to include diamondiferous 

kimberlites. This dataset will provide the widest range as a much greater 

number of parageneses are represented than in other datasets. 

SAK - Southern African diamondiferous kimberlite concentrates from the 

Kimberlite Research Group, University of Cape Town (KRG database). This 

dataset was chosen to provide a widespread southern African concentrate 

example for comparison with those found from the kimberlites in this study 

from the Barkly West region. This dataset should have a higher proportion of 

material from the diamond stability field than dataset 1 since only kimberlitic 

material is being analysed. 

BWK - A Barkly West dataset that includes Newlands, Bellsbank, Frank 

Smith and Leicester kimberlites was compiled from KRG database, Menzies 

(2001), van der Westhuizen (1992) and data collected in this study. The 

Newlands dataset is most numerous and is examined separately on occasion. 

Of these kimberlites, Frank Smith is known to have mainly peridotitic and 

megacrystic garnets in its concentrate, whereas the other three may have 

relatively high percentages of eclogitic garnets and for these three a bias 

towards analysis of purple garnets (and hence peridotitic garnets) was made 

so the resultant population of all four kimberlites is predominantly a 

peridotitic one. Opaque minerals, pyroxenes and olivine do not have any bias. 

Mineral compositions present in this small group of localities that are not 

present in datasets 1 and 2 will indicate unique material present. 
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The number of analyses in each dataset and subsets are shown in Table 4.2. Finsch 

garnet concentrate and diamond inclusion garnets analysed by KRG are highlighted 

for additional comparison. 

Garnet Chromite Clinopyroxene Orthopyroxene Olivine Total 

1 NWT 30462 3659 2156 166 1219 37662 

2SAK 3738 921 267 129 0 5055 

3BWI( 1139 546 111 158 98T 2052 
NEW (4941, (197T, 141A, 

(87T, 24K) (121K, 37T) 277A, 368K) 208K) 

3BWK 426 19W 11W 0 0 456 
BELL (53W, 1341, 

239K)  

3BWK 138 139 31 0 0 308 
FSM  

3BWK 167 0 0 0 0 167 
LEI  

TOTAL 36070 5284 2576 453 1317 45700 

Table 4.2: Number of analysed minerals from concentrate in datasets 1 (NWT = Northwest Territories 
of Canada till sampling), 2 (SAK= southern African diamondiferous kimberlite concentrate from 
KRG Research Group database) and 3 from four Barkly West region kimberlites (BWK); NEW = 
Newlands (T = analyses from this study, A = analyses from Menzies (200 1) and K = analyses from 
KRG database), BELL = Bellsbank kimberlite concentrate (T and K as above, W = number of 
analyses from van der Westhuizen, 1992). FSM = Frank Smith kimberlite concentrate from KRG 
database and LEI = Leicester kimberlite concentrate garnets analysed in this study. 

Numbers in Table 4.2 illustrate the large number of analyses in the NWT dataset 

with the ratios between the minerals reflecting the degree to which they are preserved 

in the Canadian tundra. Orthopyroxene is therefore the least common, weathering 

relatively quickly. Garnet and chromite are known to survive particularly well and so 

the ratio between them reflects the high proportion of garnet present in the source 

rock sample relative to chromite. Olivine is known to be much more common than 

garnet in kimberlite but is readily weathered and its source characteristics not so 

distinctive as garnet. 

The KRG database lacks many olivine analyses, which reflects sampling bias and 

does not imply rarity in southern African kimberlites. It is the Newlands olivine 

analyses from this study that are used for comparison to the NWT dataset. Within the 
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Barkly West kimberlite concentrates a special effort was made, in this study, to 

assemble a representative sample of concentrate from Newlands that included all 

peridotitic minerals and that may be compared directly to the assemblages of interest 

in the larger samples studied (see Chapter 3). 

4.2.1 Garnet 

The garnets discussed in this section fall into several categories ranging from 

almandine-pyrope for crustal garnets, grossular-pyrope-almandine for eclogitic 

compositions, chrome-pyrope (knorringitic-pyrope) for low-Ca, high-Cr peridotitic 

garnets and high-Cr, high-Ca (uvarovitic) garnet for 'websteritic' and wehrlitic 

compositions. 

Dawson and Stephens (1975), Gurney (1984), Grtitter et al. (2004) and Schulze 

(2003) have devised classification schemes in order to define compositional 

discriminants for garnets. They attempt to relate compositional variation to particular 

mantle/crustal paragenesis (see discussion in chapter 2). The classification scheme of 

Grutter et al. (2004) is used here because it takes into account the previous two 

systems and is also widely used in diamond exploration today. This classification 

mainly relates to discrete regions on the CaO vs. Cr203 (wt. %) diagram but also 

takes other elements such as Ti into account (see section 4.1.2). Other standard plots 

for garnet will also be made to see how garnets deviate from crustal compositions 

e.g. Ca-Fe-Mg cation plot and Na2O plots for high-pressure garnets. Plots for other 

elements analysed will be made to check for additional variation e.g. Ti, Na. 
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4.2.1.1.1 Ca-Fe-Mg 

Fig. 4.2a shows a Ca-Fe-Mg cation plot of garnets from the NWT indicator mineral 

prospecting in Canada and illustrates the full range of mantle garnets present. Low-

Mg, high-Fe and intermediate Ca garnets form a cluster that represents crustal garnet 

compositions. The plot therefore serves to differentiate garnet paragenesis based on 

these three important substituting divalent ions. 

By comparing the three plots below (Fig. 4.2) several features emerge: (1) Finsch 

diamond inclusions form two clusters; one eclogitic at intermediate Fe:Mg and low-

moderate Ca; and one peridotitic at high Mg and low Ca and forms a unique area 

relative to indicator mineral sampling in Canada but merges with the low-Ca 

concentrate from Newlands and to some extent Bellsbank (Fig. 4.2b). (2) A trend 

forms from the Finsch peridotitic diamond inclusions at constant low Fe to higher Ca 

values (i.e. a Mg-Ca substitution) at Newlands and Bobbejaan. This trend is not so 

evident in the 5000 gamets from NWT indicator mineral prospecting. (3) A more 

dispersed trend is seen emerging from the most concentrated peridbtitic cluster 

(probably lherzolitic) in Newlands and Bellsbank concentrate towards higher Fe 

values (i.e. a Fe-Mg substitution) and eclogitic compositions. This is also seen in the 

SAJC dataset but not clear in the NWT dataset. (4) The indicator mineral sample 

(Fig.4.2a) has two clusters not apparent in diamond inclusions or in Newlands and 

Belisbank concentrate, which is at high Fe and intermediate Ca. The other cluster is 

at low Ca and intermediate Fe:Mg. These probably represent crustal garnets not 

sampled by kimberlite. FifIhly, kimberlite concentrate from southern Africa has less 

high-.Ca garnets than shown in the Canadian sampling and Barkly-West concentrate. 

It also has a strong extension into the peridotitic diamond inclusion field unlike the 

Canadian sampling. 
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Figure 42: Cation plots of Ca-Fet-Mg (Fet is total Fe) of garnets from (a) NWT till sampling (n 
5000, a random sample of-30,0O0 data points), (b) Newlands (open circle symbols) and Belisbank 
(grey square symbols) kimberlite garnet concentrate, Finsch diamond inclusions (open diamond 
symbols), (c) SAK concentrate (n = 2500) data from KRG Database. 
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Additionally the NWT dataset shows extensions to the lherzolitic and megacrystic 

cluster to higher CaO values which are thought to represent ykxenitic and wehrlitic 

compositions (011, 012 fields from Orutter et al., 2004). The distribution of 010 

garnets appears to be strongly limited at low Cr203. There is a high density region 

above 4 wt. % Cr203 and between 1.5 and  4 wt: % CaO above the diamond-graphite 

constraint (DCC); the abundance falls away: and becomes very sparse above about 12 

wt.%. 

The garnet concentrate analysis from Newlands kimberlite is shown in Fig. 4.3c. 

Here the lherzolitic cluster is seen once again, but it is observed to extend towards 

higher Cr203 than in the NWT dataset (Fig. 4.3b). The Newlands lherzolite cluster is 

comparatively dispersed adjacent to the lherzolite line. Some lower Cr203 garnets are 

observed in the Newlands data, but preferential analysis of purple garnets has meant 

that crustal, megacrystic and eclogitic garnets are under-represented. The 010 field 

at Newlands possesses a trend, which is not immediately evident from bulk indicator 

mineral sampling elsewhere. This trend is relatively narrow, conspicuously parallel 

to and continuously above the DCC, extending from 0.5.to 7 wt. % CaO. 010 

garnets also exist at lower Cr203 values than the DOC but are less abundant at 

Newlands than elsewhere. The trend of high-Cr 203  garnets above the DCC line 

extends across the lherzolite line at Newlands. The Newlands concentrate appears to 

contain high-Cr 010 garnets, high-Cr 09 garnets and high-Cr, high-Ca garnets in 

excess of the proportion seen in large scale sampling from a diamondiferous source 

region such as NWT, Canada. 

Though the total number of analyses is not high, Fig. 4.4 shows that concentrate from 

the other Barkly West region kiniberlites has far fewer garnets with more than 7 wt. 

% Cr203 than Newlands. This is evident in the lower percentage of ClOD garnets at 

Bellsbank, with even lower percentages at Frank Smith and Leicester compared to 
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Newlands (see pie charts, Fig. 4.5). The bulk of the Frank Smith garnet concentrate 

is offset from the Belisbank lherzolitic concentrate to higher CaO values by 

approximately 0.5 wt. %, with Leicester approximately between the two. Belisbank 

concentrate has a significant proportion of G 1 OD garnets and also shares Newlands' 

feature of a greater proportion of high-Cr, high-Ca garnets. 

Fig. 4.5 shows the proportions of peridotitic kimberlite concentrate garnet classes 

found at the 4 Barkly West localities and, in addition, from general indicator mineral 

sampling from recent Canadian exploration. It is evident from this figure that 

Newlands has the highest proportion of G 1 OD garnets and also G 10+01 OD garnets. 

It is also clear that Newlands and Bellsbank have similar proportions of garnet 

classes, the only significant difference being that Belisbank has more 09 lherzolitic 

garnets (- 2/3, compared to < '/2 at Newlands) at the expense of other classes. Frank 

Smith has general proportions similar to Newlands except there is a higher 

proportion of G  megacryst garnets present (-1/3, compared to 2 % at Newlands) at 

the expense of high-Cr garnets such as GlOs, G  is and G12s. Leicester is different 

to all other datasets in that it comprises 95 % lherzolitic G9 garnet. Compared to the 

Barkly West kimberlites excluding Leicester, the bulk Canadian till sampling from 

NWT is similar except it has a larger Gil and an intermediate 01 population with a 

lower G1OD:Gl0 ratio. 

The concentrate derived from southern African kimberlites is most similar to Frank 

Smith except for the higher proportion of G9s at the expense of GI s. GI 0+G 1 OD and 

G9 proportions are similar for both SAK and NWT datasets, the only significant 

difference is the higher proportion of Gis present in SAK. 
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Figure 4.4: CaO vs. Cr2 O3  (Wt. %) of garnet concentrate analyses from this study (TJI NEW, TJI 
BOB, TJI LEI), the Kimberlite Research Group Database (KRG NEW, KRG BELL, KRG BOB, KRG 
FSM), Menzies (200 1) (AHM NEW) and van der Westhuizen (1992) (AvdW BOB). The prefixes 
'NEW' = Newlands kirnberlite concentrate (dark blue symbols), 'BOB' = Bobbejaan kimberlite 
concentrate, 'BELL' undifferentiated Belisbank concentrate (red symbols), 'FSM' = Frank Smith 
kimberlite concentrate (bright green symbols) and 'LEI' = Leicester kimberlite concentrate (yellow 
symbols). Reference lines as for Fig.4.3. 
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Figure 4.5: Pie charts illustrating the proportions of garnets from particular compositional classes as 
defined by Grittier et al. (2004) from (a) Newlands kimberlite concentrate (data from this study, KRG 
database, Menzies, 2001), (b) Bellsbank kimberlite concentrate (data from this study, KRG database, 
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van der Westhuizen, 1992), (c) Frank Smith kimberlite concentrate (data from K.RG database), (d) 
Leicester kimberlite concentrate (data from this study), (e) Northwest Territories of Canada till 
sampling (data from open file: http://www.nwtueoscience.ca ) and (1) Southern Africa kimberlite 
concentrate (data from KRG database). Low Cr 203  garnets are removed from the datasets (i.e. those 
with < 1% Cr203) so that only peridotitic-affinity garnets are shown. 

4.2.1.1.3 Al vs. Cr 

(a)SAK 	 . 	 (b)SAK 

1.1)0 

00 

0.80 

070 ' 

0,60 

0.50 

040 

030 

020 

0,10 

OW 
I'm 	1,20 	1.40 	1.60 	1.80 	2,00 	2.20 

Ai3'  

14 

12 

10 

! 8 

8 
0 

.4. 

4 	 pr'. 

11 	13 	15 	W 	19 25 

AF203 (WI. %) 

(c) NWT 

1.00 

N 

	

0.90 
	

N 
N N 
	

UncIssified 

	

0.80 	
'OO" 	

• 09 

o 010 

	

0.10 	
N . 	

' 	011/12 

0.60 

A6 0.50 

0.40 

0.30 

0.20 

0.10 N 

0.00 
1.00 	1.20 	140 	1.60 	1.60 	2.00 	2.20 

At" 

Figure 4.6: (a) Al vs. Cr cations for SAK garnet concentrate. (b) A1 203  vs. Cr203  wt. % for the same 
dataset as (a). (c) Al" vs. Cr" cation plot of garnets from NWT till sampling. 09 garnets are open 
square symbols, high Cr, high-Ca 01 1/12s are dark grey bar symbols, GlOs are white filled diamond 
symbols and other gamets including eclogitic, megacryst and unclassified (probably crustal) are the 
light grey dot symbols. All cations calculated so that they sum to 8. The dashed lines in (a) and (c) 
show the sum of 2 R34  cations in the common  cation garnet formula of R" 3 2R"23 Si30 12 . 

Chapter 4 - Major Element Compositions 	 94 



0 

account. 

(a) BWK 

0.9 

0.0 

0.7 

0,6 

0.5 

0.4 

0.3 

02 

0.1 

(b) BWK This Study 

' 

.6 

Figure 4.6a illustrates the inverse relationship between aluminium and chromium in 

garnet. At low-Cr the spread away from the sum of 2 cation line is probably due to 

the increased abundance of Fe 3+  and occasionally Ti at the expense of Al and Cr in 

eclogitic and crustal gamets. The cluster between 2 and 6 wt. % Cr203 is composed 

of the peridotitic garnets with megacrysts and eclogites plotting at low Cr203. 

From Fig. 4.6 it is clear that there is more detail to be observed as to the different 

amounts of potential Fe 3+  present. A broad area is occupied by 09 garnets, which 

encompasses most of the GI 1/12- and 010-rich regions. 011/12 garnets fall to the 

low-Cr side of this 09 field indicating presence of more Fe 
3+  whereas the 

harzburgitic garnets (GI Os) appear to be confined to only the highest Cr for a given 

Al indicating that the garnets are saturated in 3+ ions without taking Fe 
3+  into 
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Figure 4.7: (a) Al" vs. Cr 3  cation plot (cations summed to 8) of Barkly West kimberlite garnet 
concentrate from Newlands open circle symbols, Bellsbank filled grey square symbols, Frank Smith 
open triangle symbols and Leicester black bar symbols. (b) as for (a) except only analyses from this 
study shown. Dashed line as for Fig. 4.6. 	 - 

Fig. 4.7 above shows a particularly high relative density at the elevated Cr region of 

the cation plot by comparison with NWT till analyses (Fig.4.6). Newlands dominates 
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in this high-Cr, low-Al part of the array with Bellsbank plotting close to the 3+ 

cation sum = 2 line but at lower Cr and higher Al concentrations. Leicester and Frank 

Smith have compositions more akin to low-Cr lherzolitic compositions. Deer et al. 

(1962) suggest that titanium may substitute into the Y site (with Al and Cr) because 

of its ionic radius rather than the Z site (Si). This would allow further deviation from 

the ideal Cr + Al = 2 sum. 

4.2.1.1.4 Ca vs. Mg 

Low-Ca, high-Mg garnets occur at the extension of a negative Ca-Mg trend in all 

mantle garnet concentrate analysed (see pink GI  field in NWT till concentrate Fig. 

4.8a). Eclogitic garnets can be seen to plot to lower MgI(Mg+Fe) values and extend 

to intermediate CaJ(Ca+Fe+Mg). Crustal garnets have low to intermediate 

Mg/(Mg+Fe) and low CaJ(Ca+Fe+Mg) (and Ca/(Ca-1-Mg)) as shown in the 

classification of Schulze (2003) (Fig. 4.8b). Fig. 4.8c shows that SAK concentrate 

has a similar distribution to NWT till garnets except there is a smaller eclogitic and 

crustal component in the SAK dataset. The Barkly West group kimberlites have a 

similar pattern to the SAK dataset except Newlands and Bellsbank display a unique 

Ca-enrichment trend away from the dense G9 cluster. This particular trend is not 

observed in the NWT dataset. 
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Figure 4.8: (a) Ca/(Ca-I-Fe+Mg) vs. Mg/(Mg+Fe)) cation plot (cations summed to 8 and Fe is total Fe) 
of garnet concentrate analyses from NWT fill sampling. 010 garnets are open diamond symbols, 09s 
open square symbols, Ols black dot symbols, 011/12 grey bar symbols, 03, 04 and 00 (unclassified) 
garnets are plotted as light grey dots symbols. n30435. Crustal and mantle garnet fields from Schulze 
(2003) are shown in (a). (b) as for (a) except SAK concentrate plotted. (c) as for (a) except Darkly 
West kimberlite concentrates plotted (Note: symbols as for Fig. 4.7b). 
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Figure 4.9: (a) Mg/(Mg+Fe) vs. Cr/(Cr+Al) (calculated on the basis of 8 cations with Fe representing 
total Fe) for NWT gamets, symbols as for Fig. 4.8 (a). (b) as for (a) except Barkly West kimberlite 
concentrate plotted, symbols as for Fig. 4.7 (b). 

Fig. 4.9a shows the marked maximum Mg/(Mg+Fe) for garnets from indicator 

mineral sampling in NWT, GlO garnets possess marginally higher MgI(Mg+Fe) than 

other classes of garnet. In addition, GlOs have higher Cr/(Cr+Al) and overlap more 

significantly with Gi 1/12 and G9 gamets at high Cr/(Cr+Al). The GI 1/12 population 

extends to lower Mg/(Mg+Fe) while at higher Cr/(Cr+Al); G9s exhibit this weakly 

and GlOs only have Mg/(Mg-)-Fe) c 0.8 once Cr/(Cr+Al) is below —0.2. 
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Figure 4.10: (a) Mg vs. Fet cations (calculated on the basis of 8 cations) for NWT till sampling 
garnets, symbols as for Fig. 4.8 (a), the sum of 3 cations line is shown. (b) as for (a) except Barkly 
West kimberlite concentrate plotted, symbols as for Fig. 4.7 (a). The dashed lines in (a) and (b) show 
the sum of 3 R2+ cations in the common 8 cation garnet formula of R+32R+23Si3Ol2. 

Fig. 4.1 Oa shows a marked separation of different garnet classes according to their 

combined abundance of Fe+Mg (the converse of their abundance in Ca). Eclogitic 

garnets are high in Fe, low in Mg and high in Ca. 09/11/12 garnets plot to higher 

Mg+Fe and Mg/(Mg+Fe) values with 010 garnets approaching the 2+ ion saturation 

line of 3. Unclassified 00 garnets appear to be mainly aimandine-rich crustal garnets 

since they plot at high Fe and close to the 3 cation saturation line (implying small 

amounts of other 2+ cations). In the same way as in the CFM triangular plot (Fig. 

4.2), Newlands and Bellsbank garnets form a trend away from the 3 cation line 

indicating extensive Ca-Mg substitution, which is only very weakly present in the 

NWT dataset in the 011/12 category. Leicester and Frank Smith concentrates are 

similar to the 09 and 010 populations from NWT. 

4.2.1.1.7 CaO vs. T102 

Fig. 4.1 , 1 shows that different Barkly West kimberlites have different Ti-Ca 

characteristics. Newlands and Bellsbank are the only localities to occupy the low-Ca, 
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low-Ti region. These garnets are the low-Ca harzburgitic garnets from the Cr-Ca 

plots. All BWKs produce a cluster at 4-6 wt. % CaO with wt. % Ti02 ranging from 0 

to 0.6 which represents the lherzolitic G9 garnets. Frank Smith is the only kimberlite 

to possess a large fraction of megacryst garnets (see pie chart Fig. 4.5e) which are at 

lherzolitie CaO contents but have between 0.5 and 1 wt. % Ti02. All BWKs have 

gamets enriched in CaO and Ti02, relative to the bulk lherzolitic cluster. This is 

thought to correspond to the higher-Cr, higher-Ca garnets found at the top of the 

'lherzolite trend' on the Cr-Ca graphs. 
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Figure 4.11: (a) CaO vs. TiO2  plot for garnet concentrate from NWT till sampling. (b): CaO vs. Ti02  
plot for garnet concentrate from Newlands, Belisbank, Frank Smith and Leicester. 

When comparing individual kimberlite concentrates to bulk NWT sampling several 

differences are apparent (see Fig. :4. 1 lb). Newlands and Belisbank concentrates pick 

out the low-Ti02  low-CaO extremities of the NWT data, with Belisbank having a 

unique cluster at 3-4 wt. % CaO and 0.25-0.35 wt. % Ti02. Eclogitic garnets from 

NWT are present in abundance at high-Ca and low-Ti. The megacryst population is 

much more abundant in the till sampling. 
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to a total of 3 cations. Solid line for Si equal to 3 cations. 

Fig. 4.12 illustrates that there is no discernable correlation between the 4+ ions 

suggesting that Ti is substituting on the Y site rather than the Z site, but relatively 

large errors on Si analysis and the low absolute values of Ti make this conclusion 

uncertain. It appears that Ti 4  substitution on the Y site is charge balanced by small 

quantities of Na (see positive correlation in next subsection, Fig. 4.13). 

4.2.1.1.8 Na20 vs. CaO and Ti02 

The majority of concentrate analysed in the KRG database and from other studies 

records 0.00 wt. % values for Na2O and largely reflects a lack of careful analysis for 

this element. The majority of 'good' analyses are <0.1 wt % and show a slight 

positive correlation with Ti02 (Fig. 4.13a). Slightly higher Na2O values are recorded 

for the unique cluster from Bellsbanic between 0.25 and 0.35 % Ti02. Compared to 

the NWT till samples (Fig. 4.13b), the Na 2O range is greatly reduced in the analyses 

from Barkly West. 
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Figure 4.13: (a) Na20 vs. Ti02  wt. % for Barkly West kimberlite concentrate garnet analyses. 
Symbols as for Fig. 4.7 (b). SAK garnet concentrate has often not been analysed for Na within the 
KRG database and is therefore not shown. (b) Na 20 vs. Ti02  plot for NWT till garnet analyses. (c): 
Na20 vs. CaO plot for NWT till garnet analyses. 

Due to differences in analytical conditions, Barkly West concentrate Fig. 4.13a does 

not extend into the fields shown by the NWT dataset Fig. 4.13b. However, a positive 

correlation exists, between BWK and NWT, from zero up to 1 wt. % Ti02 and 0.15 

wt. % Na2O (Fig. 4.13b). For the latter, it is the crustal, eclogitic and megacrystic 

compositions that occupy this trend. Peridotitic gamets from NWT plot at high Na20 

(0.3-0.8 wt. %) which has not been reported before. This dataset also records low 

(GI 0), medium (G9) and high (GI 1+12) Ti02 contents (Fig. 4.13b) in peridotitic 

gamets. Similar regions exist in the Na2O vs CaO plot (Fig. 4.13c) with the high-

Na20 region being occupied by peridotites with low-CaO being mainly GI 0, 
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medium CaO being G9 and high CaO being GI 1+12. The high Na2O is though to be 

an analytical artefact. 

4.2.1.2 Cr-SPINEL 

The oxide phase present in samples was referred to as 'chromite' in chapter 3 

because no knowledge of the major element chemistry was known at the time of 

examination. 'Chrome-spinel' (Cr-spinel) and 'chromite' are common terms in 

mantle-related literature and will only be used here when  chromium-rich spinel or a 

true chromite, respectively, is being referred to. However, within the spinel prism, 

the majority of kimberlitic 'chromite' concentrate plots in the magnesiochromite 

region with relatively low Fe 1  (total Fe) and Al and relatively high Mg and Cr 

compositions (see Fig.4.14 shaded region). 

Fe"Fe",0 4  
Magnetite or 

Mg Fe",0 4  
Magnesioferrite 

orMg2TiO4 i( 

/ 	TiFe"20 4  
I 

/ lv6sp inel 

/ 
/ 

Zercy~nib~L 	 FeCr,O, 

I/I 

Chrome 

MgAL04 	 MgCr2O4 

Spinel 	 Magnesiochromite 

Figure 4.14: Spine] multi-component compositional prism after Deer et al. (1962) illustrating spinet 
group end members. Shaded region indicates the region of the spinet prism where the majority of 
kimberlitic spinet from concentrate plots i.e. towards the magnesiochromite end member. 
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In this section additional comparison is made by plotting Dokolwayo concentrate 

along with the SAX concentrate since it has been commented on specifically as being 

especially similar to diamond inclusion Cr-spinel by Daniels (1991). 

421.2.1 0203 vs. MgO 

The Cr203 vs.. MgO plot is the most useful divariant plot for distinguishing 

parageneses in mantle-derived Cr-spinels. Fig. 4.15 illustrates that the three 

concentrate datasets occupy subtly different areas of the plot. The NWT data (Fig; 

4.15a) is the only dataset to possess a low-Cr, low-Ti cluster, which would probably 

correspond to part of the continental layered intrusion field shown in the cation plot 

(Fig. 4.16). The majority of the NWT data occupies a diffuse cluster between 5 to 15 

wt. % MgO and 40 to 70 wt. % Cr203 with a high density region in the low-MgO 

part of the DI field. There is a diffuse extension from the DI field towards low Cr203 

and high MgO. 

The SAK concentrate (Fig. 4.15b) does not have the low MgO spinels present as for 

NWT and has a high density region in the central part of the DI field. The 

Dokalwayo spinels are exceptionally high in Cr203. BWK concentrate (Fig. 4.15c) is 

similar to the SAJC concentrate except for the Newlands dataset analysed by Menzies 

which extends from the diamond inclusion field of Fipke et al. (1995) towards high 

MgO and low Cr203. 
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Figure 4.15: (a) MgO vs. Cr 203  plot of NWT till spinels (n=3766) with the diamond inclusion field of 
Fipke et al. (1995) outlined. (b) as for (a) but with SAK concentrate (n1001) (data from KRG 
Database), Dokolwayo concentrate is highlighted in open symbols (n58). (c) as for (a) but data 
plotted from Newlands concentrate (open circle symbols), Bobbejaan concentrate (grey square 
symbols) from van der Westhuizen (1992) and KRG database and Frank Smith concentrate (open 
triangle symbols) from flG database. Number of analyses at Newlands n = 1161, Bellsbank n = 295, 
Frank Smith n = 139, Leicester did not yield sufficient spinel in the concentrate sample taken. (d) as 
for (a) but just Newlands concentrate plotted (total n378). Data from this study (diamond symbols), 
Menzies (2001) (open square symbols) and the KRG database (filled triangles). 
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Figure 4.16: Cr/(Cr+Al) 3+ cations vs. Mg/(Mg+Fe) 2+ cations for Newlands kimberlite concentrate 
spinels. Approximate 90% fields adapted from Barnes and Roeder (2001) for podiform chromites in 
ophiolites shown as field outlined with a solid black line, continental layered intrusions shown as 
dashed black line. Symbols as for Fig. 4.15d. 

Fig. 4.16 indicates the compositional variation on data derived from Newlands, based 

on cation ratios rather than weight percent (Fig. 4.15d). It is clear that the extension 

to high MgI(Mg+Fe) at lower Cr/(Cr+Al) is a linear trend picked out in data from 

Menzies (2001) (open square symbols) which follows the region indicated for 

podiform chromites in ophiolites along the so called 'Cr-Al trend' of Barnes and 

Roeder (2001). Newlands concentrate has an extension towards more Mg-rich 

compositions at high Cr (seen within the DI field in Fig. 4.15d) which would 

correspond to the Fe-Ti trend of Barnes and Roeder (2001). 

4.2.1.2.2 0203 vs. Ti02 

As a whole the concentrate produces two trends in Cr-Ti space (Fig.4.17). The first 

trend forms a negative Cr:Ti correlation that emerges from the diamond inclusion 

field and extends towards higher Ti and lower Cr. This trend is elevated to higher Cr 

in the SAK concentrate especially in the Dokalwayo concentrate (Fig. 4.16b) 

compared to the NWT dataset. The second trend is a low-Ti trend that varies in Cr 

content that is apparent in the 'overlap field' of Fipke et al. (1995) and especially 

evident in NWT concentrate. These spinels mainly correspond to compositions in the 
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Figure 4.17: (a) Ti0 2  vs. Cr203  wt. % plot of spinels from NWT till sampling n=3766, Fields from 
Fipke et al. (1995). (b) as for (a) but with SAK concentrate spinel, Dokolwayo concentrate is 
highlighted in open symbols. (c) as for (a) but for BWK spinel concentrate with Menzies (2001) 
Newlands spinels plotted as '' symbols. (d) as for (c) except Cr and Ti calculated as cations where 
the cations are summed to 6, 
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Cr2O3 and Ti02 compositions of BWK concentrate spinel can be seen to overlap 

significantly with the DI field (Fig. 4.17c). The negative Cr-Ti trend is expressed in 

all Barkly West kimberlites with only Newlands expressing the low-Ti trend. This 

low Ti02 and low Cr203 trend is likely to correspond to compositions in the podiform 

chrothites from ophiolites field (see fields in Fig. 4.16). 

4.2.1.2.3 Al vs. Cr 
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Figure 4.18: (a) A1 3' vs. Cr" cations calculated for 6 cations for spinels from SAK (Dokalwayo 
plotted as open diamond symbols). (b) as for (a) except Al and Cr are shown as weight percent. (c) as 
for (a) but with NWT till analyses. (d) as for (a) except for BWK concentrate. The dashed lines in (a) 
and (b) show the sum of 4 R 3  cations in the common 6 cation formula of R' 22R' 3 4O3 . 
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Fig. 4.18a shows that the Dokalwayo concentrate has very high Cr at low Al, close to 

4 cations of Cr and 0 cations of Al, which is not present within any of the other 

datasets. Much of the Dokolwayo concentrate plots on the sum of 4 
3-I- cation line and 

a few points plot above it. Both Fig. 4.18a and b show a negative correlation between 

aluminium and chromium with increased diffusivity at the lower aluminium end. The 

graph (Fig. 4.18c) also displays the upper limit to Cr + Al as a more continuous line 

(due to the larger dataset) across compositional space with a slight kink towards 

lower Cr at the high-Cr end. 

Bellsbank spinels ae seen to be at elevated chromium at low-Al concentrations (Fig. 

4.18d) and form a shallower slope than the more abundant Newlands data. The 

Newlands compositions occupy the full range from the high-Cr to high-Al along this 

negative correlation trend and they cluster at Cr 3 >2.5. Frank Smith spinels occupy 

a similar compositional space to Bellsbank but extend to lower Al for a particular Cr 

concentration indicating a greater concentration of a substituting ion. 

Fig 4.19a and b indicate a significant deviation from the ideal formula along a 

decreasing 3+ and increasing 2+ trend. Fig. 4.19c shows that Ti 4  is substituting for 

3+ ions on the  site by means of the ulvospinel component (TiFe 
2-4-  

204), hence 

increasing the 2+ ion concentration and the negative correlation in Fig. 4.19a and b. 

This -conforms to the Fe-Ti trend of Barnes and Roeder (2001). 
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4.2.1.2.4 Mg vs. Fe 
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Figure 4,20: Fet vs. Mg cation plot of NWT till sampling chromites, cations summed to 6. The dashed 
lines shows the sum of 4 R3+ cations in the common 6 cation spinel formula of R 2 2R 3 4O8 . 

Fig. 4.20 shows that the majority of chromites from indicator mineral sampling in the 

case of the NWT have> 2 cations' worth of Fe + Mg. This may indicate the presence 

3+ of Fe , which would increase the amount of Fe expressed as Fet. The presence of 

Ti4  would allow more 2+ ions to be present by a substitution such as: 

2Cr3  4 Tie' + Fe2  

which would increase the ulvOspinel component. 

4.2.1.3 CLINOPYROXENE 

Clinopyroxenes are usually classified as chromium-diopsides (Cr-diopside) for 

peridotitic compositions and omphacites for the more jadeite-rich eclogitic 

compositions. 

4.2.1.3.1 Ca-Fe-Mg 

The Ca-Fe-Mg plot is used to classify pyroxenes. Clinopyroxenes occupy the lower 

trapezium shape of the triangle. The baseline is reserved for orthopyroxenes (see 

4.2.1.4). The end members diopside (Di), hedenbergite (Hd), enstätite (En) and, 
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corners of this trapezium respectively. 
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Figure 4.21: (a) Ca-Fe-Mg cation plot of clinopyroxenes from NWT till sampling (n=2 155). Wo = 
wollastonite, Di = diopside, Hd = hedenbergite, En = enstatite and Es = ferrosilite. (b) as for (a) but 
for SAK concentrate (n=267). (c) as for (a) but for Newlands (open circle symbols, data from this 
study, n1 19 and KRG database, n=24), Bellsbank (grey square symbols, data from van der 
Westhuizen (1992), n= 11) and Frank Smith (open triangle symbols, data from KRG database, n=31). 

For the most part it is clear that NWT till sampled clinopyroxene (Fig. 4.21a) and 

SAK concentrate clinopyroxene (Fig. 4.21b) are very close to diopside in 

composition although there appears to be an upper Mg limit to the data. Newlands 

and Bellsbank concentrate (Fig. 4.21c) appears to be more closely packed into the 

diopside corner of the graph with Bellsbank being especially close to diopside in 

Chapter 4—Major Element Compositions 	 112 



composition. The Frank Smith concentrate has higher Fe/Mg and CaJ(Fe+Mg) 

values. Lower temperature crustal clinopyroxenes are probably responsible for the 

extension to lower Mg/Ca and higher Fe/Mg ratios seen in the NWT till sampling 

and SAK concentrate. 

4.2.1.3.2 ACF 

(a) NWT 
	

(b) SAK 

A)tCr 	 A)-C, 

[Gi' 

AI-Cr 

Figure 4.22: (a) ACF cation plot for clinopyroxenes from NWT till sampling. (b) as for (a) but with 
SAK concentrate plotted. (c) as for (a) except BWK concentrate plotted (symbols as for Fig. 4.21c). 

JdKs =jadeite-kosmochlor solid solution, Di = diopside, CaTs = Ca-Tschermak's pyroxene end 
member, MgTs = Mg- Tschermak's pyroxene end member, Opx = enstatite-ferrosilite solid solution 
and Wo = wollastonite. 

Di-Jd substitution is apparent in all datasets towards omphacitic compositions (those 

lying on the Jd-Di tie line, Fig. 4.22a-b). A minimum level of Al+Cr is apparent for 

Chapter 4 - Major Element Compositions 	 113 



the En-Di substitution towards low Ca. Since omphacitic clinopyroxenes are often 

found in eclogites it is to this paragenesis that these compositions are attributed. The 

kosmochlor (NaCrSi206) end member plots in the same position as jadeite and also 

forms a component in higher-Na clinopyroxenes. Frank Smith concentrate is lower in 

Ca+Na+K and higher in Mg+Fe+Mg indicating Mg-Ca substitution (Fig. 4.22c). 

4.2.1.3.3 Alt's. Cr 

Ramsay (1992) studied the geochemistry of diamond indicator minerals and 

classified clinopyroxenes into garnet peridotite, spinel lherzolite and low-Cr 

compositional fields according to their Al and Cr content. Fig. 4.23a shows how 

NWT till clinopyroxenes fall mainly into the garnet peridotite field at elevated Cr/Al 

and eclogite across low-Cr compositions. Hence two positively correlated trends 

emerge, one towards high-Cr and the other towards high-Al. Garnet peridotite and 

eclogite clinopyroxenes are present in the Barkly West kimberlites (Fig. 4.23c) with 

Newlands and Bobbejaan possessing the highest Cr203 and A1203 concentrations, 

high even compared to the more numerous dataset in 4.23a. The cation plot for the 

same data as that in Fig. 4.23a is shown in Fig. 4.23b, and a similar spatial 

organisation can be seen. Fig. 4.23d shows the cation values for SAX concentrate 

where a more L-shaped distribution can be seen. 
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Figure 4.23: (a) A1 203 vs. Cr203  wt. % plot with fields from Ramsay (1992). for NWT till 
clinopyroxenes. (b) as for (a) except Al vs. Cr cations are plotted where cations are summed to 8. (c) 

as for (a) except BWK concentrate plotted. (d) as for (b) except clinopyroxenes from SAK concentrate 
plotted. 

4.2.1.3.4 2+ cations vs. 3+ cations 

Two groupings of clinopyroxenes are apparent from the plots in Fig. 4.24. The first 

trend lies along a 2:1 (2+:3+ ratio) mixing line that would be expected for a 

tschermakitic substitution (i.e. for every. 3+ ion substituted and an accompanying Na 

+, two 2+ ions would be required to balance the charge, hence the negative 2:1 trend 

as shown). The area of data to higher 2+ ion values lies on a 1: 1 line forming a trend 

which corresponds to a sharper rise in 3+ ions with reduction of 2+ ions as shown in 

the ACF diagram (Fig. 4.22a) associated with tschermakitic substitution. Fig. 4.24b 

shows how southern African kimberlite concentrate has a trend of pronounced 

jadeitic substitution which is also seen at Newlands and Bellsbank kimberlites (Fig. 

4.24c. Frank Smith has a higher proportion of clinopyroxenes away from this main 

trend. 
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4.2.1.3.5 1+ ions vs. 3+ ions 

Jadeite + kosmochior substitution is picked out as a positive 1:1 line on a Na" vs. 

Cr3 ' + Al'" plot. One of the two main clusters in the NWT concentrate conforms to 

this line well (Fig. 4.25b) with the other cluster forming above the line to higher Cr + 
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Al values (see discussion in samples section 4.3.3). This feature is not observed as 

clearly using a weight percent plot (Fig. 4.25a). SAK concentrate in Fig. 4.25c 

(including the Barkly West kimberlites, Fig. 4.25d) also conform to this line but with 

a higher degree of scatter that may be attributed to inaccuracies in electron probe Na 

determination for Na + K plots. 
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Figure 4.25: (a) Na 20 vs. Cr203  wt. % plot for clinopyroxenes (b) Na + IC cations vs. Al34  + Cr3 ' 

cations for clinopyroxene concentrate from NWT till sampling, 1:1 trend line shown. (c) as for (b) but 
with SAK concentrate plotted. (d) as for (b) but with BWK concentrate plotted. 
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Figure 4.26: (a) Na' vs. Ti 4  for NWT till sampling clinopyroxene concentrate (b) as for (a) except 
Si4+ vs. Ti4t (c) as for (a) except plotting data from SAK. (d) as for (a) except plotting BWK 
concefitrate clinopyroxenes. 

No clear relationships exist between Na and Ti or Si, although a slight positive 

correlation between Na and Ti may be seen in NWT and SAK concentrate 

(Fig.4.26a-d). 
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4.2.1.4 OLIVINE 
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Figure 4.27: (a) Olivine Mg# (Mg/(Mg+Fet)* 100 (cations calculated on an 8 cation basis) vs. 
frequency of occurrence for NWT till sampling olivines (grey points, n=1219) and for Newlands 
kimberlite concentrate olivines (open black diamond symbols, n98). (b) dataset as for (a) but Mg 

21 
 

vs. Fet cations. (c) as for (a) except Mg# vs. Ni 2  cations. 

Newlands concentrate olivines have a bias towards a high Mg# (Fig. 4.27a) with a 

large proportion of olivines falling in between Mg# 93 and 94 (x = 92.36), whereas 

NWT olivines have a large proportion falling between Mg# 91 and 92 (x = 91.51). 

This can also be seen on the Mg-Fe cation plot (Fig. 4.27b) with Newlands olivines 
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plotting at the high-Mg, low-Fe end of the 1:1 substitution line. All olivines adhere to 

the Fe-Mg 1:1 negative correlation, hence only very minor substitutions such as with 

Ni may be anticipated. No relationship was found given the accuracy of the electron 

microprobe for Cr, Al or Ca in olivine. 

4.2.1.5 ORTHOPYROXENE 

In a similar way to the olivine concentrate, the Newlands orthopyroxene concentrate 

has a higher average Mg/(Mg+Fe)*l  00 of 93.22 than the NWT till (Fig. 4.28b) (x = 

92.98). SAY, has x = 92.25. Values are higher than for olivine with most 

orthopyroxene being 92-94 Mg/(Mg+Fe)*  100. The diamond inclusion field of Fipke 

et al. (1995) is shown based on A1203 and MgI(Mg+Fe) in Fig. 4.28a. All datasets 

have a trend extending to high A1203 wt. % values at approximately constant 

Mg/(Mg+Fe). The southern African dataset is the only one to have a definite trend at 

1 wt. % A1203 to lower values of Mg/(Mg+Fe). The NWT dataset has the lowest 

A1203 value whilst at MgI(Mg+Fe)*  100 of 93, locating a large proportion of the 

dataset within the diamond inclusion field. 
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Figure 4.28: (a) Mg# (Mg/(M g 1Fe)* 100 cations) vs. A1 20 3  wt, % for orthopyroxene concentrate from 
NWT till sampling (n=363), SAK concentrate (n=127) and Newlands kimberlite concentrate (n36). 
Diamond inclusion field is outlined in a solid black line of Fipke et al. (1995). (b) Mg# groups vs. 
frequency for the same dataset as (a). Medium grey is NWT till sampling, dark grey is Newlands 
orthopyroxene concentrate from this study and light grey is SAK concentrate orthopyroxene. 
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4.2.1.5.1 2+ and 3+ ions 

Fig. 4.29a shows a positive correlation between çr 3  and A13t of'-1 :5 ratio in all 

orthopyroxene concentrate. A negative trend can be seen when comparing 3+ ions to 

2+ ions indicating the presence of a] adeitic style of substitution as evident in the 

extension of the cluster in the ACF diagram (Fig. 4.29b). Some of the SAK analyses 

are low and scattered since they are likely to be below detection limits for the 

analysis setup (Appendix I). 
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Figure 4.29: (a) A13+  vs. Cr"  cations for orthopyroxene concentrate. (b) (Mg 24' + Fet) vs. (Cr 3±  +Al 3 
 

cations for the same datasets as (a). 

4.2.1.5.2 ACF&CFM 

Orthopyroxene from concentrate plots close to the baseline of the pyroxene 

quadrilateral with a range in MgI(Mg+Fe) from 0.85 to 0.94 (Fig.4.30a). Suggestion 

of MgTs, CaTs and small JdKs substitutions away from En end member are apparent 

especially in the southern African dataset (Fig. 4.30b and c). 

Chapter 4-Major Element Compositions 	 121 



(a) 
	

(b) 

.4lCr 

Mg Fet 

(c) 

Opx 
Mg+Fet+Mn 

Figure 4.30: (a) Ca-Fet-Mg cation plot (calculated by summing to 8 cations) illustrating the range of 
compositions for orthopyroxenes from all available concentrate. (b) ACF (Al+Cr, Ca+Na+K and 
Mg+Fe+Mn) plot for orthopyroxene. (c) zoom of Mg+Fe+Mg apex in (b). 'x' symbols are for SAK 
concentrate (KRG database), open circles are Newlands kimberlite concentrate from this study and '+' 
symbol are NWT till orthopyroxene compositions. 
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4.3 Major Element Composition of the Newlands, Bobbejaan 

and Leicester Composite Samples 

The samples were all collected from heavy concentrate piles at diamond mines and 

the spread of compositions observed at each locality is expected to reflect the 

concentrate compositions from that particular kimberlite (see section 4.2). The 

primary sample selection bias was in favour of garnet-rich samples with purple 

garnets and against red or orange colours. 

4.3.1 Garnet 

Fig. 4.31 shows how lherzolitic and harzburgitic sample affinity correlates to the 

composition of the samples in Cr-Ca space from each kimberlite. Lherzolites are 

confined to the high-Ca side of the lherzolite line (LL), except for a few cases in 

Newlands samples where 010 garnet compositions had clinopyroxene present. This 

presents a case for caution to be used when referring to a 'lherzolite line' and using 

the term '010' synonymously with harzburgitic garnet. At Newlands and Bobbejaan 

there are cases where apparently harzburgitic samples plot clearly within the G9 

field. This is justified since, as mentioned in Chapter 3, there may be a few cases 

where clinopyroxene is present in a sample but not exposed at the analysis surface 

and not visible on the outer surface. 

All kimberlites studied have some, inclusion-free, monogranular garnets types. The 

Leicester samples are predominantly of this type, presumably because of their small 

size. Only a single polyphase sample was analysed and this contained clinopyroxene 

and is therefore lherzolitic in affinity. It would be expected that all the Leicester 

samples are lherzolitic given their 09 affinity. The Newlands and Bobbejaan samples 

have many of their inclusion-free monogranular garnet samples (yellow symbols Fig. 

4.31) plotting very close to the lherzolite line. They therefore effectively straddle 

lherzolite/harzburgite affinity. Few samples of this type plot in the 010 field; these 
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are usually small samples and might be too small to display any coexisting mineral in 

the same way that most of the Leicester samples probably do. 
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Figure 4.31: Garnet Cr203  vs. CaO wt. % diagrams showing analyses of Newlands (a), Bobbejaan (b) 
and Leicester (c) samples relative to concentrate compositions from those kimberlites. '(M)' denotes 
the monogranular garnets with no inclusions (classified as M in chapter 3). Reference lines of Gurney 
(1984) (LL = lherzolite line) and Orfitter et al (2004) (DCC = diamond-graphite constraint) are 
shown. 

Compared to the Newlands concentrate shown in Fig. 4.3 1  the Newlands samples 

are evidently displaced towards the high-Cr parts of the range of compositions 

present at the kimberlite. A shallow positive slope is present in the GlO field where 

few garnets plot below the diamond-graphite constraint. A steeper trend is present in 

the G9 field with the samples occupying the high-Cr regions of the large G9 cluster 

evident in the concentrate. High-Cr, high-Ca lherzolites are particularly well 
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represented at Newlands compared to other kimberlites worldwide. Two features 

associated with these have not been reported from other kimberlites: 

A continuum of compositions connects the high-Cr, high-Ca concentrate 

garnets to the high-Cr parts of the dense lherzolite cluster. 

Garnets at the top of the 'harzburgitic trend' (6-7 wt. % CaO and 10-13 wt. % 

Cr203) straddle the 85% line and appear to be associated with high-Cr, high-

Ca garnets forming another potential continuum in compositional space. 

Garnets from Bellsbank samples conform well to Cr-rich concentrate with fewer 

samples of the high-Cr, high-Ca nature described at Newlands. A harzburgitic trend 

is present but only 2-3 samples were found with garnets of these compositions. 

Leicester samples relate to relatively Cr-rich G9 concentrate but these compositions 

would form only the very lowest Cr garnets from Newlands and Bobbejaan. 
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Figure 4.32: Sample type (Chapter 3) compared to garnet CaO vs Cr 203  wt. % composition for 
Newlands and l3obbejaan samples. 

Sample type does not appear to show any correspondence with garnet composition in 

samples (Fig. 4.32) except that clinopyroxene-bearing samples (Md and Pd) tend to 

plot more frequently in the G9 field as seen in Fig. 4.31. This indicates that 

polygranular and monogranular garnet samples are not chemically different. 
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4.3.2 Cr-spinel 

The samples form a broadly positive Cr-Mg slope in Fig. 4.33a indicating a depletion 

trend towards high-Cr and high-Mg concentrations. The harzburgites from Newlands 

and Bobbejaan samples tend to plot at the more depleted part of this trend with most 

occurring within the diamond inclusion field. The one harzburgitic Cr-spinel from 

Newlands that plots at a lower Cr203 concentration can be seen to be of higher Ti02 

(Fig. 4.33b indicating a different) paragenesis (probably affected by kimberlitic 

fluids). Cr-spinels from cl.inopyroxene-bearing (lherzolitic) samples from Newlands 

and Bobbejaan plot at lower Cr203 and MgO concentrations, including several within 

the diamond inclusion field. It can be seen from Fig. 4.33b that the lherzolitic 

samples are also higher in Ti02 and not within the diamond inclusion field. Cr-

spinels do not have differing compositions dependent on whether they are in the 

matrix or as inclusions in garnet. 
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Figure 4.33: (a) MgO vs. Cr203 wt, % plot for chromites in samples from Newlands and Bobbejaan 
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4.3.3 Clinopyroxene 

Lherzolitic samples from Newlands and Bobbejaan have clinopyroxene compositions 

in the 'garnet peridotite' field of Ramsay (1992) and conform to peridotitic 

concentrate compositions (Fig. 4.34a). Fig. 4.34b illustrates that the samples (which 

are petrographically peridotitic, see Chapter 3) fall along the Jd50-Ks50 substitution 

line, which conforms to the kimberlitic 'sheared nodules' and 'granular nodules' 

fields of Komprobst (1981). This field has tentatively been encircled and named 

peridotitic'. 

The 'discrete nodules' field of Kornprobst (1981) appears to contain eclogitic and 

mcgacrystic compositions with pronounced jadeitic substitution, hence the 'B' field 

encircled in Fig. 4.34b defined predominantly by the SAK concentrate. NWT 

concentrate is the only dataset to generate a low-Na, low-Cr cluster and is labelled 

'C' for ctustal clinopyroxenes. This field conforms to a small part of the 'sub-

oceanic' field of Komprobst (1981). 
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Figure 4.34: (a) A1 203  vs.Cr203  wt. % plot for clinopyroxenes in samples from Newlands and 
Bobbejaan compared to Newlands clinopyroxene concentrate. (b) Cr vs. Na cation plot for Ncwlands 
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eclogitic and megacryst suite compositions (oval, dashed line labelled 'E') and megacryst 
compositions (oval, dotted line labelled C) have been inserted on inspection. 

4.4. Summary 

4.4.1 General observations 

The use of several different electron microprobes under different analytical 

conditions in collection of the datasets described has necessitated the need to observe 

the data critically. The emergent features are as follows: 

—150-200 analyses per concentrate phase are required in a dataset to show the 

extent and clustering of major element compositions present. 

Cation plots of compositional parameters are preferable to weight percent 

plots for assessment of mineral elemental constituents. However garnet CaO 

vs Cr203 and spinel MgO vs Cr203 weight % plots provide spatially very 

similar plots to the equivalent cation versions (see Figs. 4.1, 4.15 and 4.16). 

Due to the diverse heavy mineral sources present in northwest Canada, NWT 

till concentrate provided a useful standard with which to compare southern 

African kimberlite and individual kimberlite concentrates. Additionally this 

dataset is particularly numerous but contains some poor analysis data points. 

Na-in-garnet seems to be too high compared to existing data. 

Cr-Ca plots discriminate the peridotitic garnet classes of table 1 the most 

effectively. This is because the Cr correlates negatively with Al and Ca with 

Mg, which covers variation in the four most variable elements in mantle 

garnets leaving only Ti unaccounted for. 

4.4.2 Garnet 

1) SouthernAfrican diamondiferous kimberli.te (SAX) garnet concentrate has 

major element compositions slightly higher in Cr compared to the Northwest 

Territories dataset (NWT) (Fig. 4.3a and b). SAK also has far fewer crustal 

garnets. 
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Of the Barkly West kimberlites Newlands and Bobbejaan garnets appear 

markedly higher in Cr, on average, compared to the NWT and SAK datasets 

(Fig. 4.4) and hence have higher proportions of GI  garnets (Fig. 4.5). 

Leicester is unique in having such high prevalence of G9 garnets (Fig. 4.5). 

Frank Smith is similar to the NWT and SAlK datasets (Fig. 4.5) but has a 

higher proportion of GI garnets. 

All concentrate datasets have a cluster of G9 garnets with a positive Cr:Ca 

slope. SAK and NWT have significant proportions of GlO garnets but 

Newlands kimberlite concentrate is the only dataset to have a well defined 

cluster of GlO garnets at high-Cr (Fig. 4.3c). 

Newlands and Bobbejaan samples have garnet compositions that are 

effectively a subset of compositions defined by concentrate from the two 

kimberlites. The samples are however biased to the high-Cr part of this 

spread of data, which is most probably due to original sampling bias towards 

samples with garnets that have a purple colour, avoiding orange, eclogitic and 

red, megacryst suite garnets. 

4.4.3 Cr-spinel 

I) SAK spinels are more Cr- and Mg-rich compared to NWT and BWK 

concentrate (Fig. 4.15a-c), hence high in magnesiochromite end member. The 

Dokolwayo spinels are exceptionally Cr-rich (Fig. 4.15b) reaching Cr203 wt. 

% concentrations> 70. 

Newlands is the only individual locality to have an extension of spinel 

concentrate towards the Mg-rich part of the diamond inclusion field (Fig. 

4.15d). Other BWK concentrate conforms to a subset of SAK concentrate. 

Newlands and Bobbejaan harzburgitic samples plot to higher Mg and Cr 

compositions. Most lherzolitic samples do not plot in the diamond inclusion 

field when both Mg, Cr and Ti are taken into account (Fig. 4.33a and b). 

An ulvOspinel substitution is evident in concentrate spinels (Fig. 4.19) which 

is responsible for the Ti variation. 
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4.4:4 Clinopyroxene 

The ACF plot (Fig. 4.22) reveals that SAK has a population of 

clinopyroxenes with a more pronounced jadeite substitution trend than other 

datasets. 

The jadeite + kosmochlor substitution is particularly visible on Na + K vs. Al 

+ Cr plot as a 1:1 line (Fig. 4.25). 

Tentative discrimination between peridotitic and eclogitic clinopyroxenes has 

been made on a Cr vs. Na plot (Fig. 4.34b). This discrimination appears to be 

more appropriate on a Cr vs. Na plot than on the more common A1203 vs. 

Cr203 wt. % plot. 

Newlands and Bobbejaan clinopyroxene concentrate plots at high-Cr 

compared to NWT and SAK concentrate (Fig. 4.23). 

90 % of clinopyroxene in samples from this studs' plot in the garnet peridotite 

field of Ramsay (1992) (Fig. 4.34) which forms a cluster at 2-3 wt. % Cr203. 

4.4.5 - Olivine and orthopyroxene 

Newlands olivine and concentrate has higher Mg/(Mg+Fe) values on average 

compared to NWT dataset; Newlands has an average of 92.36 Mg/(Mg+Fe)* 100 

cations whereas the NWT value is 91.51 (Fig. 4.27). Average Newlands 

orthopyroxene MgI(Mg+Fe)*100  is 93.22, NWT = 92.98 and SAK is 92.25. Most 

orthopyroxene at Newlands and in the NWT and SAK datasets are between 93 and 

94 MgI(Mg+Fe)*  100 cations (Fig. 4.28b) with NWT and SAK having a larger spread 

of data towards sub-90 values. Ajadeitic substitution trend is evident in 

orthopyroxene concentrate (Fig. 4.29). 

4.5 References 

Barnes, S. J. and Roeder, P. L. (2001). The range of spinel compositions in terrestrial 
mafic and ultramafic rocks. Journal of Petrology. 42. 2279-2302. 

Daniels, L. R. M. (1991). Diamonds and related minerals from the Dokolwayo 
kimberlite, Kingdom of Swaziland. Department of Geological Sciences. Cape Town. 
University of Cape Town. Unpublished PhD 

Chapter 4 - Major Element Compositions 	 130 



Dawson, J. B. and Stephens, W. E. (1975). Statistical classification of garnets from 
kimberlite and associated xenoliths. Journal of Geology. 83. 589-607. 

Deer, W. A., Howie, R. A. and Zussman, J. (1962). Rock Forming Minerals. London, 
Lougmans. 

Droop, U. T. R. (1987). A general equation for esimating Fe 3+ concentrations in 
ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric 
criteria. Mineralogical Magazine. 51. 431-435. 

Fipke, C. E., Gurney, J. J. and Moore, R. 0. (1995). Diamond exploration techniques 
emphasising indicator mineral geochemistry and Canadian examples. Geological 
Survey of Canada. 423. 1-86. 

Grutter, H. S., Gurney, J. S., Menzies, A. H. and Winter, F. (2004). An updated 
classificatiOn scheme for mantle-derived garnet, for use by diamond explorers. 
Lithos. 77. 841-857. 

Gurney, J. J. (1984). A correlation between garnets and diamonds in kimberlites. hi: 
Ed. Glover, S. E., Harris, P. G. Kimberlites: Occurrence and origin: A basis for 
conceptual models in exploration. Perth, University of Western Australia, Extension 
Services. 8. 143-166. 

Kornprobst, J. (1981). Na and Cr contents in clinopyroxenes from peridotites: A 
possible discriminant between "sub-continental" and "sub-oceanic" mantle. Earth and 
Planetary Science Letters. 53. 241-254. 

Menzies, A. (2001). A detailed investigation into diamond-bearing xenoliths from 
Newiands kimberlite, South Africa. Department of Geological Sciences. Cape Town. 
University of Cape Town. Unpublished PhD Thesis 

Ramsay, R. R. (1992). Geochemistry of diamond incicator minerals. Perth. 
University of Western Australia. Unpublished PhD 

Rickwood, P. C. (1968). On recasting analyses of garnet into end-member molecules. 
Contributions to Mineralogy & Petrology. 18. 175-198. 

Ryburn, R. J., Râheim, A. and Green, D. H. (1975). Determination of P,T paths of 
natural eclogites during metamorphism - record of subduction. Lithos. 9. 161-164. 

Schulze, D. J. (2003). A classification scheme for mantle-derived garnets in 
kimberlite: a tool for investigating the mantle and exploring for diamonds. Lithos. 
71. 195-213. 

van der Westhuizen, A. (1992). The Bellsbank kimberlites, with special reference to 
a suite of purple garnet megacrysts from the Bobbejaan mine. University of the 
Orange Free State. Unpublished Masters Thesis 

Viljoen, F., Robinson, D. N., Swash, P. M., Griffin, W. L., Otter, M. L., Ryan, C. G. 
and Win, T. T. (1994). Diamond- and graphite-bearing peridotite xenoliths from the 
Roberts Victor kimberlite, South Africa. 5th International Kimberlite Conference, 
South Africa, CPRM. 285-303. 

Chapter 4-Major Element Compositions 	 131 



5. Major Element Zonation Patterns in Minerals 

5.1 Objectives 

In this chapter empirical observations are made based on spatial major element data 

collected for the Newlands and Bobbejaan samples. Interpretations are presented in 

subsequent chapters. For details on the electron microprobe analysis (EMPA) 

technique see Appendix I. 

Samples were selected for EMPA using petrographic criteria such as large size and 

multi-mineral assemblages (see Chapter 3). Initially spot analyses of cores and rims 

were made. Samples with any significant chemical variation were then analysed on a 

smaller scale by means of a finely-spaced electron microprobe traverse. From 

petrographic information and traverses certain samples exhibiting a variety of 

chemical trends were selected for 5-element, X-Ray mapping. Some X-ray maps 

revealed areas of zonation that were not captured by previous traverses. These 

particular areas were targeted for extra traverses, thus recording the additional 

variation. 

The main aims of the major element analysis programme of larger samples (i.e. not 

kimberlite concentrate) was to: (1) identify garnet-rich samples whose compositions 

are analogous to those of the harzburgitic diamond inclusion suite; (2) define 

chemical differences in garnets and chromites in harzburgitic and lherzolitic samples; 

(3) determine the direction of any zonation trends and relate them to trends found by 

other workers e.g. Griffin et al. (1999b) and Burgess and Harte (1999); (4)analyse 

clinopyroxenes, where possible; (5) use this information to make an overall 

assessment of gamet-chromite equilibria for the harzburgites and garnet-chromite-

clinopyroxene equilibria for lherzolites; (6) to provide a framework for the 

interpretation of trace element analyses. In no case was it possible to obtain good 

analyses of orthopyroxene and olivine because they have been serpentinised in the 

Newlands and Bobbejaan samples (see Chapter 3). 
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5.2 Garnet Zonation Patterns 

Analyses of garnets by means of electron microprobe traverses are presented as 

profiles in Appendix II showing distance (Am) vs. cation concentrations for traverses 

with> 10 analysis points. Chromite and clinopyroxene profiles are discussed in the 

next section and are also shown in Appendix IT (see data CD). Accompanying X-ray 

maps were made for certain samples and are presented in Appendix III (see data 

CD). Figures from both of these Appendices will be referred to in the text in order to 

illustrate zonation in minerals from the garnet-rich samples. 

5.2.1 Overall variety of garnet zonation patterns 

A total of 72 samples from Newlands, 27 from Bobbejaan and 12 from Leicester 

were analysed by means of selected linear traverses (in some cases over 3 traverses 

per sample) across parts of samples. The traverses were chosen to record garnet core-

rim compositional trends so that in polygranular (and potentially in many 

monogranular) garnet samples a core-to-matrix trend was recorded. Monogranular 

and pol.ygranular garnet samples with included phases (namely serpentine, Cr-

diopside and Cr-spinel) were analysed along traverses towards inclusions. Analyses 

of inclusions themselves were also made along these traverses in order to gain 

coexisting mineral compositions with a close analysis separation. Cr-spinel and 

clinopyroxene analyses are described in the subsequent two sections. 

External zonation in garnet is that which occurs towards a matrix which may be: 

Serpentine ± Cr-spinel (harzburgitic, Es), di.opside ± serpentine ± Cr-spinel 

(lherzolitie, Ed), garnet (garnetite, Eg) or an unknown matrix (Eu). It is only within 

the few polygranular samples that external zonation towards a matrix may be defined 

(i.e. Eg, Es and Ed) and therefore not classed as Eu. 

Internal zonation in garnet is divided into that which occurs towards inclusions 

which may be: Serpentine ± Cr-spinel (harzburgitic, Is), Cr-diopside ± serpentine ± 

Cr-spinel (lherzolitic, Id) and monomineralic Cr-spinel (Ic) (Fig. 5.1). 'Is' zonation 
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may be towards monomineralic serpentine or bimineralic serpentine + Cr-spinel. All 

three internal zonation types may be towards a monomineralic inclusion and Id 

zonation may be towards a monomineralic diopside inclusion or towards diopside + 

serpentine or diopside + Cr-spinel, if bimineralic, and all three of diopside, 

serpentine and Cr-spinel if trimineralic. Based simply upon the location and 

orientation of zonation trends relative to petrographic features the zonations may be 

classified as shown in Fig. 5.1: 

Garnet Zonation Trend 

External (E) 	 Internal (I) 
to a matrix of 	 to in':Iuson(s) of: 

__ 	 ___ V 
Srp -i-/-  Chr Di /- Srp -I-f- CHii GrtJ I_Unknown 	Srp 4-I- Chr [bI +1- Srp '-2i LIE] 

Es 	 Ed 	Eg 	Eu 	 Is 	 Id 	Ic 

Figure 5.1: Garnet zonation trend classification based on matrix and inclusion mineralogy, where 
sfSrp = serpentine, d/Di = Cr-diopside, c/Chr = Cr-spinel, glGrt = garnet. 

The zonation types are illustrated on Cr 203  vs. CaO wt. % plots with selected 

examples in Fig. 5.2 (a) and (b), with directional arrows indicating trends towards 

garnet boundary in Fig. 5.2 (b). In harzburgitic (low Ca) samples two trajectories are 

seem a steep trajectory (i.e. mainly Cr-variation) and a sub-horizontal trajectory (i.e. 

mainly Ca-variation) that appears to be present in four samples. Garnets to the high-

Ca side of the lherzolite line have positive Cr-Ca trends. 

At Newlands and Bobbejaan the majority (- 80 %) of samples display some external 

zonation with - 40 % showing both external and internal zonation (see Table 11.1 in 

Appendix II). 15 % show evidence for internal zonation alone and around another 

5 % do not show evidence for either external or internal zonation. Few samples were 

traversed and found to be almost chemically homogeneous and therefore with little 

or no manifestation of either zonation type. 
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Some difficulty exists in determining whether each zonation type is present. For 

example internal zonation may be caused by an inclusion that is not quite exposed at 

the analysis surface and will therefore appear as a hump/dip on a traverse or an island 

of different intensity on an k-ray map. In some cases this may be mistaken for 

external zonation. A second example is from small monogranular garnet samples 

exhibiting apparent core to rim zonations. These might have had inclusions present 

outside the current edge of the sample causing a concentric zonation pattern with a 

similar appearance to an external zonation. In general these problems are not thought 

to cause misidentification in many of the samples. 

Fig. 5.2 shows selected data illustrating the major compositional trends. For 

completeness Fig. 5.3a and b shows the Cr-Ca distribution of all the garnet traverses 

carried out on Newlands (a) and Bobbejaan (b) samples (i.e. all those in Appendix II 

and additional analyses, Appendix VI). There is a larger compositional variety in the 

Newlands samples with greater representation at the high-Cr parts of the harzburgitic 

and lherzolitic trends. Zonations in some samples cross the lherzolite line (LL) and 

the diamond-graphite constraint (DGC). The two kimberlites have individual 

samples with a similar magnitude of chemical variation. 

Fig. 5.3 emphasises that, despite involving two localities (Newlands and Bobbejaan) 

and a variety of matrix and inclusion minerals, there are only three main trajectories 

in Cr-Ca space: (1) The sub-vertical trend that is to the low-Ca side of LL and close 

to DGC, (2) the trend parallel with LL which is in the vicinity of LL or with slightly 

shallower slope at high Ca and (3) the sub-horizontal trend in a few samples usually 

plotting in the harzburgite field. (1) and (2) appear to be continuous with each other 

since the internal zonation trajectories swing to more diagonal as more Ca is 

involved. Ic zonation has a different direction to Id and Is zonations whilst still 

conforming to the neighbouring trajectories. 

As shown in Chapter 4, Cr typically substitutes directly for Al and Mg for Ca in 

terms of cations in garnet, therefore the Cr-Ca diagram effectively accounts for the 
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major variations in the most common substituting cations in garriets. Thus the 

features seen in Figs 5.2 and 5.3 would be largely reproduced in plots with the axes 

Cr/(Cr+Al).and CaI(Ca+Mg) (see Fig. 4.1). Ti is the only significantly variable 

element not accounted for by Cr-Ca plots (plots of Ti-variation are shown in section 

5.2.5). Of the other analysed elements Si and Fe are the only elements that are high 

in concentration (Si > 37 wt. % and Fe usually> 5 wt. %) and that do not show any 

evidence of zonation in gamets from Newlands and Bobbejaan samples. Other 

elements that are relatively constant across the zonations are Mn and Na; whilst Ni 

and K are usually in sub-detection limit concentrations (with EMPA at normal 

counting times). 
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Figure 5.2: (a) CaO vs. Cr203 wt. % plot of selected Newlands (black symbols) and Bobbejaan (white 
symbols) garnet traverses. Note Cr203 scale starts at 3 wt. %. (b) as for (a) with the same samples 
plotted (with the addition of Eg+ trend ofNIEW3OI), arrows shown indicating direction of zonation 
for internal zonations towards an inclusion (Lsblue, Id=green, lc=grey) and for external zonations. 
When external zonation alone is present it is shown in red for an unknown matrix and in purple for 
one with garnet as the matrix. The lherzolite tine (solid line, Gurney, 1984) and the diamond-graphite 
constraint (dashed line, Grutter et al., 2004) are shown on each diagram. 	- 
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Figure 5.2: (a) CaO vs. Cr20 3  wt. % plot of selected Newlands (black symbols) and Bobbejaan (white 
symbols) garnet traverses. Note Cr 203  scale starts at 3 wt. %. (b) as for (a) with the same samples 
plotted (with the addition of Eg+ trend ofNEW3OI), arrows shown indicating direction of zonation 
for internal zonations towards an inclusion (Is=blue, Id=green, Ic=grey) and for external zonations. 
When external zonation alone is present it is shown in red for an unknown matrix and in purple for 
one with garnet as the matrix. The lherzolite line (solid line, Gurney, 1984) and the diamond-graphite 
constraint (dashed line, Grutter et at., 2004) are shown on each diagram. 
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Figure 5.3: (a) Cr 203  vs. CaO wt. % plots of all Newlands garnet traverses. (b) as for (a) but for 
Bobbejaan samples. LL and DGC shown as for Fig. 5.2. 

5.2.2 Internal garnet zonation patterns 

Spatially, internal zonation is controlled by the distance away from particular 

inclusions within garnets and is generally not observed to affect regions> 500 urn 

away from an inclusion boundary. In general inclusions are approximately 

equidimensional so the zonation is expressed as approximately concentric zones of 

equal concentrations of particular zoned elements. Internal zonation is not affected 

by external zonation (see Tables 11.1 and 11.2, Appendix II). 

5.2.2.1 'Is' ZONATION (E.G. B0B404, NEW074) 

'Is' zonation is a chemical gradient established in garnet as monomineralic 

serpentine and bimineralic Cr-spinel + serpentine inclusions are approached. 

5.2.2.1.1 Chemistry 

The major element substitution is dominated by Cr-Al exchange and is as follows: 

('Is') Cr ± Mg 4 Al ± Ca (+Ti) 

where LHS represents the region of the garnet away from inclusions and RHS the 

region of the garnet close to an inclusion. The magnitude of variation in one sample 

may be as much as 1.8 wt. % Cr20 3 , 1.8 wt. % A1203,1.7 wt. % MgO and 0.3 wt. % 

CaO and FeO (total Fe) as shown by sample B0B404 (Table 11.3, Appendix II). 3+ 

cations appear to maintain a total of 2 with increasing Al compensating for 

decreasing Cr close to an inclusion. 

5.2.2.1.2 Sample types affected 

'Is' zonation in garnets that have G9 compositions appears to be identical in 

trajectory and direction to Id zonation (see later). 010 samples with Is zonation 

display a decrease in Cr and an increase in Al towards the inclusion with some highly 

sub-calcic garnets having an associated increase in Ca/Mg towards the inclusion. The 

majority of 'Is' samples have very little change in Ca and Mg as the inclusion is 

approached. But it appears that more calcic Gl 0 garnets close to the lherzolite line 
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possess larger reductions in Ca associated with reductions in Cr towards the 

inclusion. 

£2.2. 1.3 Examples 

NEW074 X-ray map' shows reduced Cr and increased Al as the serpentine + Cr-

spinel inclusion is approached with a small increase in Ca and Ti and a small 

decrease in Mg. The zonation appears to be contained within a 200/hm radius of the 

inclusion contact with garnet as can be seen in the first 500 tm of the traverse. The 

external zonation will be discussed later. B0B404 X-ray map shows localised 

reductions in Cr and increases in Al close to inclusions; Ca-Mg variation does not 

appear to correspond to the proximity of the garnet to inclusions and is part of the 

external zonation (see later). Sub-5001Lm variations in Cr and Al can be seen close to 

inclusions in the profile. All other elements remain constant in concentration as the 

inclusions are approached. 

5.2.2.2 ID ZONATION (E.G. NEWSP, B0B402, B55) 

Id zonation is a chemical gradient established in garnet as Cr-diopside + Cr-spinel + 

serpentine, Cr-diopside + serpentine, Cr-diopside + Cr-spinel and monomineralic Cr-

diopside inclusions are approached. 

5.2.2.2.1 Chemistry 

The major element substitution is one where Cr and Ca have a clear positive 

correlation and is as follows: 

(Id) Cr+Ca(+ Ti) 4A1+Mg 

where LHS represents the region of the garnet away from inclusions and RHS the 

region of the garnet close to an inclusion with Ti variation being greater in the high-

Cr high-Ca garnets. The magnitude of this variation in one sample may be as high as 

3.5 wt. % Cr203, 3.3 wt. % A1203, 2.5 wt. % MgO and 2.1 wt. % CaO, 0.5 wt. % 

FeOt and 0.12 wt. % Ti02 as shown by sample NEWSP. Sample BOB401 is notable 

X-ray maps and profiles may be found on the data CD (Appendices III and II respectively). 
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in Fig. 5.2a for having a shallower Cr/Ca slope than other Newlands and Bobbejaan 

samples showing Id zonation. 

5.2.2.2.2 Sample types affected 

Id zonation is restricted to lherzolitic samples (due to its definition) and is therefore 

mainly restricted to the 09 field (Fig. 5.2b). Few samples plot a short way into the 

010 field. 

£2.2. 2.3 Examples 

Sample NEWSP is monogranular and contains multiple bimineralic inclusions of Cr-

diopside + serpentine + Cr-spinel and Cr-diopside + Cr-spinel. All zonation appears 

to be controlled by the proximity of the garnet to inclusions and no evidence of 

external zonation is present (see X-ray map). Traverses adjacent to inclusions reveal 

close to symmetrical chemical variation according to the Id substitution. In a similar 

way to samples with 'Is' zonation, NEWSP has Id zonation distributed with radial 

symmetry all the way around polymineralic inclusions suggesting that the inclusion 

behaves as a whole when interacting with garnet. 

The polygranular sample B0B402 has Id zonation visible on a sub-millimetre scale 

near inclusions (see B0B402-Zoom X-ray map). Larger-scale zonation is apparent 

and attributed to manifestation of external zonation. 

Most inclusions in sample B55 are platy bimineralic Cr-spinel + Cr-diopside 

inclusions (chapter 3) with Id zonation isopleths equidistant from the garnet-

inclusion interface (maximum distance of- 500 jim). No external zonation is 

apparent. X-ray maps B55 and B55-Zoom show this distribution of Id zonation. 

5.2.2.3 IC ZONATION (E.G. NEW069, NEW083) 

Ic zonation is a chemical gradient established in garnet as monomineralic Cr-spinel 

inclusions are approached. There is a rarity of monomineralic chromite inclusions 

and so there are only two analysed examples of Ic zonation manifestation. 
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5.2.2.3.1 Chemistry 

The major element substitution is essentially opposite in direction to Id zonation and 

is as follows: 

(Ic) Al+Mg3Cr+Ca(+Ti) 

where LHS represents the region of the garnet away from inclusions and RHS the 

region of the garnet close to an inclusion. The magnitude and chemical vector of 

variation is similar to that of Is if the sample is in the GlO field and similar to that of 

Id if in the G9 field e.g. NEW083 and NEW069 respectively. 

5.2.2.3.2 Sample types affected 

All the samples with Ic are found to be at high-Cr (> 6 wt. %). Ti variation is greatest 

in NEW069 which is a high-Cr, high-Ca G9 garnet sample. Ca-Mg exchange is less 

apparent in GlO garnets suchas NEW083. 

5.2.2.3.3 Examples 

NEW069 plots as a high-Cr part of the lherzolite trend for Newlands gamets in Fig. 

5.2a. Internal zonation towards monomineralic Cr-spinel is particularly clear on the 

X-ray map and profile and can be seen to occur over a distance of— 500 tim. The 

NEW083 X-ray map shows that close to the Cr-spinel inclusion, the style and 

magnitude of sample-scale variation is concentrated into an approximately 500 Am 

zone around the inclusion. However, the trajectory of Cr-Ca space is steeper and like 

that of Is zonation (the traverse does not pass directly over the Cr-spinel inclusion). 

5.2.3 External garnet zonation patterns (E) 
Spatially, external zonation is controlled by the distance away from the garnet matrix 

and affects regions next to the matrix and usually penetrating> 500 jim away from 

the garnet rim, which may reach to the core of the garnet. In no case was it possible 

to discriminate between differences in zonation next to different matrix minerals. In 

polygranular samples external zonation concentration isopleths can be seen to be 

parallel to garnet grain boundaries, whereas in monogranular samples the external 

zonation concentration isopleths are normally parallel to the sample edge except 
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where the sample has been broken by mine processing activities (e.g NEW024 X-ray 

map): External zonation is affected by internal zonation and is therefore 

'overprinted' by inclusion-controlled chemical variation in nearly every externally 

zoned sample where garnet has inclusions. 

5.2.3.1 ES ZONATION (E.G. NEW308) 

Es zonation is a chemical gradient established in garnet as a serpentine ± Cr-spinel 

matrix is approached. The zonation may be present in Many harzburgitic samples but 

is only unmistakably identifiable in polygranular samples such as NEW308. 

12.3.1.1 Chemistry 

The major element substitution is similar in nature to Is zonation and is as follows: 

(Es) Cr±Mg+Al±Ca 

where the LHS is the garnet core and the RHS Is the garnet rim. The magnitude of 

variation has only been recorded as small (i.e. C 1 wt. % for Cr203 and A1203, and C 

0.3 wt % CaO and MgO). Ca-Mg variation is always less than with Ed zonation. 

5.2.3.1.2 Sample types affected 

Es zonation affects samples that are predominantly harzburgitic both 

petrographically and geochemically (i.e. they are samples with no diopside and have 

GlO garnet chemistry). Occasionally lherzolitic samples with apparently 

monomineralic serpentine or bimineralic serpentine + chromite matrix have been 

designated with Es zonation but chemically the trend is that of Ed/Id indicative of 

diopside being present somewhere in the matrix. 

5.2.3.1.3 Examples 

NEW308 X-ray map indicates that Es zonation occurs to rim-core distances of about 

1000 Am in garnet away from a serpentine-rich matrix. Internal zonation next to 

inclusions overprints this core-rim external zonation. NEW059 has a similar zonation 

pattern, chemistry and garnet composition but it is classified as Eg zonation since the 

matrix is nearly 100 % garnet. However, the chemical substitution appears to be the 

same and the variation about the same magnitude. 
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5.2.3.2 ED ZONATION (E.G. 11011402) 

Ed zonation is a chemical gradient established in garnet as a Cr-diopside ± serpentine 

± Cr-spinel matrix is approached. Again, this type of zonation is only unmistakably 

identifiable in polygranular samples. 

5.2.3.2.1 Chemistry 

The substitution components are identical to those of Id zonation with the addition of 

Mn and Fe: 

(Ed) Cr+Ca(+ Ti, Mn, Fe) 4A1+Mg 

where the LHS is the garnet core and the RHS is the garnet rim next to matrix. The 

magnitude of variation maybe large as shown in sample BOB401 which has Cr203 

and A1203 variation in the order of 2.5 wt. % (equating to close to 0.2 cation formula 

units of both Cr and Al) and CaO and MgO vary approximately 1.5 wt. % each 

(equating to close to 0.2 cation formula units for Ca and Mg). Ti, Mn and Fe 

variation is generally small. 

5.2.3.2.2 Sample types affected 

Polygranular lherzolitic samples are observed to be affected by Ed zonation. Since 

the matrix is not identifiable in monogranular samples, many of these may be derived 

from a diopside-present matrix. Therefore many monogranular samples with sample-

wide zonation that does not correspond to I zonation has been recorded as Eu 

zonation (i.e. unidentified) but may have been derived from a diopside-present 

matrix. This is justifiable since inclusions in garnets from polygranular samples 

usually reflect the composition of the matrix (Chapter 3). 

5.2.3.2.3 Examples 

BOB401 shows E zonation over a distance of 4000 zrn (see X-ray map BOB401). X-

ray map 'BOB40I zoom' shows that internal zonation adjacent to inclusions 

overprints the external zonation but the substitution chemistry is very similar. Only 

one of potentially three garnets in the sample show strongly developed E zonation 

which is expressed as a decrease in Cr and Ca from the core towards the direction of 

the matrix. 
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The Cr-Ca slope is shallower in BOB401 than other Newlands and Bobbejaan garnet 

zonation trends (Fig. 5.1 a). BOB40 I is also the only sample where Fe and Mn can 

also be seen to vary in correspondence with the Cr and Ca (therefore correlating 

negatively with Al and Mg). Their variation is smaller in magnitude than the four 

main elements (Fe = 0.03 and Mn = 0.01 cation formula units). 

5.2.3.3 EG ZONATIONS (E.G. NEW059, NEW30I) 

Eg zonation is a chemical gradient established in garnet as a matrix of garnet is 

approached. This type of zonation is only unmistakably identifiable in polygranular 

samples. A positive and negative Eg zonation are described here because there are 

two chemical directions to which the substitution is observed to occur depending on 

garnet composition. 

5.2.3.3.1 Chemistry 

The major element substitution is similar to Id and Ed except that Ca-Mg exchange is 

less well pronounced and hence a steeper CrCa trajectory is produced very close to 

the slope of the lherzolite line of Gurney (1984). The substitution may be positive 

(i.e. in the same direction as Id and Ed) or negative (reversed direction to Id and Ed) 

and is as follows: 

(Eg+) Cr+Ca(+Fe+ Ti) +Al+Mg 

(Eg-) Al+Mg4Cr+Ca(+Fe±Ti) 

where the LHS is the garnet core and the RHS is the garnet rim next to matrix. The 

magnitude of variation is small in sample NEW059 but maybe larger (around 1.5 wt. 

% Cr203 rather than 0.6) in unconfirmed Eg samples such as B48 and NEW003. In 

NEW059 however Cr203 and A1203 variation is in the order of 0.6 and 0.4 wt. % 

respectively (equating to close to 0.02 cation formula units for both Cr and Al) CaO 

and MgO vary approximately 0.2 wt. % each (equating to close to 0.02 cation 

formula units for Ca and Mg). 
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5.2.3.3.2 Sample types affected 

Only one sample is unambiguously defined as Eg+ (NEW30I) and one Eg-

(NEW059), therefore it is not possible to be sure how diverse the sample types are 

with this zonation, However both samples are polygranular garnetite with minor 

serpentine and chromite in the matrix and their garnets are G 1 in composition. 

Monogranular samples with few to no inclusions often have the same substitution 

from core to rim. Even though a matrix cannot be defined in NEW003 its shape 

appears to be part of a garnetite rock rather than garnet in a matrix of other minerals 

(see Chapter 3). These samples also tend to be very close to the lherzolite line and 

have a slope very similar to this line with Cr2O3 decreasing markedly with decreasing 

CaO. They are also usually garnet-only samples with no other coexisting minerals. 

None of the above-mentioned samples possess inclusions, which is a common 

feature of many of the samples just to the Ca-poor side of the lherzolite line. 

5.2.3.3.3 Examples 

NEW059 is a sample that contains multiple garnet grains with garnet-garnet grain 

boundaries. This sample displays the way that each individual garnet has concentric 

core-rim zonation from Cr-poor at the core to Cr-rich at the rims. Ca varies in the 

same sense to Cr and Al and Mg vary in the opposite sense to Cr. Zonation does not 

conform to the edge of the sample (NEW059 X-ray map). The shape of the zones 

depends on the shape of the particular garnet grain margin. 

NEW30I contains three separate garnet crystals (EBSD Appendix IV). The garnet 

that comprises most of the sample (garnet I, see NEW301 X-ray map and profile) is 

zoned from high- to low-Cr (and Ca, although Ca zonation is less pronounced) as 

matrix minerals are approached. Garnet 2 is a smaller garnet (7 mm across) that has 

a Cr-rich core and becomes lower in Cr as garnet 1 is approached over a distance of 

- 1500 jim to attain the same Cr concentration as garnet 1 at the contact. The 

substitution is therefore the opposite of NEW059 even though the samples have 

similar overall Cr-Ca compositions (see Fig. 5.2) and designated Eg+ (Fig. 5.2b) 
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B48 has clearly increasing Cr + Ca to the rim and is therefore Eg- (1348 X-ray map). 

This sample is within the GlO field but at low-Cr203 (3-4 wt. %) and has a slope 

steeper than but close to the lherzolite line and is also garnet-only. It seems that the 

zonation relates to the edge of the sample and hence probably the edge of the original 

crystal margin in contact with matrix. 

With NEW003 the zonation pattern is such that the highest Cr and Ca region is 

located to one side of the centre of the grain (NEW003 X-ray map, NEW003 

profile). The sample, chemically, would fall into the Eg+ category. Given external 

zonation is dependent on distance from matrix, this implies that the centre of the 

analysed surface was closer to the rock matrix than the high-Cr and Ca region. Since 

the sample is rounded and not broken at the edges it is assumed that the edge of the 

sample represents the edge that was transported in the kimberlite and not a mining 

artefact. Therefore the zonation is a primary feature where the major element 

distribution, within the garnet has not been affected by kimberlitic activity to any 

detectable extent. 

5.2.3.4 Eca ZONATION (E.G. NEW074, BOB113) 

Eca  zonation is a chemical gradient established in garnet where there is an extreme 

enrichment in Ca as the edge of the grain is approached. This zonation was not 

identified in any polygranular samples so there is no knowledge of matrix 

composition in the samples discussed. 

12.3.4.1 Chemistry 

The substitution is essentially a Ca- and Ti enrichment, at the expense of Mg and is as 

follows:' 

(Eca) Mg ± Cr 4 Ca + Ti ± Cr 

where the LHS is the garnet core and the RHS is the garnet rim presumably next to 

matrix, but in the case of the examples it is the edge of the sample. The magnitude of 
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variation maybe up to 2.5 wt. % CaO change from core to rim and is often 

accompanied by a Ti02change of up to 0.1 wt. %. 

12.3.4.2 Sample types affected 

This type of zonation generally occurs in samples whose cores are in the G 1 field 

and away from the lherzolite line. The zonation moves samples from sub-calcic 

regions of Cr-Ca space towards the lherzolite line with the change in Ca being much 

greater than that in Cr. Four', possibly five samples have been identified from 

Newlands and Bobbejaan that conform to this style of zonation. Cr variation is 

usually small. 

5.2.3.4.3 Examples 

NEW074 displays clear ECa zonation with a Ca-poor core and Ca, Ti-rich rim (X-

ray map NEW074). There is a plateau at the centre (2000-3000 jim on NEW074 

profile) and a zonation occurring over a distance of at least 3000 Am towards the 

edge of the sample from this core. 3000 jim is a minimum distance to the true contact 

with matrix. This external zonation is overprinted by an internal zonation adjacent to 

the serpentine + Cr-spinel inclusion. 

BOB 113 displays flat parts to its profile that are established at the edge of garnet 

crystals as well as at the core (BOB 113 X-ray map and profile). On the full-sample 

Ca X-ray map, sample BOB 1 13 displays the core as blue, transitional regions as 

green and the plateau region at the rim as yellow. Modification of the external 

zonation occurs adjacent to serpentine ± Cr-spinel inclusions where there is Cr-Al 

exchange occurring in Is zonation. Profile BOB 113 (b) clearly shows how Mg-Ca 

external zonation is independent of Cr-Al internal zonation since Ca continuously 

increases along the profile regardless of proximity to inclusions whereas Cr is 

reduced as the inclusions are appioached with no discernable trend from the start to 

the end of the profile. 
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5.2.4 Comparison to other garnet zonation studies 

Table 5.1 indicates how the classifications of external zonation patterns in other 

studies relate to those described above. Some elements in brackets needed to be 

added to the core/rim compositions in order to contain all elements mentioned in 

other studies. 

Core Cr + Ca Al + Mg Mg (±Cr) Cr (± Ca) Cr+Al+Mg Cr + Ti Homog. 
rich in _______  

Rim Al + Mg Cr + Ca Ca + Ti Al (+ Mg) Ca+Fe+Na+Ti Lower Homog. 
rich in 

Cr + Ti  

This Ed Eg- Eca  Es - Seen in Ed - 
study 

81198 Type I Type II Type IlIb - Type lila Seen in lb - 

SB92 Group III - Group VI - Group! Group IV Group II 
______ (V?)  (± Cr)  

G99 Yes - Yes - - - - 

Table 5.1: Table showing the classifications of different garnet external (core to rim) zonations from 
this study compared to the classifications in Burgess and Harte (1999) (BH98) and Smith and Boyd 
(1992) (SB92) and whether the type of zonation is present in garnets analysed by Griffin et al. 
(1999b). 

5.2.5 Co variation plots for sample traverses 

The garnet zonation trends at Newlands and Bobbejaan show extreme major element 

variation (Fig. 5.3 a & b) both as a suite of samples (0-11 wt. % CaO and 0-15 wt. % 

Cr203) and within individual samples (up to 2.5 wt % CaO and 3 wt. % Cr203). This 

combination of features is not previously reported for mantle garnets from 

kimberlites worldwide. Menzies (2001) reported on the variation of the sample suite 

at Newlands and van der Westhuizen  (1992) reported a limited number of analyses 

illustrating some of the variation found at Bobbejaan. Burgess (1997) provides a 

detailed study of multiple zonation trends from Jagersfontein that illustrate a 

maximum of 1 wt. % variation within individual garnets but over a restricted range 

of garnet compositions (4-6 wt. % GaO and 0-8 wt. % Cr203) compared to this study. 
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Figure 5.4: (a) Ca vs. Ti cation plot for the selected Newlands (black-grey symbols) and Bobbejaan 
(white symbols) sample traverses of Fig. 5.2 (a). (b) as for (a) but with Na vs. Ca cations plotted. (c) 
as for (a) but with Mn vs. Ca cations plotted. (d) as for (a) but with Al vs. Cr cations plotted including 
a sum of 2 cations line. (e) as for (a) but including a sum of 3 cations line. 

Figure 5.4 illustrates additional plots that were used in Chapter 4 to differentiate 

types of concentrate garnets. Fig. 5.4a shows that there is a strong positive 

correlation between Ca and Ti in zoned gaiiiets, both as a whole and in some 

individual garnets. This trend is not visible in garnets from the concentrate datasets 

(Fig. 4.1 Ia). The Bobbejaan samples (white symbols) do not reach high-Ti 

concentrations as visible in many Newlands garnets such as the high-Cr, high-Ca 

garnets (e.g. NEW! 14, NEWSP and NEW069). NEW065 plots to high Ca side of the 

trend and many harzburgitic samples plot to very low-Ti and lower Ca parts of the 

trend. BOB-1 13 and BOB401 show variation in Ca without significant change in Ti. 

Fig. 54b  indicates that the variation in Na in the peridotitic garnet samples studied 

does not correlate with Ca (the same is true for Na vs. Cr). Therefore it appears to be 

varying independently of other zoned variables and may correspond to parts of the 
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Fet 1.5 
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sample that have been enriched in highly incompatible elements (see trace element 

chapter). Fig. 5.4c shows garnet compositions forming a broadly positive Mn-Ca 

trend but individual samples are not significantly zoned in Mn since diffuse clusters 

are produced. Some of the lower Ca samples appear to have significant Mn variation 

that is independent of Ca. 

Fig. 5.4d has the tight Cr-Al relationship where Cr + Al is close to 2 of the G 1 

garnets from concentrate. Only sample NEWI 14 strays from this trend towards 

lower values, which is indicative of the presence of a small amount of Fe 3+.  Mg vs. 

Fet (total Fe) shows that the samples have little Fe-Mg substitution occurring with 

Mg-Ca dominant (Fig. 5.4e). The low-Ca harzburgitic garnets clearly plot close to 

the sum of 3 cations line indicative of high Mg content and very low other 2+ ion 

content. 

5.3 Cr-spine! Zonation Patterns 

Cr-spinel appears homogeneous in the samples on X-ray maps and most profiles (see 

appendix III and II respectively and also Fig. 5.5) since the majority of crystals are 

small and are inclusions in garnet. However, few Cr-spinels have been noted as 

showing external zonation towards a matrix of garnet ± serpentine ± clinopyroxene 

on profiles (Appendix II, and occasionally in Fig 5.5). The major element 

substitution is as follows: 

Cr + Mg (± Ti) 4 Al + Fe (+ Mn, ± Ti) 

Where LHS is core, RHS is rim. The magnitude of this variation may be as high as 

'l.l wt. % Cr203, 0.3 wt. % A1203, 0.4 wt. % MgO and wt. % CaO, 0.9 wt. % FeOt 

and 0.12 wt. % Ti02 is as shown by sample NEW063 (see profile in Appendix II). 

The composition is moved away from the high Cr values typical of diamond 

inclusions. All examples of zonation in Cr-spinel occur in the outer 300 jim of the 

crystal. 
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Figure 5.5: (a) Mg/(Mg+Fet) vs. Cr/(Cr+Al) for samples with multiple analyses on Cr-spinels in 
Newlands and Bobbejaan samples. (b) as for (a) but Ti0 2  vs Cr203  in weight percent. Note: the 
diamond inclusion fields are not shown due to expansion of the scales on the graphs e.g. refer to Fig. 
4.17a. 

NEW098 also shows this type of zonation but it is towards the garnet host that the 

chromite is included in rather than a matrix. NEW302 shows an example of an Fe-Ti-

rich chromite overgrowth which appears to be associated with the kimberlitic veining 

of the sample (Fig. 5.6). It is therefore interpreted to be a secondary feature (similar 

to the kelyphitic rims on many gamets). 
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Figure 5.6: Backscattercd election image of chromite in NEW302 illustrating the high-Fe rim in 
contact with kirnberlitic vein minerals. Black is the edge of the sample, dark grey is phiogopite, 
medium grey is garnet, light grey is chromite and white is the high-Fe chromite rim. 

Menzies (2001) ascribes the first zonation style to be due to 'edge effects' during 

analysis but analysis in this study reveals that there is a consistent trend in the crystal 

that could not be produced by a bad analysis at the edge of the grain. Daniels (1991) 

finds that most Dokoiwayo Cr-spinels are homogeneous with some low-Ti Cr-spinels 

having an AI4Cr core to rim zonation. 

5.4 Cr-Diopside Zonation Patterns 

In the same way to Cr-spinel, most Cr-diopsides in samples are small inclusions in 

garnets and are observed to be close to homogeneous on X-ray maps and profiles. It 

is only in a few cases that profiles have revealed any external zonation towards a 

matrix. The first of these is zonation towards a matrix of garnet ± serpentine ± Cr-

spinel and is as follows: 

Al + Mg + Na + K + Ti ± Cr 4 Fe + Ca 

where LHS is the core and RHS is the rim. The second zonation style seen in sample 

NEW42I contains aclinopyroxene that displays this substitution. 80B301 and 

NEW303 have a zonation that is as follows: 
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5.5 Summary 

Internal garnet zonation is found to occur in the 500 Am adjacent to inclusions in a 

high proportion of samples. External garnet zonation is found to occur in the outer 

2000 Am of garnet crystals adjacent to matrix minerals in a high proportion of 

samples. A summary of garnet substitutions and the strengths to which they exist is 

shown in Table 5.2: 

Substitution Cr/Al Ca/Mg Ti Garnet type affected 

Is Strong -ye Weak +ve No variation 09 and 010 

Id Strong -ye Strong —ye Strong —ye 09 

Ic Strong +ve Weak +ve Weak +ve High-Cr 09 and 010 

Es Weak —ye Weak +ve No variation 09 and 010 

Ed Strong —ye Strong —ye Weak ±ve 09 

Eg (-) Weak +ve Weak +ve Weak -ye 010 & 09/010 boundary 

Pg (+) Strong -ye Weak -ye No variation 010 & 09/010 boundary 

ECa Weak—ye Strong +ye Strong +ve 010 

Table 5.2: Major element substitutions occurring in each garnet zonation type with Cr-Ca garnet 
compositions affected. (weak means approximately <1 wt. % Cr 203 , < I wt. % CaO and <0.05 wt. % 
Ti02, strong is greater than these values). 

Cr-spinel and clinopyroxenes are not commonly zoned but some samples do contain 

crystals with evidence for primary zonation that is not due to kimberlitic 

alteration/rim growth. 
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6. Phase Relations 

6.1 Objectives 

In this chapter the coexisting minerals in samples will be assessed as to their state of 

equilibrium. Petrographic criteria (Chapter 3), mineral chemistry (e.g. Cr203-CaO 

garnet composition, Chapter 4) and mineral zonation (Chapter 5) shall be used to 

divide samples into different assemblages (i.e. whether the sample has 

clinopyroxene/serpentine/chromite in addition to garnet), different parageneses (i.e. 

lherzolitic/harzburgitic) and different facies (i.e. diamond/graphite) and also to 

identify any secondary minerals present. 

Coexisting minerals will be plotted and joined with tie lines in compositional space 

diagrams. This will enable an assessment of the effects of bulk rock composition on 

the coexisting phase chemistry and the extent of equilibrium between phases and 

phase assemblages. Once this is known, then the role of P-T may be determined. The 

assemblages will be examined in simple systems initially and then in terms of a 

variety of compositional parameters. Finally, compositional trends will be related to 

important reactions between mantle minerals by means of calculating distribution 

coefficients for particular cations. 

6.2 Equilibria 

The important minerals in peridotitic mineral assemblages are as follows: olivine, 

clinopyroxene, orthopyroxene, garnet, Cr-spinel for lherzolites; and olivine, 

orthopyroxene, garnet, Cr-spinel for harzburgites. Table 6.1 shows the nearest end 

member formulae for these minerals in Newlands and Bobbejaan samples and 

indicates the main chemical substitutions that may occur. Accessory minerals may 

also be present i.e. diamond or phlogopite. 
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Primary mineral end- 
members  

Formula Main Substitutions 

Forsterite. MgSiO4 Fe-Mg 

Enstatite Mg2 Si2O5  Fe-Mg 

Diopside CaMgSi206  Fe-Mg, Na-Ca, Al-Cr 

Pyrope Mg3Al2 S6012 Fe-Mg-Ca, Al-Cr 

Magnesiochromite MgCr204  Fe-Mg, Cr-Al 

Accessory mineral end- 
members  

Diamond C B-C, N-C (aggregation) 

Phlogopite K.M93AISi3O 10(OH)2  Fe-Mg 

Table 6.1: Peridotitic minerals with end member formulae and the main major element substitutions 
associated. Other secondary minerals occur due to the infiltration of kimberlite e.g. calcite, serpentine 
etc. see Chapter 3. 

Therefore the main reactions that are important concerning mineral stability are as 

follows: 

6.2.1 Linivariant equilibria: 

Cdiamond = Cgraphite 	 (1) 

Diamond = Graphite, Kennedy and Kennedy (1976). 

6.2.2 Reactions in harzburgites: 

FMASCr system: 

(Fe,Mg)(Al,Cr)204 + 2 (Fe,M9)2Si2O6 

= (Fe,Mg)3(Al,Cr)2Si3O12 + (Fe,M9)2SiO4 	 (2a) 

Spine],, + 2 Orthopyroxene 5  = Garnet., + Olivine,, 

CrMS system: 

MgCr204 + 2MgSi2O6 = M93Cr2Si30i2 + M92SiO4 	 (2b) 

Magnesiochromite + 2 Enstatite = Knorringite + Forsterite 

6.2.3 Reactions in lherzo!ites: 

CFMASCr system: 

(Fe,Mg)(Al,Cr)20 4  + Ca(Fe,Mg)Si206 + (Fe,M9)2Si2O5 

= (Ca,Fe,M9)3(A1,Cr)2Si3O12 + (Fe,M9)2SiO4 	 (3) 
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Spinet,, + Clinopyroxene 55  + Orthopyroxene 55  = Garnet,, + Olivine,, 

6.2.4 Reactions in carbonate-bearing peridotites: 
Enstatite t Calcite (in liq.) = Diopside + Forsterite + C + O 	(4) 

Reactions (2a), (2b) and (3) may be represented in CFMAS diagram which shows the 

discontinuous configuration (Fig. 6.1). Also note that the diamond producing side of 

reaction (4) will be favoured by having a low-CaO protolith which is more oxidised 

than the interacting carbonatite liquid (Luth, indirect communication via H. GrUtter). 

510:  

CaO 
FeO 
M90 

A1 20, 
Cr20, 

Figure 6.1: CFMAS(Cr) triangle (in cation + oxide molecular proportions, as are all the following 
diagrams in this chapter) illustrating the two configurations of tie lines involved in reactions (2) and 
(3). 

6.3 Phase Relations 

Fig. 6.2 indicates that for a given pressure and temperature, higher Ca rock 

compositions will form lherzolites and lower Ca rock compositions will form 

harzburgites in the system CMAS. 
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Py + En 

En statite 

MgSiO3  Diopside 

Gro1 

Wollastonite 
CaSiO 3  

Figure 6.2: CaSiO 3 -MgSiO3-A1203  system for 3 OPa and 1200°C reproduced from Boyd (1970). 
Harzburgitic rock compositions form from two phase tie lines between pyrope and enstatite (Py + En). 
Lherzolitic rock compositions plot within the 3 phase field indicated by Py + Di. 

Considering the addition of Cr (CMASCr), garnets are observed to increase in Ca 

content with increasing Cr (this gives the positive slope of the lherzolite line - Fig. 

5.2a). Therefore the tie lines would move in the way illustrated in Fig. 6.3 so that the 

garnet composition shifts with clinopyroxene to higher Ca contents. This effect 

appears to be irrespective of the addition of chromite. 	 - 

\\\/\\\ 

Cr-Pyrope 

Fy+ •.:t Py+ En 

2>2 	Di+En 

Diopside 
Enstatite 

Figure 6.3: Zoom of the enstatite apex of the CaSiO 3-MgSiO3-A1203  triangle with the thin tie lines as 
in Fig. 6.2. The effect of adding Cr to the system is shown by the bold dashed 3-phase field. The 
clinopyroxene are displaced to higher Ca, Cr, Al-rich and the garnet becomes more Ca-rich (white 
arrows). 
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In order to plot the main phases concerned a compositional tetrahedron was set up 

with the components (Mg,Fe)A1204-(Mg,Fe)Cr204-(Mg,Fe)2Si2O6 -Ca(Mg,Fe)Si206 

at the apices which means that garnet plots equidistant between spinels and 

pyroxenes. (Mg,Fe)O is treated as a single component and the tetrahedron projects 

from olivine. Therefore plotting parameters are as follows: 

Apex Apex percentage proportional to 
molecular proportion of: 

(Mg,Fe)Al204  A1203  

(Mg,Fe)Cr204 Cr203 

(Mg,Fe) 2Si2O6 ((FeO+MgO)-(Cr 203+A1203+CaO))/2 

Ca(Mg,Fe)Si206  CaO 

Table 6.2: Calculation of phase tetrahedron apex proportions. 

The garnet formulae at the corners of the garnet plane are therefore: 

(Fe,Mg)3Cr2Si3Oi2 = Fe-Knorringite 

(Fe,M9)3Al2Si3O12 = Almandine-Pyrope 

Ca(Fe,M9)2Al2Si3O12 = Ca-Fe-Mg Grossular 

Ca(Fe,Mg)2Cr2Si3Oi2 = Ca-Fe-Mg Uvarovite 

Fig. 6.4 shows the tetrahedron with all end members labelled and looking onto the 

garnet plane. Fig. 6.4b shows the appearance when looking down the pyroxene join, 

looking edge on to the garnet plane. Garnets plot on the garnet plane and never have 

> 0.5 Cr/(Cr+Al) and therefore plot in the lower half of this square. Cr-spinels plot 

on the rnagnesiochromite-spinel join and are usually between 0.6 and 0.9 Cr/(Cr+Al) 

and therefore plot in the top half of this line. Clinopyroxenes plot slightly away from 

the clinopyroxene apex since they are not pure Ca end members and they also 

contain considerable concentrations of Cr and Al (Chapter 4). 
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(a) 
	

(b) 

Figure 6.4: The 'garnet-spinel-pyroxene tetrahedron'. (a) Facing onto the garnet plane (thin square 
outline) which has Newlands and bobbejaan harzburgitic garnets plotting in the dark grey patch and 
lherzolitic garnets in the light grey patch. Garnet compositions for the corners of the garnet plane are 
shown and are as defined above. (b) Tetrahedron rotated 700  clockwise about the vertical axis, looking 
edge on to the garnet plane and nearly down the pyroxene join. 

The Ca-free system FMACr shall also be examined in order to seethe full range of 

spinel compositions in particular. This is because the Cr-Mg diagram (Chapter 4) is 

capable of discriminating the Cr-spinels reasonably well into parageneses. 

6.4 Newlands and Bobbejaan Samples 

6.4.1 Treatment of internal and external mineral compositions 
From Chapter 5, we can say that the observation of internally zoned garnet is 

common and externally zoned garnet is less common. Zoned clinopyroxene and Cr-

spinel inclusions in garnet have not been observed. Clinopyroxene and Cr-spinel in 

the matrix are uncommonly preserved in the Newlands and Bobbejaan samples (see 

Chapter 3) but when present it is only the clinopyroxene that has been observed to be 

strongly externally zoned in a primary fashion (Cr-spinel has been observed to be 

zoned but in a fashion consistent with secondary kimberlitic modification). 

Therefore, when 'coexisting minerals' are joined with tie lines on the following 

plots, it is the composition of the homogeneous Cr-spinel and clinopyroxene 

inclusions within garnet and the garnet adjacent to the inclusion that are used. 
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Additionally some of the plots show the interior garnet composition to illustrate the 

compositional direction of the internal garnet zonation. This avoids the influence of 

any potential metasomatic chemical modification. 

Sample NEW303, which clearly shows both internal and external clinopyroxene 

(Fig. 3.15), has revealed that the internal and external compositions are similar with 

minor substitution occurring in the external clinopyroxene (Chapter 5). Both the 

internal clinopyroxene-garnet and external (both core and rim compositions) 

clinopyroxene-garnet pairs are consistent with P-T re-equilibration and not 

metasomatism (see Chapter 7 for more details). 

6.4.2 (Mg,Fe)Cr204..(Mg,Fe)A1204-Ca(Fe,Mg)SbO6-(Fe,Mg)2S1206 

Fig. 6.5 shows the distribution of tie lines between coexisting spinel, garnet and 

clinopyroxene in lherzolitic (green lines) and spinel and garnet in harzburgitic (black 

lines) assemblages in the spinel-garnet-pyroxene tetrahedron. Orthopyroxene 

compositions are not plotted because alteration has made them unavailable however 

one value is obtained for NEW088. The orientation shown allows garnets to be 

viewed in the same spatial arrangement as on a Cr-Ca diagram with a harzburgite 

trend and lherzolite trend evident within the garnet plane. 
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Si3O12 

Clinopyroxene 

012 

Figure 6.5: The spinel-garnet-pyroxene tetrahedron (SOPT, Fig. 6.6) for samples with coexisting 
minerals from Newlands and Bobbejaan. 3 phase (spinel-clinopyroxene-garnet) combinations for 
lherzolite assemblages are plotted with grey tie lines, 2 phase (spinel-garnet) combinations for 
harzburgites in black. All garnets plot in the garnet plane outlined as a thin square shape. The black 
line separates harzburgitic garnets (left) from lherzolitic garnets (right) and approximates the 
therzolite line. 

Numerous 2 and 3 phase tie lines are approximately parallel, i.e. those involving 

garnet + spinel, garnet + clinopyroxene and spinel + clinopyroxene. Also evident is 

the overlap in harzburgitic and lherzolitie spinels with regard to their Cr/Al ratio. 

Independently though, the higher Cr-Ca lherzolitic. garnets tend to coexist with 

higher Cr spinels and c1inpyroxenes. Garnet-pyroxene pairs tend to involve low-Cr 

garnets at the base of the lherzolite trend. 
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(a) 	B47 	 (b) NEW288 

FeM0AJ204 

(c) 	NEW069 	 (d) NEW088 

Figure 6.6: Harzburgitic samples plotted onto the spinel-chromite-orthopyroxene plane of SGPT. 
Garnet core compositions are plotted as a grey circle and the composition of garnet adjacent to 
coexisting minerals is plotted as filled black circle, the range of harzburgitic garnet-spinel tie lines 
from all samples are shown in each for comparison in grey. (a) sample B47, a low-Ca 010 garnet. (b) 
NEW288, a high-CaGlO garnet. (c) NEW069 a high-Cr, high-Ca 09 garnet-chromite sample. (d) 
NEW088 a low-Cr 010 garnet with coexisting orthopyroxene. 

Fig. 6.6 shows the way that low Ca garnets with moderate Cr in harzburgitic field at 

Newlands and Bobbejaan coexist with the lowest Cr spinels (1347) whereas the high 

Ca, high-Cr garnets in the harzburgitic field coexist with the highest Cr spinels 

(NEW288). In both cases if garnet core compositions are joined to the Cr-spinel 

composition present they produce tie lines sub-parallel to the majority of garnet-

spinel pairs since they are effectively out of equilibrium at too high Cr. NEW069 

however has its garnet core composition at low-Cr relative to the majority of these tie 

lines which is in accordance with its Ic trend that is in the opposite direction with 

respect to the majority of internal zonation trends Id and Is (chapter 5). Sample 

NEW088 contains a particularly low-Cr garnet for the range displayed at Newlands 
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and Bobbejaan and lacks chromite. Therefore this represents a low-Cr bulk rock 

composition which belongs to the garnet-orthopyroxene field without spinel-

chromite. For most of the other garnet-spinel pairs lines it can be expected that 

orthopyroxene will also coexist forming 3 phase triangles (not shown), however, 

since the orthopyroxcne would not deviate far from (Fe,M9)2Si2O5, one can assume 

that the triangles shown in Fig. 6.6 would rotate around this apex. 

(a) 	NEW114 	 (b) 	B0B402 

(Fe, Mg AI2O4 

(c) 	B48 

re,Mg4J2o4 

Figure 6.7: Lherzolitic samples in chron,ite-spinel-clinopyroxene triangles projecting from 
orthopyroxene in the SGPT. Garnet core compositions are plotted as a grey circle and the garnet 
adjacent to coexisting minerals is plotted as a filled black circle, the whole range of lherzolitic garnet-
clinopyroxene-spinel tie lines from all samples are shown for comparison in grey. (a) sample 
NEW I 14 a high-Cr, high-Ca 09 garnet. (b) 808402, an intermediate Cr-Ca 09 garnet. (c) 848 a 
chromite-free, low Cr, low-Ca GIO garnet with coexisting clinopyroxene (too small to analyse so 
shown as an average clinopyroxene composition). 

Fig. 6.7 illustrates the range of compositions in coexisting minerals from 

clinopyroxene-bearing samples. High-Cr, high-Ca garnets tend to coexist with high-

Cr spinels and clinopyroxenes (NEW1 14) whilst lower Cr, lower Ca garnets (e.g. 
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B0B402) tend to coexist with lower Cr spinels and clinopyroxenes. As with 

NEW288 and B47 harzburgites, it is apparent that the core compositions (grey circle 

symbols) ofNEWI 14 and B0B402 are Cr-rich compared to the garnet compositions 

adjacent to inclusions (filled black circle symbols in Fig. 6.7). Sample B48, in a 

similar way to NEW288 has a low-Cr bulk rock composition and the garnet coexists 

with a pyroxene (this time clinopyroxene) without chromite. 

Fig. 6.8 shows the triangles from Figs 6.6 and 6.7 with relation to the garnet zonation 

trends in Cr-Ca space. A lowering of bulk rock Cr reduces the likelihood of Cr-spinel 

being present; thus gamets with below about 5 wt. % Cr203 do not contain chromite 

in the Newlands and Bobbejaan samples recorded in this study. Garnet interior to 

inclusion contact trends are visible in the triangular graphs in the same sense as they 

are as arrows from interior to contact on the Cr-Ca plot. 

The lherzolite line (Gurney, 1984) as indicated in Fig. 6.8 does not apply strictly to 

differentiate lherzolitic from harzburgitic garnets in the Newlands and Bobbejaan 

samples. The line that separates clinopyroxene-bearing from clinopyroxene free 

samples is a shallower line (i.e. rotated clockwise). It is parallel to the lherzolitic 

zonation arrows shown (e.g. B0B402) and parallel to the zonation trends close to the 

lherzolite line at high Cr values. 

The line that indicates chromite-present from chromite free samples is not well 

constrained but seems to lie at about 4 wt. % Cr and is shown in Fig. 6.8. The 

triangles with just garnet-pyroxene tie lines have major element compositions below 

this line. This is the line of'Cr saturation'. 
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Figure 6.8: The spinel-garnet-pyroxene triangles from Figs 6.6 and 6.7 arranged according to garnet 
location on the Cr-Ca wt. % plot (see chapter 5) NEW088 (orthopyroxene-garnet pair) and 848 
(clinopyroxene-garnet pair) have a similar zonation trend (upward pointing arrow at low Cr and is 
shown as one trend for clarity). Garnet compositions adjacent to inclusions are plotted with filled grey 
circles for clarity, with interiors as filled black circles. The clinopyroxene-in line (short, dashed) is 
shown for Newlands and Bobbejaan samples relative to the lherzolite line of Gurney (1984). The 
spinel-in line (or chromite-in line) is shown as as a horizontal, dashed line at - S wt. % Cr 203 . 
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6.4.3 Sliding reaction simulations 
One may simulate the effect of consuming spinel and pyroxenes as garnet and olivine 

are generated in reactions (2a) and (3) (see first part of this chapter) on the 

composition of garnet. Using different proportions Ca: Fe+Mg in garnet and bulk 

pyroxene one may simulate the real data in terms of cation ratios. The precise 

reactions simulated are as follows: 

Ca(Fe,M9)2Al2Si3O12 + (Fe,Mg)(A1,Cr)204 + 2 (Fe,M9)2Si2O6 

= Ca(Fe,M9)2Al2Si3Oi2 t (Fe,M9)3(Al,Cr)2Si3012 + (Fe,M9)2SiO4 

Ca(Fe,M9)2AI2Si3O12 + (Fe,Mg)(Al,Cr)204 + 2 Ca(Fe,Mg)Si206 + 

(Fe,M9)2Si2O6 

= Ca(Fe,M9)2Al2Si3O12 + Ca2(Fe,Mg)(Al,Cr)2Si3OI2 + (Fe,M9)2SiO4 

Ca(Fe,M9)2Al2Si3O12 (Fe,Mg)(Al,Cr)204 + 2 Ca0 5(Fe,Mg)l5Si2O6 + 

(Fe,Mg)(A1,Cr)204 

= Ca(Fe,M9)2Al2Si3O12 +Ca(Fe,Mg)2(Al,Cr)2Si3O12 + (Fe,M9)2SiO4 

The starting garnet compositions plot at zero Cr/(Cr+Al) and the final compositions 

(RI-IS of the reactions above) are all at 0.25 CrI(Cr+Al). Therefore, in words, the 

simulations are as follows: 

garnet + spinel + 2 opx 4 lower Ca, higher Cr garnet + olivine. 

garnet + spinel + 2 cpx 4 much higher Ca, higher Cr garnet + olivine. 

garnet + spinel + opx + cpx 4 higher Cr garnet + olivine. 

Fig. 6.9 shows these results of these simulations on a CaI(Ca+Mg+Fe) vs. 

Cr/(Cr+Al) plot. In Fig. 6.9 the simulations are run with realistic starting garnet 

composition which is lower in CaJ(Ca+Mg+Fe) and involve a realistic spinel 

composition which is higher in Cr/(Cr+Al) than the values shown in the generalised 

equations above. This generates trajectories that coincide with the Newlands and 

Bobbejaan garnet zonation trends. Several points emerge from this diagram: Firstly, 

the clinopyroxene-only simulation [2] is parallel to many of the lherzolitic garnet 

zonation trends ('Id' from chapter 5). Secondly this line is parallel to the CCGE of 

Kopylova et al. (2000) although they occur to higher Cr and Ca values. Thirdly, 
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simulation [1] provides a good approximation to some of the harzburgitic zonation 

trends ('Is' from chapter 5) and the range of slopes of these trends may be generated 

by adding various proportions of clinopyroxene component into the sliding reactions 

(i.e. the range of trajectories lying in between simulation [1] and [3] which would be 

able to match the zonatiohs of NEW047 and NEW088). Fourthly, simulation [3] 

produces a line with a slope parallel to garnet zonations that conform to the lherzolite 

line in a CaO vs. Cr203wt. % Plot- 
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Figure 6.9 Ca/(Ca+Mg+Fe) vs. Cr/(Cr+Al) cation plot illustrating the results of the three simulations 
on garnet compositions from an initial starting garnet composition at zero Cr/(Cr+Al) (black circle). 
Several garnet zonations from Fig. 5.3 (a and b) are shown to indicate the trends of natural garnets. 
The CCGE line of Kopylova et al. (2000) corresponds to the clinopyroxene reaction of simulation [2] 
(thick light-grey solid arrow). Simulation [1] representing the ortho1iyroxene reaction is shown as 
thick grey dashed arrow. Simulation [3] representing the 1:1 clinopyroxene:orthopyroxene reaction is 
shown as a medium grey, square, doffed arrow. 

6.4.4 FeO-MgO-A1203-Cr203 
In order to see the full range of spinel compositions, the Fe:Mg ratio has to be taken 

into account. Fig. 6.10 shows that the harzburgitic garnets have tie lines to high-Mg 

spinels whereas the lherzolitic garnets and clinopyroxenes may be at similar Cr:Al 

ratios but are at higher Fe:Mg. 

Chapter 6 - Phase Relations 	 176 



Figure 6.10: FMACr Tetrahedron with the square spinel plane and the rectangular garnet plane 
outlined in thin lines. Black tie lines are harzburgitic samples with garnet-spinel pairs. Grey lines are 
lherzolitic samples with garnet-spinel-clinopyroxene. Clinopyroxene compositions plot closest to the 
MgO apex. 

Cr203 

Figure 6.11: FMCr triangular plot of selected lherzolitic (grey tie lines) and harzburgitic (black tie 
lines) samples-All points above the knorringite-Fe-knorringite join are Cr-spinels. The garnets plot in 
two clusters with the harzburgitic cluster almost overlapping with the clinopyroxenes which plot 
closest to the MgO apex. 

Fig. 6.11 again shows that the harzburgitic spinels have higher MgO contents and 

lower Cr203  contents than lherzolitic spinels. Harzburgitic garnets are less distinct 
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from lherzolitic ones but they are higher in MgO and on average slightly lower in 

Cr203, On this graph clinopyroxenes plot very close to garnets so it is most useful for 

distinguishing chromites. Orthopyroxene plots at lowest Cr2O3 value. Note that 

spinels and gamets do not plot on their lines (horizontal tie-lines, Fig. 6.11) because 

A1203 is not considered. 

6.4.5 Exsolutioh and phase relations 
The modal proportions of minerals were measured using a 100 p.m grid for the 

monogranular garnet sample B55, which contains well developed exsolved pyroxene 

and spinel. The modal proportion of minerals is as follows: garnet 72 %, 

clinopyroxene 18 %, Cr-spinel 9 % and serpentine 1 %. The serpentine was treated 

as orthopyroxene since it has relict cleavage. These modes were multiplied by the 

major element analyses of the constituent minerals to achieve a precise bulk rock 

composition using a typical harzburgitic orthopyroxene composition (see Table 6.3). 

S1 0 2 1102 A1203 CrOa FeO MnO MgO CaO N020 Total Mode 

39.599 0.041 18.941 6.408 9.412 0.628 19.505 6.059 0.027 100.64 72.16 

52.996 0.012 1.693 2.506 2.299 0.107 17.273 20.480 1.961 99.38 17.98 

0.066 0.498 7.825 60.337 20.877 0.426 10.010 0.016 0.013 100.20 8.63 

FBulk 

55.000 0.000 2.000 0.000 4.000 0.000 39.000 0.000 0.060 100.00 1.23 

 38.783 0.075 14.672 10.284 9.057 0.509 18.523 8.056 0.373 

Si Ti Al Cr 

100.36 

 Fet Mn Mg Ca Na 

2.905 0.004 1.295 0.609 

Total 

 0.567 0,026 2.069 0.647 0.027  

Table 6.3: mineral compositions in sample B55, with calculated bulk rock (calculated on a 12 oxygen 
basis) composition based on the mineral modes. 

The resultant composition is higher in Cr/(Cr+Al) and higher in CaI(Ca+Fe+Mg). 

The weight % oxide values appear to be consistent with a garnet formula in terms of 

cations calculated. Therefore the bulk rock composition was calculated as a garnet 

(Table 6.3 and Fig. 6.12). Both the overall trend from bulk rock composition to core 

to inclusion and the core to inclusion trend can be seen to match well in slope to 

simulation [3], which fits with the presence of orthopyroxene (above). Therefore 

sliding reactions explain the increase in modal spinel and two pyroxenes in the rocks 

and the exsolution texture noted in Chapter 3. This is a process expected to be 

operating in many samples but they show a range from partial to nearly complete 

annealing of the exsolution textures. 
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Figure 6.12: Ca/(Ca+Fe+Mg) vs. Cr/(Cr+A1) plot for B55 'bulk rock' (i.e. bulk sample) composition 
(BR). The garnet core and region adjacent to inclusion (inc.) are shown from the actual analyses on 
electron probe. Simulation [3] is the steeper reaction line and simulation [2] is the shallower reaction 
line. Several other garnet zonation trends are shown from Fig. 6.9 for comparison. 

6.5 Summary 

The system CMASCr yields a tetrahedron with apices Fe-Mg chromite, Fe-Mg 

spine], clinopyroxene and orthopyroxene that defines a garnet plane in its interior. In 

this plane harzburgitic garnets plot in a field that may be differentiated from 

lherzolitic garnets by a dividing line. This line is essentially a clinopyroxene-in!out 

line that can be indicated on a garnet Cr-Ca plot. 

The system FMACr yields a tetrahedron with apices FeO, MgO, Cr 203  and A1203  

which defines the spinel and garnet planes. Harzburgitic garnets and spinels are 

differentiated from lherzolitic garnets and spinels by having consistently higher MgO 

concentrations and on average lower Cr203 concentrations. 
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In Cr-spinel-gamet lherzolites, higher Cr and Ca garnets are in equilibrium with 

higher-Cr spinels and higher Cr clinopyroxenes. These gamets show compositions 

plotting along a general 'clinopyroxene-chromite-garnet equilibrium' (CCGE) first 

noted by Kopylova et al. (2000). Some Cr-spinel-garnet lherzolites show a steeper 

trend on a Cr-Ca diagram and these samples plot close to the lherzolite line of 

Gurney (1984). The zonation profiles in garnets are parallel to these trends because 

they reflect progress along the sliding reaction: garnet + forsterite 4 garnet + spinel 

+ 2 clinopyroxene (simulation [2]) and garnet + forsterite 4 garnet + spinel + 

orthopyroxene + clinopyroxene (simulation [3]) towards lower P and T. Garnet 

zonation trends in Newlands and Bobbejaan samples are found parallel to the CCGE 

trend but displaced to both lower and higher Ca e.g. NEW065 and NEW069 in Fig. 

5.3 a. 

In chromite-garnet harzburgites higher Cr and Ca garnets are in equilibrium with 

higher-Cr spinels. The general trend of these garnet compositions plots along a 

'harzburgitic trend' of bulk rock compositions - a band of compositions of shallow 

slope in the harzburgite field of a Cr-Ca diagram is thought to represent a line of 

equal pressure. This also conforms to the line of equal pressure represented by the 

diamond-graphite constraint of Grutter et al. (2004). 

The garnet zonation trends in the harzburgite field are much less Ca-dependent than 

for clinopyroxene-bearing samples and reflect the progress of the sliding reaction 

garnet + forsterite 4 garnet + spinel + 2 orthopyroxene (simulation [1]) towards 

lower P and T. Samples with higher Ca bulk compositions have garnets that are 

displaced to higher Ca and have approximately similar although a little shallower 

zonation trends as would be explained by including small proportions of a 

clinopyroxene component in the reaction above (e.g. simulation [3]). 

Therefore from the simulations in both harzburgitic and lherzolitic gamets the spinel 

controls the Cr/(Cr+Al) ratio and the pyroxenes control the Ca/(Ca+Fe+Mg) ratio. 

Since higher Cr spinels coexist with higher Cr higher Ca garnets, the larger change in 
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Cr for the lherzolitic trends is explained by the resultant relative change in 

Cr/(Cr+Al) in the reactions. The way that garnet zonation trends change in trend 

from steep to those with a positive slope on a Cr/(Cr+Al) vs. Ca/(Ca+Fe+Mg) cation 

plot is strongly dependent on bulk pyroxene CaJ(Ca+Fe+Mg). 

The sliding reactions rely on an increase in modal spinel and pyroxene in the rocks. 

This would conform to the presence of exsolution textures noted in several samples 

in Chapter 3 (especially evident in sample B55). 
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7. Geothermo barometry 

7.1 Objectives 

Pressure and temperature (P-T) estimates in Newlands and Bobbejaan samples will 

be calculated using appropriate existing geothermometer and geobarometer 

formulations from the literature for mineral compositions determined by electron 

microprobe. (Chapter 5). The relative merits of particular thermometers and 

barometers will be assessed in the context of Newlands and Bobbejaan samples. Any 

consistent P or I bias for these calibrations will be highlighted. The conformism of 

the samples to model geotherms will also be addressed. A new method for measuring 

Ni-in-garnet has been developed (see Appendix I, McDade et al., unpubi.) and is 

implemented on garnets from 16 samples in order to derive.Ni-in-garnet. 

thermometry estimates. 

The objective of the last part of this chapter is to establish P-T behaviour of the 

samples and to identify mineral compositional parameters that conform to P-T 

trends. The .gamet-spinel-2pyroxene-olivine equilibria and the garnet-spinel-

clinopyroxene-olivine equilibria (CCGE of Kopylova et al., 2000) from Chapter 6 

will be related to coexisting mineral compositional parameters and their independent 

P-T estimates. The garnet-spinel-orthopyroxene-olivine equilibria identified in 

Chapter 6 will be related to harzburgitic P-T estimates and again related to coexisting 

mineral compositional parameters. Cr/(Cr+Al) values for coexisting garnet, spinel 

(and clinopyroxene where present) will be examined and compared to existing 

experimental data. 

The P-T estimates will be plotted and compared to the constraints shown in Figure 

7.1. The diamond-bearing sample (B0B404) identified in Chapter 3 will provide a 

clear marker for the diamond stability field. The level of Cr saturation of the minerals 

in the samples can be compared to the progressive effect of Cr on the spine]-gamet 

transition, which can dramatically increase the stability of spinel from around 10 kb 

to a maximum of about 70 kb according to the MCrS stability line of Klemme (2004) 
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for a normal cratonic geotherm. Different sets of Cr/(Cr+Al) isopleths have been 

experimentally determined for garnet and spinel in MASCr by Malinovsky and 

Doroshev (1977), and FMASCr by Girnis and Brey (1999). Therefore one of the 

objectives is to compare the P-T estimates for the samples with Cr/(Cr+Al) isopleths. 
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Figure 7.1: P-T diagram with the graphite-diamond line of Kennedy and Kennedy (1976), the steady 
state geotherm for old, cold lithosphere of McKenzie etal. (2005), the spinel-garnet transition for the 
CMAS system of O'Neill (198 1) and the spinel-gamet transition for MCrS of Klemme (2004). spl 
spinel, opx = orthopyroxene, grt = garnet, ol = olivine, mcr = magnesiochromite, en = enstatite, kn = 
knorringite, to = forsterite. Grey box indicates the P-T region shown in Fig. 7.6. 

Finally, the Perplex thermodynamic modelling program (Connolly and Petrini, 2002) 

will be used to model a range of Newlands and Bobbejaan sample compositions. 

These models will then be used to calculate changes in mineral assemblage, mode 

and composition with variations in P and T. An appraisal of its success will be made. 

7.2 Application 

Due to the serpentinisation of olivine and orthopyroxene in Newlands and Bobbejaan 

samples, it is only garnet, Cr-spinel and clinopyroxene that are available for 

Chapter 7 - Geothermobarometry 	 184 



geothermobarometry. This limits the barometers and thermometers to those shown in 

Table 7.1. Gamet-spinel equilibria are not shown in this table because the authors 

chose not to formulate an algorithm for treating the equilibria as a 

geothermobarometer, rather than as a presentation of the particular isopleths 

generated for their specific experimental systems. 

Shorthand Distribution of 
Element/molecule in 
mineral(s)  

Reference . 1 a Error 

TE079 DEe/M g  Cpx-Grt Ellis and Green (1979) 50°C 

TKR88 DEe/Mg Cpx-Grt Krogh (1988) 50°C 

TA194 I DEe/Mg Cpx-Grt I Al (1994) 50 °C 

TcA94 DNI/MU 01Grt* Canil (1994) 50°C 

TcA99 DNI/Mg 01_Grt* Canil (1999) 50°C 

T0R89 [Ni] 01Grt* or 
Gri (01)  

Griffin et al. (1989) 50°C 

TRY96 [Ni] Grt (01) Ryan et al. (1996) 50 °C 

TNTUU aEfl Cpx (Grt) Nimis and Taylor (2000) 50 °C 

NTOU acacrT, Cpx (Gd) Nimis and Taylor (2000) 2.3 Bar 

P39  [Cr,Ca] Grt (Chr) Grutter et al. (2006) 2 kbar 

Table 7.1: Summary of existing geothermometers, geobarometers suitable for use with Newlands and 
Bobbejaan samples. The single grain techniques at the bottom of the table assume equilibrium with a 
mineral indicated in brackets. 1 a errors are the errors quoted by the authors for replicating 
experimental/natural calibration data. The propagation of analytical errors from electron and ion 
microprobe techniques used in this project yield additional I a errors of < 10°C and < I kbar. 
'*' indicates the thermometers where olivine Ni concentrations will have to be assumed in for the case 
of Newlands and Bobbejaan samples. 	 - 

Since garnets are often zoned towards coexisting minerals in the matrix and/or 

inclusions (see Chapter 5), care was taken to use analyses close to mineral contacts 

for use in geothermobarometric formulations. These locations are most likely to yield 

equilibrium compositions between minerals. Unlike garnet, other minerals as 

inclusions in garnet are typically unzoned. Only NEW303 has clinopyroxene both as 

an inclusion in garnet and present in the matrix. No samples have both matrix and 

inclusion spinel. Garnet is never included in other minerals. 

In harzburgites only single-garnet techniques are available. The Cr/Ca barometer of 

Grutter et al. (2006) was applied to all harzburgitic samples and the Ni-in-garnet 

thermometer of Ryan et al. (1996) applied to those samples analysed for Ni by SIMS. 
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Other Ni-in garnet thermometer formulations require knowledge of Ni and Mg in 

olivine (Table 7.1) which is not known in Newlands and Bobbejaan samples, 

therefore application of these uses assumed concentrations in olivine of Ni (3000 

ppm) and MgO (40 wt. %) following the suggestion of Griffin et al. (1989). TR96 

should be regarded as the most accurately constrained. 

In lherzolitic samples, temperatures were calculated based on garnet-clinopyroxene 

Fe-Mg exchange thermometers. Further Ts and, additionally, Ps for these samples 

were estimated using the single clinopyroxene geothermobarometer formulation of 

Nimis and Taylor (2000). The single-garnet techniques of the Ni-in garnet 

thermometer of Ryan et al. (1996) and the Cr/Ca barometer of were applied to those 

analysed for Ni by SIMS and to all samples analysed by electron microprobe 

respectively. 

7.3 Results 

7.3.1 Analysis of the different P-T formulations 
Table 7.2 shows the range in P-T estimates and Fig. 7.2 shows the estimates in -T 
space for the different existing thermometers and barometers. Table 11.4 in Appendix 

II has the coexisting mineral compositions for all samples analysed by electron 

microprobe. 

Sample IEGIO TK88 TAI94 PNTOO TNTOO TG89 1C94 TR96 Tcgg P38 

NEW02I 1036 1033 937 36 859  26 

NEW056 1007 966 914 38 925  27 

NEW007  938 985 948 970 27 

NEW070 1353 1379 1398 40 1210  28 

NEW071 1010 960 949 50 1220  28 

NEW063 1149 1136 1139 50 1150 1091 1067 1105 1064 28 

NEWO65 1016 1007 931 40 1000 29 

B0B403 973 896 881 45 1120  30 

B55 990 932 927 48 1080 906 966  30 

NEW4O7  883 953 !4890934  30 

B48 835 924 30 

NEW3O3 
cores 

1013 931 909 40 1050 30 
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Sample TEG79 Tic88 TAI94 PNTOO TNTOO Tcas Tc94 TR96 Tc9q P38 

NEW303 
rims 

984 896 864 38 1025 30 

NEW303 
internal 

1006 924 890 37 1010 30 

NEW078 1046 995 979 38 1250  30 

806402 986 931 929 50 1160  31 

NEW011 1139 1117 1102 42 920  31 

606301 961 912 888 45 960  31 

B44 927 842 803 40 965  32 

NEW406 1016 947 	1 920 40 	1 1050 895 960 903 941 32 

NEW1I6 997 942 906 43 1035  32 

606401 986 939 926 48 1110 804 904 809 879 33 

NEW079 1097 1060 1099 52 1130  34 

NEW0I8 1135 1128 1122 50 1150  35 

806113  859 939 866 918 37 

NEW013 1115 1124 1071 45 1150  37 

NEW051 1049 1020 1004 47 1040  37 

NEW068  940 986 949 971 38 

NEW009 

_ 
1112 1115 1090 48 1040  _______ _______ 38 

NEW114 1234 1276 1261 45 1255 1073 1 	1057 1086 1053 40 

NEW052 1128 1142 1166 60 1220  41 

NEWSP 1118 1128 1082 44 1130 979 1008 990 996 41 

NEW101  990 1014 1001 1003 42 

NEW029 1140 1123 1107 48 1210  43 

NEW107 1104 1073 1063 49 1170  44 

NEW401 1358 1375 1371 34 1270 45 

NEW032  1006 1022 1017 1013 46 

NEW074  994 1016 1005 1005 47 

B47  996 1017 1007 1007 50 

B0B404  1040 1041 1053 1034 53 

Table 7.2: P-T estimates for all samples using appropriate geothermometers and geobarometers. 
Samples are arranged with increasing P 33  pressures (kb) (i.e. essentially increasing Cr/(Cr+Al) in 
garnet. 
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Figure 7.2: (a) T1194 "S T0G79. (b) TAI94 vs. TK88. (c) T94 vs. TKSS. (d) PNTOO VS. P38 . (e) TRY96 vs. Tp194. 

(1) TRY96 vs. TNTOO. Dashed lines are 1:1 lines. All data calculated from analysis of garnet-
clinopyroxene pairs from Newlands (filled symbols) and Bobbejaan (open circular symbols) samples. 
Boxes show the combined effects of 1 or errors from the thermometer/barometer formulation and 
propagated analytical errors. 
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Relative to TA194, the thermometers TE079, T88 and TNTOO consistently overestimate 

temperatures (Fig. 7.2a, b and c, respectively). TE079 estimates are higher particularly 

at lower temperatures but in general the differences between T188, TA194 and TEG79 

are within error. TA194 vs. TNTOO (Fig. 7.2c) produces a larger scatter due to the latter's 

single grain technique having less compositional constraints. P38 consistently 

underestimates pressures relative to PNTOO  (Fig. 7.2d) even though the majority of the 

samples are known to be Cr-saturated. This is because the formulation for P38 

suggests that the pressures it generates are a minimum P estimate (Grutter et al., 

2006). The Ni-in-garnet, single garnet thermometer TRy96 tends to be higher but 

within error of TA194 and about 100°C low compared to TNTOO (Fig. 7.2e and f, 

respectively). 
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Figure 7.3: P-T estimates for Newlands (small filled circle symbols) and Bobbejaan (large open 
circles) samples using (a) TNTOO and NT00  for lherzolitic samples using single clinopyroxene 
compositions. (b) P-T estimates for harzburgites and lherzolites using single garnet techniques of 
TRY96 and P 38 . Errors in the formulations are shown in Table 7.1. Propagated analytical errors are 
contained within the size of the symbols i.e. < 10°C and C 1 kb. The combined la error is shown as a 
box for the particular formulations. The steady state geotherm of McKenzie et al. (2005) is shown as 
the thin long dashed line and the conductive geotherm for a heat flow of 40mW/m2  is shown from 
Pollack and Chapman (1977) as the thin dashed line. 
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• Geothermometer/barometer Estimates Range (no. 
of samples) 

Ellis and Green (1979) 927-1373°C (30) 

Krogh (1988) 842-1379°C (30) 

Ai (1994). 803-1400°C (30) 

Canil (1994) 
Canil (1999) 

904-1067 °C (16) 
879-1064°C (16) 

Griffin et al. (1989) 
Ryan et al. (1996) 

804-1091°C (16) 
809-1064°C (16) 

Nimis and Taylor (2000) 859-1270°C (30) 

Nimis and Taylor (2000) 34-60 kb (30) 

Grutter et al. (2006) 26-53 kb (72) 

Table 7.3: Range in pressure and temperature estimates for Newlands and Bobbejaan samples. 

Newlands and Bobbejaan samples plot close to the continental conductive-

convective geotherm of McKenzie et al. (2005) for old continental lithosphere and 

close to a 40 MW/M2 conductive geotherm of Pollack and Chapman (1977). The 

conductive-convective geotherm is favoured relative to the conductive geotherm, 

because it takes into account the effects of convection below the lithosphere 

(McKenzie, 1989) and also the influence of temperature upon conduction. Fig. 7.3a 

and b show that the P-T estimates produce a relatively cool array when compared to 

the conductive-convective geotherm, but this is at slightly higher temperatures than 

the data from Menzies (2001) who reports Newlands xenoliths conforming to a 38 

MW/M2 conductive geotherm. 

The majority of samples correspond to the medium-T xenoliths with few falling 

below 900°C or above 1100°C. The few high-T lherzolites that are present do not 

have a correspondingly high pressure and also do not have a deformed texture as is 

commonly observed in other xenolith suites from kimberlite (Harte, 1983). 

A few high temperature estimates are generated from particular samples. For 

example, NEW  14, NEWSP, NEW070 and NEW401 all produce T estimates> 

1100°C using most grt-cpx and single clinopS'roxene techniques. The TNI techniques 
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do not yield such high temperatures (they are closer to 1000°C) with NEW 1 14 being 

close to 1100°C, but still below that of the grt-cpx Fe-Mg exchange thermometers. 

Sample NEW303 has both matrix and inclusion clinopyroxene present and shows 

that a core garnet and core clinopyroxene yield a higher P and T estimate compared 

to the rims. The internal re-equilibration P and T is lower according to PNTOO  and 

TN1-oo but the temperature is intermediate according to the clinopyroxene-garnet Fe-

Mg exchange thermometers. Analyses in other samples from the cores of garnets 

(instead of the contact with their particular inclusion) and using the analyses of 

inclusion clinopyroxenes in the same samples yield Fe-Mg gamet-clinopyroxene 

temperature estimates consistently a little higher (1-2°C) but within error of those 

calculated from rim analyses. These estimates are not reliable since the garnet core is 

not thought to be in equilibrium with coexisting inclusion clinopyroxenes. This is 

because the gamet is commonly zoned towards coexisting minerals in the way 

described in Chapter 5. However the higher-T at the core is thought to indicate the 

direction of the change to higher P-T. 

Fig. 7.4a and d show that Ca content of clinopyroxenes is negatively correlated to T, 

whereas for garnet it appears positively correlated when using TA194, but has a highly 

scattered relationship with TNTOO. The higher Ti garnets plot at CaI(Ca+Fe+Mg) > 0.2 

and form the higher T samples in Fig. 7.4a. All phases show a positive correlation 

between T and Cr/(Cr+Al) (Fig. 7.4b), especially when disregarding the minerals 

from samples at anomalously high temperatures (> 1300°C for TA194 and> 1120 °C 

for TNTOO). Fig. 7.4c and f show that it is only clinopyroxene that has a negative 

correlation between T and MgI(Mg+Fe), whereas garnet and spinel do not show any 

clear relationship. The high T samples (above the lines drawn in Fig. 7.4) tend to 

have garnets, clinopyroxenes and spinels higher in Ti and, additionally, 

clinopyroxenes and spinels higher in Mn. 
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Figure 7.4: TA14 (a-c), TNTOO (d-f) and PNT11  (g-i) estimates for lherzolitic samples with the constituent 
mineral compositions plotted. Garnets (diamond symbols), spinels (square symbols) and 
clinopyroxenes (triangle symbols) are compared to cation ratios Ca/(Ca+Fe+Mg) (a, d, g), Cr/(Cr+Al) 
(b, e, h) and Mg/(Mg+Fe) (c, f, i). Temperatures above which there is a high scatter in data are shown 
with a horizontal line. In each diagram the core (solid circle symbols), rim (open circle symbols) and 
inclusion contacts (open square symbols) are shown for the garnet (in black) and clinopyroxene (in 
grey) from sample NEW303 which was able to generate these three P-T estimates in a single sample. 

Two trends are observable when comparing cation ratios to pressure: Firstly a 

negative clinopyroxen vs. Ca'(Ca+Fe+Mg) trend (Fig. 7.4g); and secondly, positive 

trends for all minerals with Cr/(Cr+Al) (Fig. 7.4h). The MgI(Mg-l-Fe) cation ratio in 

minerals is not related to PNTOQ  (Fig. 7.4i). This would be expected since Fe-Mg 

exchange is generally known to have a low AV, and hence much more T-dependent 

than P-dependent. 
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The compositions of the clinopyroxenes and garnets close to the core, rim and 

inclusion do not diverge from the trends in Fig. 7.4a-f. Therefore it is not expected 

that significant metasomatism is responsible for the core-rim external zonation in this 

sample. Therefore it is likely to be P-T effects that have produced the differences in 

composition within garnets and clinopyroxenes in the sample. Using the barometer 

and thermometer formulations of Nimis and Taylor (2000), consistent down P-T 

modification from core to rim to internal inclusion re-equilibration is shown. In terms 

of temperature the only difference with garnet-clinopyroxene Fe-Mg thermometry is 

that the rim compositions are calculated at a higher temperature than the core. 

7.3.3 Garnet-spinel compositions in !herzolites and harzburgites and their 
relation to P-T 

Experimental studies in MASCr and CMASCr show that coexisting garnet and spinel 

compositions both increase in Cr/(Cr+Al) as pressure increases (Fig. 7.5). The effect 

of Ca is to increase garnet and spinel Cr concentrations for a given pressure. 
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Figure 7.5: Pressure-composition section at T = 1200°C reproduced from Grutter etal. (2006). 
Summarising experimental studies of, Webb and Wood (1986) (lherzolitic data modified at low 
Cr/(Cr+Al) to account for experiments by Nickel (1986), Iriftmne (1985) (harzburgitic data) and 
Gasparik (2000) (harzburgitic and !herzolitic Cr-free datapoints, conforming to the original study of 
O'Neill, 1981). 

Malinovsky and Doroshev (1977) use experimental constraints to show that, for 

peridotitic garnet compositions, the pyrope-knorringite composition is strongly 
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pressure dependent (an increase of —10 kb for 10% Cr/(Cr+A1) in MASCr system. 

These authors also note a slight effect of Ca on pressure which is utilised by GrUtter 

et al. (2006) to formulate the 'P38' single-garnet Cr/Ca barometer. Girnis and Brey 

(1999) provide isopleths for the FMASCr system. Fig. 7.6 shows the garnet and 

spinel isopleths Girnis and Brey (1999) and the range in P-T estimates gained in 

Newlands and Bobbejaan samples. The isopleths of Girnis and Brëy (1999) are 

preferred because they 'anticipate' the Cr/(Cr+Al) = 1 line for the spinel-garnet 

transition of Klemme (2004). Note the highly pressure-sensitive nature of the garnet 

isopleths especially along the model geotherm line. 
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Figure 7.6: Isopleths of Crf(Cr+Al) ratios in garnet (circles, white numbering, grey dashed lines) and 
spinel (squares, black numbering, thin grey lines), from Girnis and Brey (1999). Shaded grey area 
denotes the range in P-T estimates for Newlands and Bobbejaan samples essentially defined by 
lherzolitic samples using TNTOO-PN-roo. Other P-T lines as for Fig. 7.1. 

The isopleths for both garnet and spinel increase in Cr/(Cr+Al) with both P and T 

(Fig. 7.6). Fig. 7.7 shows that there is a general trend for the Newlands and 

Bobbejaan spinel-gamet pairs to behave in this way since their independently 
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estimated Ps and Ts increase in Cr/(Cr+A1). The exact Cr/(Cr+AI) values for garnet 

and spinel are, in genera!, too high when compared with the isop!eths, but this is 

expected since the Girnis and Brey (1999) data is for the Ca-free systems. The high-

Ca samples shown have especially elevated garnet and spine! Cr/(Cr+A!) for their 

particular P-T estimates (see Fig. 7.7). 
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Figure 7.7: PNTOO-T NTOO estimates for a selection of Iherzolitic samples (grey boxes) and TM estimates 

for one diamond-bearing and one high pressure (P 38) harzburgitic sample (boxes outlined in black) 
that have been placed into the diamond stability field. Coexisting spinel (black) and garnet (white) 
Cr/(Cr+Al) values are shown in these boxes with 'Ca' denoting especially Ca-rich garnets with CaO> 
7 wt. %. Grey rectangles are proportioned according to la errors quoted for the geothermometer or 
geobarometer used. The isopleths of Girnis and Brey (1999) are shown for garnet as grey circles 
(white numbering) and for spinels as grey squares (black numbering). The McKenzie et al. (2005) 
continental geotherm is the bold dashed line. 

Spinel in most samples has Cr/(Cr+A!) approximately 5 % units higher than the 

Girnis and Brey (1999) isop!eths. Garnet is generally 10 %higher. NEWI14 (the 

most extreme Cr and Ca enriched garnet of the samples) has its spine! Cr/(Cr+A!) 10 

% units high and its garnet 20 % high relative to the isop!eths shown in Fig. 7.6. The 

!ow pressure samples which have lower Cr/(Cr+Al) for both garnet and spinel, 

adhere to the isopleths most closely. The general trend in Table 7.2 indicates that as 

one increases Cr203 in garnet (i.e. P38 value) so the pressure and temperature increase 

in other barometers and thermometers. 
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Figure 78: Spinel vs. garnet Cr/(Cr+Al) plot with isotherms (dashed lines at 100°C intervals, labelled 
every 200°C) and isobars (solid lines labelled at every 5 kbar interval) from Girnis and Brey (1999). 
Coexisting garnets and spinels from Newlands and Bobbejaan samples are plotted with those having 
high-Ti spinels shown as open squares (Ti> I wt. %). 1 a analytical errors for Cr/(Cr+Al) are within 
the size of the symbols shown. 'X's represent the McKenzie et al. (2005) geotherth according to the 
isobars and isotherms shown. 

Fig. 7.8 shows Cr/(Cr+A1) for coexisting garnet and spinel in relation to isobars and 

isotherms derived from Girnis and Brey (1999). Discounting the high-Ti spinel 

bearing samples (open square symbols in Fig. 7.8) the garnet-spinel pairs plot in a 

linear trend from Cr/(Cr+A!) values of (0.15grt, 0.8spl) to (0.4grt, 0.9sp!). Data from 

Menzies (2001) from New!ands overlaps with data from this study. The spread of the 

increasing CrI(Cr+A!) values with P and T in Fig. 7.8 correspond well with that 

expected along a geotherm ('X's in Fig. 7.8). 
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samples. Bold black dashed line is diamond-graphite line according to the isotherms and isobars. Bold 
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independent P-T estimates for the Newlands and l3obbejaan samples from earlier in this chapter. 
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Fig. 7.9 shows the data from Fig. 7.8 with the diamond-graphite line according to the 

Girnis and Brey (1999) isobars and isotherms. Using P-T estimates from the 

Newlands and Bobbejaan samples a diamond graphite line is that is at elevated 

garnet and spinel Cr/(Cr+A1) based on independent P-T estimates as shown. The 

diamond bearing sample B0B404 is the sample that plots the furthest across (on the 

high-P side) the diamond graphite lines shown. 

The distribution of Cr between clinopyroxene and coexisting garnet and spinel is 

illustrated in Fig. 7.10(a and b respectively). Both garnet vs. clinopyroxene and 

spinel vs. clinopyroxene Cr/(Cr+Al) form a positive slope. Therefore clinopyroxene-

garnet and clinopyroxene-spinel Cr partitioning appears to be pressure and 

temperature dependent in a similar way to garnet-spinel. Samples with high-Ti spinel 

overlap with low Ti spinel samples but they tend to make up the majority of the 
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points that plot away from the general trend. Other outliers (i.e. black filled squares 

away from the general trends in Fig. 7.10) tend to have the highest Ti and Mn 

concentration in their clinopyroxene. The high Ti in these clinopyroxenes are likely 

to explain their departure (vertically on the graphs in Fig. 7.10) from the Cr-, Al-

based trends.. 
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Figure 7.10: Cr/(Cr+Al) ratios for coexisting cpx-grt (a) and cpx-spl (b). Open square symbols are for 
samples with a coexisting high-Ti spinel. 

7.3.4 Ti in coexisting phases and its relation to P-T 
Figures 7.9 and 7.10 indicate that the presence of Ti in spinel at> 1 wt. % tends to 

draw samples away from mineral-mineral Cr/(Cr+Al) trends. Coexisting garnet-

spinel, gamet-clinopyroxene and clinopyroxene-spinel are positively correlated (Fig. 

7.1la-c) with garnet-clinopyroxene having the most scatter. Fig. 7.1 id shows that the 

Ti content of each mineral is positively correlated with TNi. The diamondiferous 

sample BOB404 lies far away from this trend in terms of its low spinel and garnet Ti 
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concentration. One mechanism for generating a range of Ti concentrations is the 

introduction of Ti-rich metasomatic fluids which are expected from studies such as 

Griffin etal. (1999b). This implies that the minerals in some samples have not 

equilibrated with a metasomatic fluid. Sc, Y and Zr behave in a similar way to Ti 

except they partition into garnet> clinopyroxene> spinel and have successively 

weaker correlation with TN. (Data can be found in supplementary CD, Appendix 

VII). 
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An alternative explanation for the increasing Ti with TNI is that, according to the 

sliding reaction simulation [2], in Chapter 6, one would expect more dissolved spinel 

within the garnet at high Cr/(Cr+Al) and Caj'(Ca+Mg+Fe) (i.e. higher P and T), 

hence higher Ti in garnet. Fig. 5.4a shows that the high-Cr, high-Ca lherzolitic 

samples (e.g. NEW1 14, NEWSP) have the highest Ti concentrations. This 

explanation relies on there being high Ti concentrations in spinel, and where there is 

not then a low Ti garnet and coexisting spinel would occur like that described for 

B0B404. 

7.4 'Perplex' Computations 

'Perplex' is a collection of Fortran programs (http://www.perp!ex.ethz.ch!) that 

calculates petrological phase equilibria (Connolly, 1990; Connolly and Petrini, 

2002). The latest database includes the thermodynamic data of Holland and Powell 

(1998) and Cr-end member spinels and garnets (e.g. magnesiochromite from 

Klemme, 2004). This allows Cr-rich peridotitic bulk rock compositions like those of 

the Newlands and Bobbejaan samples in this study to be modeled thermodynamically 

in systems with 3-5 phases and 6-7 components for the first time (Klemme pers. 

comm.). 

B0B402 and B47 were selected for preliminary analysis with the Perplex program in 

order to predict how bulk rock compositions, modal mineralogy and mineral 

chemistry are expected to vary with changes in P and T. In order to estimate their 

bulk rock compositions accurately, the modes were multiplied by weight % values 

for minerals. These two samples are large enough so that modes are more accurately 

known compared to many Newlands and Bobbejaan samples. 

The system CFMASCrNa was used with Fe-chromite as an excluded phase. A phase 

diagram was generated for each sample and then down P and down T transects were 

made examining changes in garnet and spinel Cr 203 concentrations, garnet CaO 

compositions and the modal abundance of olivine, orthopyroxene, clinopyroxene, 

garnet and spinel. P and T were input initially according to the P-T estimate of the 
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particular sample (see earlier). The resultant assemblage, mineral modes and mineral 

compositions were calculated and compared to the modes and compositions of the 

natural data. B0B402 was modeled relatively successfully with Cr203 wt. % a little 

low in garnet and a little high in spine]. Other estimates were ± 1 wt. % and the 

modes were within 2 % of those input. Contour plots were made to check for the 

calculated variation in modal abundances and mineral compositions with pressure 

(20-60 kb) and temperature (1073-1673 K). 

For the bulk composition of B0B402 the following features were noted: 

The phase diagram (Fig. 7.12a) shows a change in assemblage from the 4-

phase grt + ol + spl + cpx at high pressures and temperatures (> 1200°C and 

45 kb) to the 5-phase grt + ol + spi + cpx + opx. An olivine-out line occurs at 

very low pressures (<20 kb). The garnet out line is at very low P and high T. 

The P, T, assemblage, modal abundance and mineral composition of minerals 

is approximated to ± 5 % of the natural data when the P-T estimate for 

B0B402 was input (using TNTOO and PNTOQ). 

The measured garnet zonation trend in the sample is parallel to the trend 

calculated for the down P-T path through the 4-phase assemblage (high P 

region in Fig. 7.12a, see point 1). This is also parallel to the CCGE trend' and 

simulation [2] (Chapter 6). Fig. 7.13 shows how a purely isothermal 

decompression path produces a trend that is too steep, therefore a 

combination of decreasing P and T from about 1200°C; 40 kb to 900°C, 30 

kb is required. 

As one goes down P-T the modal abundance of spinel and the two pyroxenes 

go up at the expense of olivine and garnet (Fig. 7.14a). This is expected since 

Sample B55 has a calculated zonation trend parallel to the down P-T path through the 5-phase 
assemblage in (1) (e.g. B55). This is also parallel to the lherzolite line and simulation [3] (chapter 6). 
The strongly exsolved sample B55 is modeled particularly well (possibly due to accurate modes being 
known) and is located along the trend parallel to simulation [3] as shown in Fig. 6.12 (Chapter 6). Ps 
and Ts generated would suggest an isothermal decompression path from 30 to 27 kb or an isobaric 
cooling path from 1100 to 1000 °C. However, if the bulk rock composition is calculated as a single 
garnet crystal (i.e. the situation prior to exsolution, Fig. 6.12) then pressures> 50 kb and temperatures 
> 1200°C are derived. 
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with lower pressures the garnet-spinel transition reaction (i.e. reaction (3), 

Chapter 6) favours spinel and pyroxene rather than garnet and olivine. 

Cr isop!eths in spinel show a shallow but positive P-T slope (7.12c). 

Cr/(Cr+Al) compositions of spinel at higher pressure are therefore higher and 

this correlates to lower modal spinel as one moves further away from the Cr-

free spinel-garnet transition reaction. 

Garnet has increasing Cr concentrations at higher pressures and higher 

temperatures with a negative P-T slope (Fig. 7.12c). This corresponds with 

the increase in modal garnet (Fig. 7.14a). 

At high P and T Ca-in-garnet isopleths also have a negative P-T slope (Fig. 

7.12c). 

The harzburgitic B47 bulk composition produces the same kinds of features except 

with no clinopyroxene present (orthopyroxene is in its place, see Fig. 7.12b). 

Therefore the model successfully predicts the assemblage and it approximates modes 

to ± 5%. It is a Na-free, CFMASCr system since the model only allows for Na in 

clinopyroxene. The zonation trend in garnet down P and T is close to being 

coincident with the actual measured Cr and Ca compositions (Fig. 7.13) and is 

suggestive of 60-55 kb decompression or 1450 to 1400°C cooling. The trend is not 

exactly parallel possibly because of the effect of small quantities of Ca in 

orthopyroxene that are not taken into account in the model. Modes change in a 

similar fashion to B0B402 (Fig. 7.14b) with orthopyroxene having a higher rate of 

change since there is no clinopyroxene present ('2 orthopyroxene' in reaction (2a), 

Chapter 6). Garnet compositions are stationary at high P and T when in the spinel-

absent field as shown in Fig. 7.13d. 
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Overall the modelled zonation trends would suggest that the samples have undergone 

a pressure decrease of approximately 5 kb with a small (50°C drop) temperature 

component. Since high Cr and Ca garnets coexist with higher Cr spinels (see Chapter 

6), the lherzolitic samples have larger compositional variation per unit P and T. This 

is because higher Cr spinel is being formed in the high Cr, high Ca lherzolitic 

samples as one travels down P and T and so the garnet composition has to respond 

more dramatically to compensate for this. Perplex can be used to model a wide range 

of bulk rock compositions and can generate Cr and Ca isopleths for garnet spinel and 

clinopyroxenc in P-T space. 

7.5 Conclusions 

The important points that have emerged from geothermobarometric considerations 

are as follows: 

P-T estimates from garnet adjacent to its inclusions and the inclusions that are 

adjacent to the host garnet are expected to have close to equilibrium 

compositions. This is justified by the compositional plots in Chapter 6 where 

parallel tie lines between coexisting minerals are produced when plotting 

garnet compositions adjacent to, rather than away from, inclusions. Apart 

from a few high temperature samples, the P-T estimates themselves are 

suggestive of equilibrium since they form a relatively continuous spread of 

data (Fig. 7.3) 

Using garnet compositions away from inclusions (in the interior of the garnet) 

yields temperatures consistently 1-2°C higher than garnet adjacent to 

inclusions. The one sample with clinopyroxene both in the matrix and as an 

inclusion in garnet suggests that early (i.e. core) matrix P and T was higher 

than later (i.e. rim) matrix P and T The internal re-equilibration between 

garnet and clinopyroxene (as an inclusion in garnet) has a lower P-T than 

both of the matrix estimates according PNTOO and TNTOO and an intermediate 

temperature between the two matrix estimates according to garnet-

clinopyroxene Fe-Mg exchange thermometers. 
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P-T estimates for Newlands and Bobbejaan lherzolites range from 803-

1400°C, 30-60 kbar using the formulations of Nimis and Taylor (2000). The 

• - 	 estimates conform to a relatively 'cold' continental geotherm compared to 

McKenzie et al. (2005), and equivalent to a 40 mW/m 2  conductive geotherm 

of Pollack and Chapman (1977). However the estimates are higher T than 

those noted by Menzies (2001) for Newlands xenoliths. Bobbejaan samples 

on average yield slightly lower Ts. 

Temperature estimates using garnet-clinopyroxene Fe-Mg exchange 

thermometers produce lower T estimates than the Ca-Mg-Fe based pyroxene 

solvus thermometer used in TNTOO. This seems to be due to slower Ca 

diffusion in garnet and elinopyroxene (see Chapter 8). 

P38 single-garnet pressures are consistently low compared to PNTOO and 

Perplex models. Ni-in-garnet thermometry tends to underestimate 

temperatures relative to TNT®. Again this is thought to be because Ca 

diffusion in minerals is slower than, in this case, Ni-Mg exchange. 

Harzburgitic samples tend to yield TNiRY tethperatures that are narrower in 

range (841-1053°C) and cooler than the lherzolitic samples (859-1270°C). 

Unlike the major elements, Ni in garnets from Newlands and Bobbejaan 

samples is not zoned along the same core to inclusion directions that the 

major elements are. Since Ni is strongly temperature dependent this would 

indicate that the major element zonation trends are likely to be predominantly 

down P re-equilibration with inclusions. However the diffusion coefficient 

for Ni in garnet is not well known and may be sluggish compared to Ca-Mg, 

so this interpretation is uncertain. 

Coexisting garnets and spinels have higher Cr/(Cr+Al) at higher Ps and Ts. 

This spread of data appears to conform to a geotherm that intersects the 

graphite diamond line. A consequence of this is that lherzolitic garnet 

zonation trends are longer than those of harzburgitic garnets, since lherzolite 

garnet Cr I(Cr+AI) decreases more rapidly as it compensates for the 

generation of the higher Cr Cr-spinel. 
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The effect of increasing Ca in garnet is to increase Cr/(Cr+Al) for garnet and 

its coexisting spinel at a given P and T. 

Composition vs. P-T estimates in samples (and in Perplex models of samples) 

correlate with garnet-spinel Cr/(Cr+Al) trends expected from the 

experimental data of Girnis and Brey (1999) for the system FMASCr. 

However, consistent differences exist with actual garnet and spinel 

Cr/(Cr+Al) compositions being higher than those predicted for a given P and 

T. This is readily related to the absent Ca component in the Girnis and Brey 

(1999) experiments (Fig. 7.6). Therefore different isopleths are required for 

different bulk rock compositions. 

According to calculations of garnet compositions using the thermodynamic 

model 'Perplex', garnet zonation trends correspond to down P and T re-

equilibration. This correlates with increasing modal spinel and pyroxene and 

decreasing Cr/(Cr+Al) in spinel and conforms to reactions 2a and 3 and 

simulations [1-3] in Chapter 6. Isothermal decompression and isobaric 

cooling have similar (but not coincident) compositional trajectories in 

garnets. Internal and external zonation in sample B0B402 plots with a 

trajectory in between lTD and IBC trajectories indicative of a down-geotherm 

P-T path. 

Relatively successful equilibrium thermodynamic modelling using Perplex is 

also evidence for the internal garnet zonation trends being the result of an 

equilibration process of garnet with its inclusions. 

The main question emerging from this chapter is: What is the cause of the 

decompression and cooling documented? Isobaric cooling is difficult to envision for 

the lower mantle lithosphere. Several options may be considered: 

• Plate tectonics-driven lithospheric compression leading to uplift and erosion 

and removal of the uppermost lithosphere in a mountain building process. 

Initially, increasing pressure would be expected, but the samples do not 

preserve evidence for this. The unroofing and decompression could occur 

relatively quickly (millions of years timescale) with cooling onto a geotherm 
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ensuing at a slower rate. According to P-T estimates at least 15 km would 

have to be eroded. 

Lithospheric stretching: This process would cause initial isothermal 

decompression and subsequent cooling onto the adiabat. A beta-factor of 1.05 

would have to be applied as pure shear to the whole lithosphere however 

which is mechanically difficult to achieve without an element of simple 

shear. This model does not correspond to the Archaean crustal history 

envisioned for the Kaapvaal craton according to Dc Wit et al. (1992). This 

would also lead to kinks on the zonation trajectories as indicated by the 

different lTD and IBC trends shown on Fig. 7.13. 

. Convective mantle movement: this would require material being trapped in 

overturning mantle and subsequently being heated to temperatures >1400°C, 

before cooling along an adiabatic geotherm. 

• Partial eruption (not necessarily kimberlite related): This process would 

transport material upwards (decompression) and heat it up in a magmatic 

system. Then the frozen eruption would cool to a geotherm. This process is 

indicated on a small scale in polymict peridotites, but in these specimens is 

accompanied by much melt metasomatism (Morfi, 2001). 

Kimberlite eruption: This process would also be difficult to conceive 

applying to the samples in question because of the extent that crystal zonation 

is seen: Other xenolith suites from the Newlands and Bobbejaan kimberlites 

do not show evidence for such a marked P-I re-equilibration. 

These options are in order of speed with kimberlite being the fastest mechanism 

to transport material upwards. Therefore, one needs to document the time interval 

over which P-T change is occurring. This is dealt with in Chapter 8. 
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8. Garnet major element diffusion 

8.1 Introduction 

In this chapter an appraisal of the conformism of the Newlands and Bobbejaan 

garnets to diffusion-controlled processes shall be made. Diffusion principles in 

geological materials are taken from Dodson (1973), Lasaga (1978) and Philbert 

(1985) who also provide the shapes of experimentally generated diffusion curves 

which are used in this chapter to simulate diffusion profiles for the variety of 

zonation circumstances described in Chapter 5. 

In order to quantify the spatial data for chemical zonation seen in profiles and X-ray 

maps, the profiles must firstly be assessed as to their mode and scale of zonation. 

Therefore internal and external zonations are considered and, where identifiable, 

given a minimum length scale over which the zonation operates (few samples have a 

maximum length identifiable). The length scales are minima because diffusion may 

have removed evidence of original composition or the sample may not contain the 

entire distance of zonation present in the original rock (i.e. it may comprise a non-

complete garnet crystal disrupted by kimberlite magma or mining activity). 

Conversely, the electron microprobe traverses may be oblique to the direction of 

maximum zonation gradient both on the analysis surface and as the analysis surface 

intersects the sample in 3D, both of which produce exaggerated length scales. This 

last point is assumed to be effectively negligible because care was taken to make 

traverses parallel to maximum chemical concentration gradient. However, this data is 

treated with caution and used only to establish general trends and to make general 

predictions. 

Fig. 8.1 illustrates the different profiles obtained by electron microprobe traverses 

depending upon whether there is a maximum inner core composition present (inner 

flat) and/or a known location of matrix or inclusion (the interface for diffusion). 

When none of these are present there is gradual change across the whole profile and 

only a minimum zonation distance is established. Zonation towards inclusions 

Chapter 8 —Garnet Major Element Diffusion 	 211 



(internal) as well as zonation towards matrix (external) are considered so the 'inner 

flats' are termed internal inner flat and external inner flat in order to be explicit (see 

table 8.2). 

C 
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C 
a) 
C-) 
C 
0 
C-) 

C 
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(0 

0 

Distance (x)  

Gradual change 

Gradual change with 
known location of 
inclusion/matrix 

Inner flat 

Inner flat with 
known location of 
inclusion/matrix 

Rim growth with outer and 
inner flat garnet- matrix effect 
(note inter-diffusion inflection point) 

(1) Rim growth with rim-matrix diffusion 
and gra dual change 

(note inter-diffusion inflection point) 

Figure 8.1: 6 Profile types observed for garnet external zonations in Newlands and Bobbejaan 
samples. Measurements for the zonation length scales are shown by doubly terminating arrows where 
dashed lines represent minimum distances and thin solid lines are maximum distances. Therefore the 
presence of an inner flat and knowledge of the location of the matrix are required for the maximum 
distance to be measured. Profiles (a) to (d) are applicable to internal zonations where an inclusion 
replaces the matrix as the medium the garnet is diffusing with. Profiles (e) and (1) represent a garnet 
with different initial core and rim compositions, where (e) has a rim in equilibrium with the matrix 
and an original inner core composition preserved and (I) has been affected by core-rim inter-diffusion 
and also rim-matrix diffusion so that there is gradual change in composition over the entire length of 
the profile (see Fig. 8.2 (b) t2). 

Fig. 8.2 (a) shows the progressive evolution of ideal diffusion profile shapes for a 

case of external diffusion-controlled zonation occurring in a homogeneous garnet 

with a fixed matrix composition. The profile shape may also be applied to internal 

zonation situations where the matrix-garnet contact becomes an inclusion-garnet 

contact. Fig. 8.2 (b) shows the situation for an initially heterogeneous garnet. 
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Figure 8.2: Illustration of the hypothetical evolution of diffusion profiles for end-member 
circumstances present in Newlands and Bobbejaan garnet-rich samples. The y-axis represents 
concentration of a cation in the garnet matrix where the equilibrium concentration in garnet is lower 
than the initial concentration. All diagrams may be flipped vertically (when upright) to illustrate the 
situation for the cation(s) exchanging in the opposite sense to that shown (i.e. where garnet has an 
initial equilibrium composition with the matrix higher than its initial concentration). The x-axis is 
distance along a traverse. (a) Homogeneous spherical garnet crystal where to is time zero when the 
garnet is instantaneously grown and placed into a matrix of non-equilibrium composition. The matrix 
is hypothetically infinite and has a high flux of cations so that no transient profile is built up in the 
matrix and the matrix composition remains the same from t0-t5. The time at which the entire garnet 
attains equilibrium composition with the matrix is t5. (b) As for (a) but with a zoned spherical garnet 
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crystal with sharply defined initial rim compositions at higher concentrations than the core. Note the 
garnet inter-diffusion occurrence between core and rim regions contemporaneous with garnet-matrix 
diffusion, which produces an inflection point in the profile (t 1  and t2). The potential situations at t 45  
are essentially indistinguishable from t35 in (a) since there is no 'flat' present. 

&1.1 Diffusion coefficient values 
Experimental work by many authors (e.g. Elphick et al., 1985; Freer and Edwards, 

1999; Chakraborty and Rubie, 1996; Ganguly et al. 1998) have derived diffusion 

coefficient values for a relatively narrow compositional range of pyrope-almandine 

garnets at a variety of pressures and temperatures. Table 8.1 summarises this data for 

garnets highlighting the 5 orders of magnitude over which the diffusion coefficient is 

calculated in different studies. Fig. 8.3 shows the data on an Arrhenius plot 

indicating how the diffusion coefficient varies over a temperature range with 

experiments carried out at a variety of pressures. Freer and Edwards (1999) describe 

the variation of diffusion coefficient in garnet for Fe, Mg and Ca with pressure: a 20 

kb increase in pressure appears to be responsible for a drop by one order of 

magnitude of the diffusion coefficient. Therefore, given the wide range of measured 

diffusion coefficients, the differences in pressure between the experiments is not 

significant. Cygan and Lasaga (1985) provide a low temperature dataset for 

comparison. 

The almandine-pyropc-grossular composition is known to have a significant effect 

on the diffusion coefficient but there are no obvious general trends to highlight. The 

majority of experiments are carried out on close to Alm 50Pyp50 compositions except 

where stated in Table 8.1. 
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Temp. Pressure Elements Diffusion Ea (Q) Author 
coefficient  

950° C 40 kb Fe-Mg inter- 1 x 10 21rn2/s 334±40 Elphick et al. 
diffusion (extrapolated) kJ/mol (1985) 

1000°C 30 kb Fe, Ca self 1 x 10 17m2/s 270.4±1 Freer and Edwards 
9.3 (1999) 

dependence kJ/mol 
is: 20 kb = 1 
order mag D 
change  

1150°C 30 kb Fe-Mg inter- 1 x 10" 6m2/s 132±45 Freer (1979) 
diffusion  kJ/mol  

1100°C 8.5 OPa fit Mn self lx 10 7m2/s Chakraborty and 

1100°C Fe&I4g self lx 10"m 2/S 226±21 
Rubie (1996) 

kJ/mol  

1200°C 10 kb Fe, Mg, Ca, I x IO" to 254±282 Ganguly et al. 
Mn self -17 	2 lxlO 	rn/s 

72±42 (1998) 
kJ/mol  

1432°C 38 kb Mg self 4 x 10 6m2/s 254±282 Ganguly etal. 

Fe,Caself -17 	2 2x10 	rn/s 
72±42 (1998) 
kJ/mol  

1000°C 1 arm Mg self *5 x 10 20m2/s 155±10 Schwandt et al. 
kJ/mol (1995) 

850°C 2 k Mg self I x 10 8m2/s 239±16 Cygan and Lasaga 
kJ/mol (1985) 

1200°C 3.5'GPa Fe-Mg inter 1 x 10' 8m2/s 284 ±36 Chakraborty and 
Ganguly (1992) 

Table 8.!: Summary of diffusion coefficients from experimental studies for almandine-pyrope gamets 
in the literature (* measured in pyrope garnet). Errors are usually in the range of ¼ of an order of 
magnitude. Figure 8.3 illustrates this data in graphical form with an indication of values attained to 
higher and lower temperatures. Ea (sometimes referred to as 'Q' in the literature) is the activation 
energy and affects the slope of the line in Fig. 8.3. 
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Figure 8.3: Arrhenius plot of temperature vs. diffusion coefficient for various experimental results for 
pyrope-almandine gamets. Reference, cations and pressure are given in the legend. 

Carlson (2006) formulates a model for the variation in diffusion rates with pressure, 

temperature, composition and oxygen fligacity. All existing data (Table .  8.1) are 

normalised to 1000°C, 1 GPa, graphite-oxygen buffer and almandine composition. 

The dependence of the diffusion coefficient on composition is found to relate directly 

to garnet unit cell dimension and a correction can therefore be made for any 

composition. Thus Mg diffusion for 1000°C, 3 GPa, graphite-oxygen buffer and 

pyrope composition is approximately 10 8m2/s and for Ca is 10' 9m2/s. Since Ca is 

slowest of all the divalent cations, it is expected to be the rate limiting interdiffusing 

'ion so 10 19m2/s is the value that shall be used when modelling the profiles. 

Many authors report much slower trivalent cation diffusion (i.e. relating to Cr 3  and 

A13" in this study) but this has not been quantified because diffusion is too slow to 

conduct experiments over normal timeframes. The Mg-Ca interdiffusion is therefore 

-23 
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the only data comparable to experimental studies and if there is dependency of Cr-Al 

exchange on this then the timescales are expected to be much longer. 

8.2 Results 

8.2. 1 Length scales 
Table 8.2 shows the values for measurable garnet zonation length scales in a 

selection of Newlands and Bobbejaan samples for zoned elements (the complete 

table with all samples listed is in Appendix II). The measurements are taken from 

profiles generated from electron microprobe traverses across garnets. Ideally the 

measurements should be of the perpendicular distance between the location of the 

deviation of the composition from the most extreme rim and core compositions for 

external zonation. For internal zonation it is the perpendicular distance from the 

inclusion's contact with garnet to the position in the garnet where the composition 

stabilises. A minimum distance is recorded in the majority of samples since the 

composition in the garnet rarely attains constancy on high and low concentration 

sides (Fig. 8.1). 

Sample Zona 
-tion 
Type 

Profile Type 
(i.f.=inner flat) 

Zonation length scale to the nearest analysis point (Am) 
 (brackets_= intern al zonation)  

Mg Ca I 	Al Cr Ti Fe 	I Mn 

NEW003 Eu Gradual change 2000 2000 2000 2000 2000 - 

NEW039 Eu Rim growth w, 800 1200 
gradual change  

1000 1000 . 500  - 

NEW059 Eg, Ic 

Is 

External if. 

Internal if. 

- 

(-) 

- 

(-) 

500 

(150) 

500 

(-) 

- 

(-) 

- 

(-) (-) 

NEW063 Ed, Id External iL 1000 1000 500 500 400 800 - 

NEW065 Eu, Is 

Id, Internal if. (600) (600) (500) (500) (-) (-) (-) 

NEW068 Fu 

Is 

External if. 

Gradual change 

1250 

(900) 

1250 

(900) 

1250 

(900) 

1250 

(900) 

- 

(-) 

- 

(.) 

- 

(-) 

NEW069 Ic Internal if. (550) (580) (550) (550) (300)  

NEW074 Eu, 

Is 

External i.f. 

I Gradual change 

2400 

1 	(800) 

3200 

1 	(700) 

>1000 

(400) 

>1000. 

(400) 

3200 

(700) 

- 

(-) 

1000 

(500) 

NEW078 Eu, Id I 	Internal if. 1 	(500) (420) (350) (320) (250) &) (-) 

NEWIOI Fu I 	Rim Growth 700 800 800 800 500 - 

NEWII4 Eu, Id Internal if. (1000) (850) (750) (750) (550) - - 
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Sample Zona Profile Type Zonation length scale to the nearest analysis point (tin) 

-tion (i.f.=inner flat)   (brackets = internal _zonation)  

Mg Ca Al 	I Cr Ti 	I Fe Mn Type 

NEW303 Ed, Id External if. 350 350 350 350 - - - 
grt 

Internal if, 
(100) (100) (lOU) (100) 

NEW303 Eg Rim growth 400 400 - 400 Na - - 
cpx'  400  

NEW308 Es External if. 1000 1000 1000 - - - 

Is Internal if. (?) (500) (500) (500) () () () 

NEW404 Eu External if. 2500 2500 2500 2500 - - - 

Is Gradual change (700) (700) (700) (700)  

NEWSP Id Internal if. (1000) (1200) (1000) (1000) (1000) (-) (-) 

LEIOOI Id Internal if. (500) (500) (500) (500) (-) (500) (-) 

LEI007 Eu I & outer flat 950 750 900 950 900 - 800 

B44 Eg Outer flat - 2000 1500 1800 - 1000 1800 

Id Gradual change (-) (500) (800) (800) (500) (500) (500) 

B48 Eu External if. 4000 4000 3800 4200 - 1800 - 

B55 Id Gradual change (-) (700) (500) (500) (500) (-) (-) 

BOBI 13 Eu I & outer flat 2300 2300 500 700 1800 - -. 

Is Internal if. (300) (300) (400) (400) (400) (-) (-) 

BOB 167 Eu Outer flat - - 4000 4000 -. - - 

Is Internal i.E (500) (500) (-) (-) (-) (-) (-) 

BOB301 Id, Internal if. (500) (500) (500) (500) (-) (-) (-) 

Is,Ic _ ______  

BOB4OI Ed Outer flat 2300 2400 3000 3000 1000 2400 500 

Id Internal if. (500) (500) (500) (500) (-) (-) (-) 

BOB402 Ed Gradual change 1500 1500 1000 1000 - - - 

Id Gradual change (1000) (1000) (500) (500) (500) (500) (-) 

BOB404 Eu External if. 4000 4000 2000 2000 - - - 

Is Gradual change (-) (-) 1 	(800) (800) (-) (-) (-) 

Table 8.2: Selected samples analysed for major elements indicating the external and internal zonation 
types present with the distance of any measurable diffusion type noted in rm for zoned major 
elements. Internal zonation is in brackets and on the same line as the particular zonation type listed. 

Fig. 8.4 shows the range of diffusion distances in single samples illustrating the 
shorter internal and longer external diffusion distances and Mg-Ca and Cr-Al 
distance relationships which are relatively independent of Ti. 
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Figure 8.4: Zonation distance scale for zoned cations in six samples that show both internal (black 
bars) and external (grey bars) zonation. 

8.2.2 Differences between cation zonation distances in individual samples 
Mg and Ca and also Cr and Al appear to act as diffusion couples (inter-diffusion) 

since with each pair they commonly show negatively correlated cation 

concentrations with very similar zonation distances within individual samples. Mg 

and Ca tend to occur over longer length scales in both external and internal zonation 

types compared to Al and Cr. This observation conforms to the relatively 'sluggish' 
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nature of Cr-Al diffusion mentioned. In zoned garnets Al and Cr are always zoned 

and Ca and Mg are only occasionally not zoned in the highly sub-calcic garnets. 

Most observed Ti zonation is external (see Appendix II). In a few samples Ti is 

externally zoned over the greatest distance of all cations (e.g. 3200 tim in NEW074). 

This corresponds to samples with Eca zonation in Chapter 5, which is most likely to 

be a metasomatic effect. Ti is also zoned internally over shorter distances and this is 

interpreted to be a result of P-T re-equilibration (Chapter 6 and 7). Fe and Mn are-

less frequently zoned compared to the cations already mentioned. When they are 

zoned they only show only a slight change in cation concentration compared to the 

stronger zonation of Ca, Mg, Al and Cr. Fe and Mn tend to be positively correlated 

with each other and negatively correlated with Mg. 

From NEW303 the one external clinopyroxene diffusion length scale measured (no 

internal zonation was discovered inside inclusions of clinopyroxene in gathet) is 400 

tm for Cr, Na, Ca and Mg. 

8.2.3 Differences between samples 
The Newlands and Bobbejaan samples show a similar distribution of internal 

zonation distances (Fig. 8.5a). In general the Bobbejaan samples have a higher 

proportion of external zonation distances> lóOOtcm (longest is 4000tm) than the 

Newlands samples (Fig. 8.5b). This may be explained by the larger sample size at 

Bobbcjaan which would allow greater chance that external. zonations are not 

truncated by the kimberlitic resorption or crushing of garnet crystals in samples by 

mining activities. 
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Figure 8.5: Range of garnet internal (a) and external (b) zonation distances from Newlands and 
Bobbejaan samples. 	 - 

The longest internal zonation distances are recorded adjacent to diopside bearing 

inclusions (i.e. commonly 800-140OAm at Newlands). The majority are 400-800im, 

which record serpentine ± Cr-spinel inclusions. Since external matrix compositions 

are rarely known, no differences with respect to mineral type may be identified for 

external zonations. 

8.2.4 Differences according to zonation type 	- 

The majority of external zonations occur at length scales> 800/Lm whereas the 

internal zonations occur over a shorter length scale (200-1000/Lm) (Fig. 8.6). The 

internal zonation length scales-appear to have a normal distribution, whereas the 

external ones possess a weakly bimodal distribution with peaks at 9001Lm and 
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Figure 8.6: Zonation length scales for all samples separated into internal and external zonation types. 

8.2.5 Conformism to ideal diffusion profiles 
Various models exist to approximate the shape of diffusion profiles. Sautter and 

Harte (1990) used error functions (en) to model Al diffusion in clinopyroxene 

utilizing the equation from Crank (1975): 

	

c=co +(cx _ CO ) . erfc[J 	(1) 

where C is the cation concentration for a given distance along a profile (X in metres). 

CO  is the initial garnet cation concentration, Cx is the y-intercept value, D is the 

diffusion coefficient for a particular element (in 2/s) and t is the time diffusion has 

occurred for (in secs.). 

The time scale of zonation by diffusion may be approximated to within an order of 

magnitude by equation (2) which uses the diffusion coefficient and a length scale (as 

recorded in Table 8.1) over which a suspected diffusion profile has occurred rather 

than modelling the curve more precisely as required for (U: 

t=x2iD 	(2) 

where t is the time taken in seconds, x is the distance in metres and D is the diffusion 

coefficient in square metres per second. 

Fig. 8.7a shows that internal zonations present in garnets in samples such as 

NEW  14 conform well to curve fitting according to equation (1) by using Cx and CO 

values chosen by eye from the shape of the profiles (Appendix II). Then 

experimentally determined diffusion coefficient values are inserted and t is then 

modified until the shape of the curve fits the data, thereby yielding a value for time 

for each profile. NEW 1 14 has been measured on either side of the inclusion and 

slightly different profiles are produced (profiles 1 and 2 in Fig. 8.7). The difference 

in length scale of these profiles produces a relatively small difference in the time 

taken according to equation (1). The time scales are one order of magnitude higher 

when using equation (2) given the different length scale used (see caption to Fig. 
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Figure 8.7: (a) Distance-concentration diagram for Mg profile of garnet in sample NEW! 14 (see 
appendix for complete profiles). The models for the two profiles shown are generated using equation 
with the parameters on the graph. The thick dashed vertical line is the location of the contact with a 
300 pm diameter inclusion of clinopyroxene and Cr-spinel. The highest concentration horizontal line 
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is the concentration at the garnet-inclusion contact, the middle line is C 0  for profile 1 and the lowest 
line is C0  for profile 2. y-intercept values C, 1  and C are shown near cation concentration 1.8. (b) as 
for (a) but for sample NE W078 with one profile shown. (c) as for (a) but an external zonation with an 
inner flat from sample B48 with single model line. (d) as for (c) but an external zonation with inner 
and outer flat from sample BOB i 13 illustrating core-rim inter-diffusion and associated inflection 
point on curve. (e) as for (c) but for internal and external zonations from NEW074 using two models. 

The normalised Ca diffusion coefficient of 1 x 10.19  m2/s (Carlson, 2006) from 

experimental studies (see table 8.1) was used for modelling Mg profiles with 

equation (1). This is because Ca diffuses more slowly compared to Mg and Ca-Mg 

interdifflision is observed to occur, therefore Ca is the rate limiting cation so the Dca 

value is the assumed interdiffusion value DMg.-.Ca. The Mg profiles were used to 

estimate distances because they are usually developed most clearly. The temperature 

of 1000°C was used because the majority of P-T estimates (see Chapter 7) yield 

values within 100°C of this. The plot in Fig. 8.3 shows that varying temperature by 

100°C changes D values by less than I order of magnitude so this variation is 

bracketed by the range of diffusion coefficient values examined in Table 8.3. 

If a DMg.-.ca  value one order of magnitude lower is chosen then the curve generated is 

identical if the time value is increased by one order of magnitude. Therefore each 

curve from Fig. 8.4 may be interpreted based on a range Of DM 5*.+Ca values that 

produce different time scales. e.g. if a DMg+Ca of 1 x 10.20  m2/s is used in Fig. 8.7b 

for NEW078 the time scale would equal 126,000 years; 

The range of time values generated from curve fitting of profiles to equation (1) is 

shown in Table 8.3; it is 0.35-1.25 Ma for external zonation and 0.01 to 0.1 Ma for 

internal zonation. These values are comparable (assuming one order of magnitude 

errors for equation (2)) with values from the more simple relationship in equation (2) 

and shown for all samples in Appendix II. Equation (2) generates time scales 

approximately but consistently one order of magnitude larger than with curve fitting 

using equation (1). 
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Mg Equation (I)' Equation (2) Equation (2) Equation 
Zona- Curve fitted timescale Max. (2) Mm. 
tion timescale using timescale timescale 

lana- length using using using 
- Profile tion scale DMS_c. DMS_ca = DMg..c s = 0Mg.-.CC 

Sample Type Type (jim) 1x1O 9  m2/s 1x10 19  m'/s 5x10 2°  m 2Is 1x10 17  m2/s 

NEW] 14 Interior Id 1200 50,700 y 456,000 y 913,000 y 4,560 y 
flat I 

NEW078 Interior Id 500 12,600 y 80,000 y 158,000 y 800 y 
flat  

B48 External Eg- 5400 1.25 Ma 9.2 Ma 18.5 Ma 92,000 y 
inner 
flat  

BOB I 13 External Eca  4500 0.7 Ma 1.7 Ma 3.4 Ma 16,800 y 
inner 
flat & 
outer 
flat  

NEW074 External E, 4000 350,000 y 5.1 Ma 10.1 Ma 51,000 y 

inner 
flat 

Internal Is 1100 95,000 y 383,000 y 766,000 y 3,830 y 

inner 
flat  

Table 8.3: Time scales for zonation based on modelling of well defined profiles from Fig. 8.4. Right-
hand columns show the time scales for the approximation using equation (2) for comparison. 

According to the last two columns in Table 8.3, bringing in the likely possible 

variations inDM5..ca, the time estimates range from 800 y to 913,000 y for internal 

and 51,000 y to 18.5 Ma for external zonation. This is approximately 3 orders of 

magnitude in each case. 

The single zoned clinopyroxene yields an external zonation length scale of 400 am 

and, using DAt (assuming this is close to the value for Cr) of2xlO'9 
M2 /s as used in 

Sautter-and Harte (1990), a timescale of approximately iMa is generated, which is in 

the mid range of the garnet external values. 
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8.3 Limitations 

There is a large (orders of magnitude) range in experimentally derived 

diffusion coefficient values that is not due to pressure effects. Experiments 

are dominantly for almandine-pyrope garnets, which probably yield relatively 

high D values where Ca diffusion is involved. For Al and Cr the diffusion 

coefficients are expected to be much smaller. 

Diffusion profiles have been predicted from end member situations, whereas 

the real pre-diffusion cation distribution is not known. 

Most of the length scales are minimum lengths (Fig. 8.1) so the timeseale 

estimate may be too short (possibly by up to a factor of 2) for this reason. 

Conversely, the electron microprobe traverses will deviate in 3D slightly 

from being parallel to the line of maximum chemical gradient in a given 

sample. This effect is thought to be negligible. 

Only Mg zonation was studied since it is the cation with the most 

experimental data available for garnets at high pressures. Fe diffusion data is 

also determined but not commonly zoned. A downside to this is that if there 

is a coupling effect of Mg with Ca (or even 3+ ions), then the time estimates 

will be incorrect since the Mg diffusion may be slowed by the slower rates of 

diffusion of the other cations. 

DM5.-.ca is assumed not to vary over time (i.e. P and T assumed constant) so 

only time-averaged values are gained from the equations. 

It is impossible to know whether any diffusion has occurred in a different 

direction to that observed over time since the measured profiles are again 

essentially yielding time averaged results (e.g. t2 to t3 and back again in Fig. 

8.2a). 
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8.4 Summary 

Compositional zonation in gamets from all Newlands and Bobbejaan samples 

appears to conform to diffusion-related processes due to the shapes of the 

profiles measured by electron microprobe traverses. In most cases the 

diffusion profiles appear to be between garnet and another mineral or 

minerals, either included in garnet or external to garnet. Only a few samples 

may be identified as having a rim growth type of garnet profile that appears 

to show two phases of garnet growth later modified by diffusion. 

The profiles have been classified according to the presence of 'flats' and 

whether there is evidence of rim growth of a different garnet composition. 

Minimum measurements for the zonation scale of Mg, Ca, Al, Cr, Ti, Fe, Mn 

were made in all samples traversed by electron microprobe (table in 

Appendix TI). Only the samples with an external inner and outer flat (for 

external zonation) and internal inner flats (for internal zonation) allow a 

maximum zonation length scale to be identified. 

Al-Cr and Mg-Ca are the most elarly identifiable diffusion-couples with 

Mg-Ca tending to be zoned over greater distances in individual samples. 

Concentrating on DMgI.Ca, the range of time values generated by curve fitting 

of the profiles to the Crank equation and use of the simplified equation: 

x=V(Dt) is similar ,but generally one order of magnitude greater using the 

simplified equation. 

The range Of DMg4.Ca values used suggest external zonation has been the 

result of diffusion on long timescales> 50,000 y and <20 Ma. This is 

corroborated by the single external clinopyroxene Al diffusion profile. Since 

this is over an order of magnitude greater tirnesqale than internal zonation 

(see point 7 below), it is feasible that this reflects the total time for P-T re-

equilibration including exsolution and then re-equilibration with exsolved 

inclusions. 
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The range Of DM5€.Ca values used suggest internal zonation has been the result 

of diffusion on short timescales > 800 y and C 1 Ma. As stated in point 6 

(above) this timescale is an order of magnitude shorter than the external 

zonation and may just include the time for re-equilibration with inclusions. 

Eg-l-, Eg- and Ed external zonations reflect equilibration with matrix and 

appear to have chemically parallel trends to 'Is' (for Eg) and Id (for Ed) 

internal zonations. This is therefore most likely to reflect P-I re-equilibration 

(Chapter 6 and 7) 

Eca zonation would suggest garnet equilibration with a modified matrix 

composition that is more Ca- and Ti-rich. This must have occurred while 

inclusions were present and before internal zonation happened otherwise they 

would overprint internal zonation patterns as seen in Appendix III (especially 

sheets for NEW074 and BOB 1 13). This type of external zonation along with 

the Eg- zonation of B48 represents the largest length scale of all external 

zonations so may be more likely to be associated with metasomatic processes 

rather than P-T processes (see NEW303, Chapter 7). 
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9. Trace Element Mineral Chemistry 

9.1 Introduction 

Trace element data obtained by ion microprobe SIMS (secondary ionisation mass 

spectrometry) analysis have been able to contribute to the understanding of 

mineralogical and petrological evolution in the mantle since they provide additional 

means to assess processes such as enrichment and depletion in rocks and minerals. 

The trace elements have a wide variety of charges and ionic radii and, consequently, 

a wide range of compatibilities with respect to different minerals and their 

equilibrium melts. In addition temperature sensitive elements such as Ni and Ti may 

be determined to greater levels of accuracy by ion microprobe than by electron 

microprobe. By virtue of its high spatial resolution SIMS may be applied to define 

small scale features such as chemical variation at mineral contacts and across zoned 

crystals. 

It has been recognised that the trace element composition of peridotitic DIs (diamond 

inclusions) is not of the depleted character that their major element compositions 

would suggest. The peridotitic DI garnets are very high in Cr and low in Ca and 

conform to the garnet-chromite harzburgitic assemblage and yet they may have 

extremely fractionated (incompatible element enriched) trace element compositions. 

Shimizu and Richardson (1987) emphasise the extent of this decoupling between 

major and trace element compositions for the garnet inclusions in diamond. 

However, such a decoupling is a common feature of many peridotite xenoliths from 

both basalts and kimberlites and has been widely interpreted as resulting from the 

enrichment of depleted peridotites by small amounts of incompatible element rich 

material (e.g. RaPe and Hawkesworth (1989). The percolation of metasomatic fluids 

from the deep mantle has become the favoured agent for this effect (e.g. Burgess and 

Harte, 2004; Stachel et al., 2004). 
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Burgess and Harte (2004) identified garnet rare earth element (REE) zonations in 

single garnets that are also correlated with changes in garnet major element 

chemistry. Garnets showing major element core to rim zonation towards bulk 

lherzolite compositions are also shown to be zoned in trace elements towards more 

REE compositions at the rims. This process is also attributed to the percolation of 

metasorriatic fluids which are believed to be silicate melts. Overall REE profiles 

measured in peridotitic garnets show wide variations from 'normal' (HREE strongly 

enriched) to types described as 'humped', 'sinusoidal', 'sinuous' and 'sigmoidal' by 

various authors (see Fig. 9.1). Similarly diamond inclusion garnet REE data 

published in the literature typically show a highly enriched (high LaJLu) 'humped' 

profile as illustrated: 

0 
C) 
C) 
C 
0 

11 
U 

'humped 

E. normal' 

La 
	

Lu 

Figure 9.1: Schematic REE diagram showing the 'normal' (solid line) and 'humped' (dashed line) 
patterns found in mantle garnets. 

Because of their curious nature and the LREE-enriched characteristic these 'humped' 

profiles in inclusions, like those in peridotites, have often been interpreted tobe 

connected with some later events of metasomatism involving carbonatitic or silicate 

melts/fluids but this remains unresolved. In this chapter the data from the Newlands 

and Bobbejaan samples will be related to existing models for the formation of 

partièular trace element characteristics in the literature for both peridotites and DIs. 

Previous studies have largely been on garnet alone, and thus' in the absence of 

knowledge concerning the major and trace element chemistry of other coexisting 
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phases. Therefore the chromite and clinopyroxene analyses in the present study will 

provide broader scope for petrogenetic interpretation. 

9.1.1 Nomenclature 

Trace elements are the elements present in minerals that are not stoichiometrically 

significant and normally have concentrations < 0.1 wt. %. The measured trace 

elements for mantle minerals in this chapter may be divided into groups according to 

their properties and hence their location in the periodic table: 

1. LILE (large ion lithophile elements) have large ionic radii (>1.2A) and low 

charge (1-2). These are Li, Na, K, Sr and Ba in order of increasing atomic 

number (Rb and Cs have not been measured in this study). 

HFSE (high field strength elements) have relatively small ionic radii (0.6-0.9 

A) and higher charge (3t4)  than LILE. These are Y, Zr, Nb and Hf in order 

of increasing atomic number (Ta and W have not been measured in this 

study). 

FSTE (first series transition elements) have small (0.4-0.7A) ionic radii and 

variable charge usually 2 and 3t These are Sc, Ti, V, Mn, Co, Ni and Ga in 

order of increasing atomic number (Cu and Zn have not been measured in this 

study). 

REE (rare earth elements) comprise the heavy elements La to Lu which have 

atomic weight 138.91 (La) to 174.97 (Lu). The ionic radius decreases 

systematically with atomic number from 1.03 A for La to 0.86 A for Lu. The 

majority of REE have a charge of 3t In this study all are measured except for 

the radioactive Pm. The light rare earth elements (LREE) are La to Nd, the 

middle rare earth elements (MREE) are Sm to Dy and the heavy rare earth 

elements (HREE) are Ho to Lu. 

Additionally, concerning the nomenclature of garnet REE patterns, in this study a 

'normal' profile shall represent the HREE-enriched profiles and humped shall 

represent any profile with a bulge in the LREE (as illustrated in Fig. 9.1). And 

instead of defining and distinguishing the difference between 'humped' and 
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'sinuous/sinusoidal/sigmoidal' patterns, the ratios of Sm/Dy, Ce/Yb and Dy/Yb (all 

normalised abundances) shall be used to define the variations in patterns 

quantitatively. Sm/Dy defines the magnitude of the 'hump', Ce/Yb defines the bulk 

LREE/HREE enrichment and Dy/Yb defines the MREE-HREE slope. The term 

'humped' shall still be employed to refer to variants of that shown in Fig. 9.1. 

Analyses are recorded as ppm values but they are also shown on 'chondrite 

normalised' plots. i.e. the ppm concentration is divided by that of the same element 

in chondritic meteorites from the data of McDonough and Sun (1995). Therefore the 

vertical scale on these plots is labelled 'Conc./chon.', which stands for concentration 

divided by chondritic concentration. The result of this is to remove unnecessary 

spikes from the data that are due to natural elemental abundances. Values> 1 show 

that the element has greater abundance than in the most primitive rock, i.e. a C  

carbonaceous chondrite meteorite. The chondrite normalised abundances are 

indicated by subscript notation (e.g. for 'ZrNop' read chondrite normalised Zr). 

9.2 Aims 

The overall purpose of the analyses is to contribute to the understanding and 

interpretation of the petrological and geochemical evolution of the diamond-garnet-

chromite harzburgite paragenesis and the high-Cr lherzolitic assemblages identified 

and defined in Chapters 3 and 5. More specifically the aims are to: 

Document the trace element variation in garnet, clinopyroxene and spinel 

from a selection of harzburgitic and lherzolitic bulk rock compositions from 

Newlands and Bobbejaan samples. 

Define direction of chemical trends both within samples (i.e. for zonation) 

and between samples of different bulk rock compositions. 

Establish which types of zonation in trace element signatures are present due 

to pressure-temperature effects (Chapter 7) and which are present due to 

changing bulk composition (i.e. metasomatism). This will be accomplished 
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by examining garnet zonation trends in conjunction with major element 

zonations (Chapter 5) and consideration of changes due to P-T re-

equilibration (Chapter 6). 

4. Use the data to comment on the generation of the 'humped' REE patterns in 

gamets. 

9.3 Results 

Details on sample preparation, analytical conditions, standards and techniques for ion 

microprobe SIMS analysis used in this study can be found in Appendix I (Section 

1.3). The raw data for all trace element analyses can be found tabulated in Appendix 

V. The results are presented below in the LILE, HFSE, FSTE and REE groups noted 

above. Additionally in this section, an appraisal of trace element partitioning between 

coexisting minerals is given for each mineral combination. Finally, divariant element 

plots are made for garnet, Cr-spinel and clinopyroxene in order to document those 

elements that provide particularly useful discriminants between samples from 

different P-I conditions, different bulk compositions and parageneses. Few samples 

show evidence for zonation so the average compositions are shown. A separate 

section deals with zoned samples. 

9.3.1 Garnet - LILE 

Large ion lithophile elements in garnet are all in very low concentration. Li 

concentrations in harzburgitic garnets are 0.03 +1- 0.01 ppm, in lherzolitic garnets the 

concentration varies from harzburgitic values up to 0.09 ppm. Na contents vary from 

100 to 300 ppm with the higher concentrations belonging to lherzolitic garnets (Fig. 

9.2). K in garnet is generally sub-ppm concentration but some analyses have several 

ppm K and appear to be affected by contamination (i.e. the analysis volume is not 

entirely garnet and may contain small proportions of kimberlitic material (Chapter 

3). 
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Sr concentrations range from 0.2 to 14 ppm. The majority of garnets have between 1 

and 2 ppm Sr and only sample 1347, a low-Ca GlO garnet, has a concentration> 5 

ppm. This high value is compatible with analyses of diamond inclusion garnets 

which have high Sr concentrations in studies such as Shimizu and Richardson 

(1987). Ba concentration is measured as being in parts pe'r billion in all garnets and is 

often close to the lower, limit of detection.. Elevated Ba is found in a few analyses due 

to contamination. 
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Figure 9.2: Average LILE, FSTE and HFSE compositions for (a) harzburgitic and (b) lherzolitic 
garnets from selected Newlands and Hobbejaan samples. Symbols are as follows: The harzburgitic 
samples are B08404 (filled diamond symbols), NEW02 1 (open square symbols), BOB 113 (open 
circle symbols with dashed line), NEW288 (open triangle symbols), NEW098 (filled triangle 
symbols) and NEW074 (filled square symbols). For lherzolites: NEW 1 14 (filled square symbols), 
NEW063 (open square symbols), NEWSP (open circle symbols with dashed line), B0B402 (open 
triangle symbols), NEW406 (filled triangle symbols). Ion microprobe counting statistics produce a 2 a 
standard deviation error which is C size of the symbols used, except Ha and Hf which are 
approximately twice the height of the symbols used. 

9.3.2 Garnet -  HFSE and FSTE 

The garnets in general have normalised Zr > Hf> Y > Ti > Nb (all> 1 relative to 

chondrites) where lower values are seen in harzburgitic than lherzolitic garnets (RHS 

of Fig. 9.2). ZrNoRJ1 and HfNopji are similar in individual samples. Ti is very variable 

in garnets from both harzburgites and lherzolites; samples exhibiting external 

zonation are not anomalously high in Ti. In harzburgites it is lowest in the most sub- 
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ealcic garnets and higher in the higher Cr, higher Ca garnets such as NBW288. In 

lherzolites Ti is higher in garnets that are higher in Cr and Ca, this also corresponds 

to those samples yielding higher temperature estimates (Chapter 7) such as NEW  14 

and NEWSP. It is therefore expected that these are the samples with the higher Ni 

contents. 

Within the transition elements, discriminants between the two garnet parageneses are 

a lower HFSE and transition element content and Y <Hf in harzburgites. Sc contents 

of all gamets are consistently high at 30-900 times chondrite. Normalised 

abundances of the FSTE are Cr> Ga> Mn> Co > Ni for all harzburgitic and 

lherzolitic gamets. Most samples have TiNORM <VNOI; therzolites that do not obey 

this relationship are of the high-Cr, high-Ca type and have TiNojj > VNORM. 

The samples known to have major element Ca-Ti external zonation (Chapter 5) such 

as BOB 113, show high Na and low Sr and Ni but they are not zoned strongly in these 

elements. The lherzolitic sample BOB40I has external zonation of the decreasing Ca 

and decreasing Cr variety and does not show any unique trace element features 

relative to the other lherzolitic samples of similar major element composition. 

9.3.3 Garnet REE compositions 

Sample BD 1366 is shown in Fig. 9.3 for reference because it has the lowest natural 

REE content that can be expected in garnet since it is exsolved from a fertile 

orthopyroxene as described by Dawson (2004). The rim of sample B48 from this 

study is also shown for reference in Fig. 9.3 because it conforms to a normal garnet 

REE pattern. 

Fig. 9.3a and c show that gamets from harzburgitic samples have predominantly 

overlapping REE patterns with DIs. Only the higher Cr, higher Ca samples such as 

NEW288 have higher HREENOPJVI than the DIs (i.e. low Ce/Yb). The low-Ca garnets 

form REE profiles that are characterised by relatively high LREENORM compared to a 
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normal profile (e.g. B48 in Fig. 9.3a). They also have a higher Ce/Yb than the 

normal profile. Between Pr and Sm a peak is formed and the MREEN0RM exhibit a 

negative slope. NdNOl/SmNo is always> 1. SmNolr.dDyNopl1  is also> 1 with the 

exact ratio of the latter indicating the magnitude of the hump present. The 

HREENORM usually show an incrementally increasing trend and DyNo,i/YbNor,1 is 

usually c 1. The bullcLREE variation amongst harzburgitic garnets is C 1 order of 

magnitude but the bulk HREE variation is >> 1 order of magnitude but C 2. As the 

garnets become more Ca- and Cr-rich, the pattern becomes more like those of the 

lherzolitic garnets. 

The most Ca-depleted harzburgitic garnets have higher LREE concentrations. 

NEW024 and B0B47 have the most pronounced peaks where SmNp/DyNo4 >>1 

(similar to those shown in the Finsch DIs) with the peak over Pr rather than between 

Nd and Sm. These two profiles possess the most depleted MREE patterns of all the 

samples. The garnet in B47 shows MREE and HREE concentrations that are very 

similar to the depleted profile of BD 1344, differing only in possessing a positive 

bulge in the LREE. 

The humped curve shown in many of the lherzolitic garnets in this study (Fig. 9.3b 

and d) is also characterised by high LREENORM (although this is not as high as the 

harzburgitic garnets). The profiles do not overlap with so consistently with the 

lherzolitic DIs although the profile for B0B402 is similar. The main difference is 

that the MREE and HREE are at higher concentrations than in the DIs and that 

SmN0RM/DyN0RM is more commonly C I. The MREE-HREE trends are highly 

variable; they vary from those seen in harzburgites where DyNop_m/YbNORM is C  1 to 

trends where DyNORM/YbNORM is> 1. The variation in bulk REF concentration is 

approximately one order of magnitude but again the HREE have a larger range. Low-

Car  low-Cr lherzolitic garnets tend to have the lower bulk REE concentrations, 

whereas higher-Ca, higher-Cr ones are progressively richer in REE. NEW I 14 has a 
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Figure 9.3: Chondrite normalised garnet REE plots for harzburgitic samples (a) and therzolitic 
samples (b); (c) and (d) as for (a) and (b) respectively but with the garnet diamond inclusion field 
(DIs) indicated for Ghana diamonds in dark grey (data range from Stachel and Harris, 1997). The 
narrower range in compositions of Finsch diamond inclusions as shown in light grey (Shimizu and 
Richardson, 1987). Dash-dot bold line is the primitive garnet of Dawson (2004) and the dashed bold 
line is the profile of B48 that is most like the 'normal' profiles of megacryst garnets. Counting errors 
for the ion microprobe have 2a errors smaller than the symbols used in this figure. 
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9.3.4 Garnet trace element zonation 

Five samples with well developed external major element zonation patterns (Chapter 

5) were analysed for trace elements: NEW074, BOB1 13, BOB401, NEW101 and 

B48. Of these only B48 is strongly zoned in terms of REE (Fig. 9.4a) and BOB 1 13 

has a variation in REE that does not correspond to the major element zonation 

pattern (Fig. 9.4b). In Chapter  NEW074 and BOB 1 13 are identified as having Ec a  

zonation i.e. an increase in Ca (± Ti) towards their rims but they do not show clear 

core-rim trends in trace elements. 
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Figure 9.4: (a) REE zonation in garnet from sample B48. Core composition is the solid line with cross 
symbols. The rim is the solid line with square symbols and the dashed lines are for intermediate 
locations between core and rim. (b) REE zonation in garnet from BOB 1 13 where the sample contains 
slight variations in REE patterns that do not correspond to the major element zonation pattern. The 
two analyses shown indicate the extent of the variation present in BOB 1 13. 

The zonation of Ni was observed in B48 alone where the core has 21ppm and the rim 

has 25 ppm, which is equivalent to a change of approximately + 30-40°C at the rim 

compared to the core. BOB 1 13 and NEW074 have increasing Ti towards their rims 

as measured by electron microprobe with a higher spatial coverage than on ion 

microprobe (see Chapter 5 for descriptions and Appendix II for the profiles 

themselves). 
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9.3.5 Clinopyroxene trace element compositions 

The LHS of Fig. 9.5 (a) shows the concentration of the LIL elements in 

elinopyroxenes from this study. Li has ppm to sub-ppm values. Na varies from 

10000-20000 ppm and K from 100-350 ppm. These values result inNaogjj being> 

I with LINORJVI and KNORM averaging 0.5. BaNORM, like KNo, is low whereas Sr is 

particularly high, with its highest values (> 100 times chondrite) being in the 

clinopyroxenes coexisting with lower-Cr, lower-Ca gamets. There is a decreasing 

trend through the FSTE from Sc to Ni. V is high in those clinopyroxenes with higher 

Sr and these tend to be the ones coexisting with lower-Cr, lower-Ca gamets. Ti 

seems to be variable independently of other elements. Co and Mn are slightly higher 

in the clinopyroxenes from the high Cr, high Ca samples. The HFSENOR14 generally 

increase from Y to Hf (Fig. 9.5a). High-Cr, high-Ca samples tend to have higher Y 

and lower Zr, Nb and Hf than the other samples. 
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Figure 9.5: Selected clinopyroxene trace element profiles from Newlands.and Bobbejaan samples. (a) 
LILE, FSTE and HFSE (b) REE. (c) as for (b) but with the field for diamond inclusions (DIs) shown 
in grey from Stachel and Harris (1997). The clinopyroxenes coexisting with the low-Cr, low-Ca 
garnets are shown with triangle symbols (filled triangle symbols are for NEW406 and open triangle 
symbols are for B08402). The clinopyroxenes coexisting with the high-Cr, high-Ca garnets are 
shown with square symbols (filled square symbols are for NEW I 14 and open square symbols are for 
NEW063). Dashed line is clinopyroxene from NEWSP, which has a different LUBE pattern to the 
other clinopyroxenes. The 2a errors are less than the size of the symbols for La-Ho. Elements Er-Yb 
have progressively larger errors in clinopyroxenes with lower REE concentrations e.g. NEW406. 

The REEN0RJ.,1 (Fig. 9.5b) La c Cc < Pr C Nd form a shallow positive slope for 

clinopyroxenes coexisting with high-Ca, high-Cr garnets, whereas the 

clinopyroxenes coexisting with lower Ca, lower Cr garnets have a shallow negative 

slope for these elements. The former have clinopyroxene LREENORM as low as 10 

and the latter may have values > 200 as seen in NEW406. NdNop / SmNop is 

always> 1. Sm to Lu forms a negative slope down from— 10 to— I times chondrite 

at Lit. Tm, Yb and Lu are often near detection limit concentrations and produce 

scatter on the normalised plot except in the high-Cr, high-Ca garnet samples where 

HREENORM is usually  1. Higher degrees of LREE depletion are also expressed by 

lower Sr and Sr> La. NEW! 14 is exceptionally Cr- and Ca-rich and has a much less 

LREE-enriched, HREE-depleted pattern compared to common mantle 

clinopyroxenes. It is as though the more normal clinopyroxene REE patterns are 

rotated anticlockwise about Eu in order to generate this HREE-enriched pattern. 
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9.3.6 Clinopyroxenelgarnet trace element partitioning 

Fig. 9.6 shows the values for clinopyroxene/garnet trace element distribution 

coefficients (i.e. ppm concentration in clinopyroxene divided by ppm concentration 

in garnet,shorthand: uDt0) .  Low DcP'/O values for lherzolitic samples with high-

Cr high-Ca garnets show that REE, Sc, Ti and Nb partition more strongly into these 

garnets than into garnets of average lherzolitic compositions. 
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Figure 9.6: Clinopyroxene/garnet distribution (Ddb0)L) coefficients for the samples in Fig 9.5 (symbols 

the same). (a) REE with solid line being DcttxbSlt for the high-Ca garnet eclogite HRV277 and the 

dashed line being D'I ' for the low-Ca garnet eclogite JJG3 12 from Harte and Kirkley (1997). (b) 
LILE, FSTE and HFSE. Symbols as for Fig. 9.2b. 

Fig. 9.6 (a) shows that the higher Ca the garnet in Newlands and Bobbejaan samples, 

the lower the DCP(  value (clinopyroxene/garnet distribution coefficient) for the 

REE. The values shown are bracketed by the eclogitic samples with garnets that are 

highly calcic (solid line) and highly sub-calcic (dashed line) from the calculations of 

Harte and Kirkley (1997). NEW406 has a slight disruption (not shown for clarity) of 

the straight to slightly concave profiles shown, which is due to clinopyroxene 

measurements that are approaching the detection limit for the ion microprobe in the 

HREE. 
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Fig. 9.6b shows how LILE strongly partitions into coexisting clinopyroxene in all 

samples. Through the FSTE, Sc, Ti, V and Ga are increasingly favoured by 

clinopyroxene, however those coexisting with lower Cr, lower Ca garnets have the 

highest DCPX/  for these elements. Mn, Co and Ni partition into garnet more strongly 

than into clinopyroxene. In the HFSE from Zr to Nb to Hf, there is a general 

increasing favour towards clinopyroxene again with the high-Cr, high-Ca garnets 

containing more HFSE concentrations compared to their coexisting clinopyroxene. 
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Figure 9.7: in cpxlgrt DPEE, for La, Sm and Dy plotted against In cpxlgrt Dca . Samples (from Fig. 
9.5b) plot from 0 to 0.7 In cpx/grt Dca . The high-Ca sample HRV177 from Fig 9.6a plots at most 
negative In cpxlgrt Dca  and the low-Ca sample JJG3 12 plots at most positive In cpxlgrt Dc,. 
Numerical parameters for the regression lines are taken from 1-larte and Kirkley (1997). 

Fig 9.7 shows that the samples' La, Sm and Dy partitioning values fit the 1100°C 

±100°C data from Harte and Kirlciley (1997). This is indicative of the REE 

substituting in the Ca sites in both clinopyroxene and garnet and good evidence that 

this process occurs in peridotites as well as the previously studied eclogites (see also 

effect Of Xorossu iar in van Westeren et al., 2001). 

9.3.7 Spinel - FSTEInd HFSE 

Fig. 9.8 shows FSTE for spinels from harzburgitic (a) and lherzolitic (b) samples. 

The FSTE are similar in lherzolitic and harzburgitic samples although harzburgitic 

spinels have a wider range of Ti concentrations. The highly sub-calcic sample 
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B0B404 has the spinel with the lowest Ti, Ga, Y, Zr and Nb of all the samples 

analysed. In the HFSE .the harzburgitic spine!s have a wider range of Y, Zr and Nb 

than !herzo!itic samples with consistently increasing concentrations with atomic 

number. The spine!s have been analysed for REE and their contents were found to be 

sub-ppm using SOL-ICP-MS. It was not possible to accurately analyse Zn and Cu on 

the ion microprobe due to interferences at high energy offset with standard mass 

resolution. 
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Figure 9.8: (a) FSTE and HFSE for harzburgitic spinels. (b) as for (a) but for lherzolitic spinels. 
Samples and symbols as for Fig. 9.2a and b. 2o ion microprobe counting errors are less than the size 
of the symbols used except for Y which is approximately twice as large as the spread of data shown 
for these elements. 

9.3.8 Spinel/garnet & spinel/clinopyroxene trace element partitioning 

Fig 9.9(a) shows the distribution of elements between spinel and coexisting garnet in 

harzburgitic samples. The FSTE (except for Sc and Mn) partition between 1 and 20 

times more strongly into spine!, whereas the HFSE (except Nb) partition favourably 

into garnet. This is also true in !herzo!itic spine!s (Fig. 9.9b) but V/(Cr+Ti) is higher 

and Zr and Nb are on average higher in !herzo!itic spine!s. There is a larger range of 

D'P ' I  values in lherzo!itic samples for HFSE. 
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Figure 9.9: Harzburgitic spinel/garnet distribution coefficients in selected samples. (b) as for (a) but 
for lherzolitic samples with symbols as for Fig. 9.2 a and b. (c) distributions of FSTE and HFSE 
between spinel and clinopyroxene (symbols as for Fig. 9.2b). 

Fig. 9.9(c) shows that.partitioning of FSTE, Y and Nb between spinel and 

clinopyroxene is very similar to that between spinel and garnet with the same trends 

evident. The only notable difference is that Cr and Mn are higher and Co is lower in 

spinellcpx compared to spine!/gamet. 
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9.3.9 Divariant plots 

The plots in this section are included in order to show the correlation between 

various trace elements in minerals. Although this data is presented in the previous 

section it is a useful way of presenting potential trace element discriminants between 

the different parageneses present in the samples. I  counting errors are smaller than 

the symbols used in the following figures unless otherwise stated. See Appendix 1.3 

for more details on errors. 

Selected element pairs from LILE, FSTE and HFSE are plotted against each other 

here for garnet, clinopyroxene and Cr-spinel (Cr-spinel IdLE concentrations are all 

at the detection limit and, hence, not shown). The symbols are divided into four 

populations, two lherzolitic and two harzburgitic. Lherzolites with high Cr, high Ca 

garnets are plotted as filled grey triangle symbols with the lower Cr and Ca ones (i.e. 

those similar to common mantle lherzolitic bulk compositions) as open triangle 

symbols. The harzburgites with low-Ca garnets are plotted as filled black square 

symbols and the higher-Ca ones as open square symbols. The plots are in ppm 

concentrations, only the Zr vs. Ti plot has logarithmic axes to conform to the 

'metasomatism plot' of Griffin et al. (1999b). 

9.3.9.1 LILE 

Fig. 9.1 Oa shows that a broadly positive correlation between Na and Li exists for the 

samples as a whole. The high-Cr lherzolitic garnets have the highest Na and Li 

concentrations with lower concentrations found successively in the 'normal' 

lherzolites, 'normal' harzburgites and are lowest in the low-Ca harzburgites. 

Clinopyroxene Na vs. Li concentrations do not differentiate the high and lower Cr 

lherzolitic samples (Fig. 9.1 Ob). 
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Figure 9.10: (a) Na vs. Li for gamets from harzburgitic (square symbols) and lherzolitic (triangle 
symbols) suites. The lherzolitic samples are divided into high-Cr ('high Cr Lilt, filled grey triangle 
symbols) and lower Cr lower Ca ('LHZ' open triangle symbols). The harzburgitic samples are divided 
into the low Ca harzburgites ('low Ca HZB', filled black square symbols) and higher Ca ones ('HZB' 
open square symbols). (b) Na vs. Li for clinopyroxene (symbols as for (a)). 

Fig. 9.11 a shows the a similar distinction between samples as with Na (Fig. 9.10a) 

but the K variation is more random, which is indicative of minor contamination in 

the analyses. However, in general the higher K gamets do tend to belong to the 

lherzolitic suites. Fig. 9.1 lb shows that clinopyroxenes from the high Cr lherzolitic 

samples are best separated by their K being > 200ppm. Fig. 9.11 c and d show a 

positive correlation between Sr and La for both garnetsand clinopyroxenes. The only 

distinction between samples is the particularly shallow trend of the low-Ca 

harzburgitic garnets which vary from low Sr and La towards higher La but they may 

have significantly higher Sr contents of up to 15 ppm. 
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Figure 9.11: (a) Na vs. K for ganiets, (b) Na vs. K for clinopyroxenes, (c) Sr vs. La for garnets, (d) Sr 

vs. La for clinopyroxenes. Symbols as for Fig. 9.10. 

Fig. 9.12a shows that the low-Ca garnets are differentiated by both relatively high Sr 

(most are > 3 ppm) and low Na contents (<200 ppm). The high-Cr lherzolitic garnets 

plot to high Na (> 300 ppm) and low Sr (most are <.3 ppm). Clinopyroxenes do not 

form any trends of note, probably due to the small number of data points (Fig. 

9.12b). Fig. 9.12c shows that Ba does not discriminate the suites of garnets, however 

high Ba/Sr in clinopyroxenes is indicative of the high-Cr lherzolite suite and high 

Sr/Ba is indicative of the lower Cr lherzolites (Fig. 9.12d). 
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Figure 9.12: (a) Sr vs. Na for garnets, (b) Sr vs. Na for clinopyroxenes, (c) Sr vs. Ba for gamets, (d) Sr 
vs. Ba for clinopyrokenes. Symbols as for Fig. 9.10 

9.3.9.2 HFSE 

On Zr vs. Ti plots (Fig. 9.13a-c) both garnets and Cr-spinels form positive 

correlations with high-Cr lherzolitic samples plotting at the highest values, lower Cr 

lherzolites, harzburgites and low-Ca harzburgites are successively lower in both Ti 

and Zr. Clinopyroxenes are not distinguished clearly on the Zr vs. Ti plot. The garnet 

trend is coincident with the 'phlogopite metasomatism' trend of Griffin et al. (1999b) 

but no phiogopite is noted in these samples. Similarly on the Zr vs. Y plots (Fig. 

9.13d-f) the garnets form a positive correlation with the highest Zr and Y belonging 

to the high-Cr lherzolite suite and successively lower Zr and Y to the lower Cr 

lherzolites, harzburgites and the lowest concentration in the low-Ca harzburgites. Cr- 
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spine! does not contain significant Y and clinopyroxenes are not separated by a Zr vs. 

Yp!ot. Fig. 9.13g-i shows Zr vs. Nb plots where a positive correlation exists for 

gamets and that again clinopyroxenes from the two lherzo!itic suites are not 

distinguished. However the Cr-spinels from the lower Cr !herzolites are highest in 
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Figure 9.13: (a) Zr vs. Ti for garnets fields from Griffin etal. (1999b) with 'phlogopite metasomatism' 
as afihled light grey oval, 'melt metasomatism' as an unfilled oval and the 'depleted field' as a 
dashed-line oval shape. Arrows indicate garnet core to rim zonation trajectory. (b) Zr vs. Ti for Cr-
spinels. (c) Zr vs. Ti forclinopyroxenes. (d) Zr vs. Y for garnets with the same fields as for (a) with 
the addition of an 'undepleted field' as a dark grey filled oval shape. (e) Zr vs. Y for Cr-spinels. (1) Zr 
vs. Y for clinopyroxenes. (g) Zr vs. Nb for garnets. (h) Zr vs. Nb for Cr-spinels, (1) Zr vs. Nb for 
clinopyroxenes. Symbols as for Fig. 9.9. 
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9.3.9.3 FSTE 

Fig. 9.14a indicates that the high-Cr lherzolitic garnets are high in Ni and Ga, 

whereas the harzburgitic suites, especially, are low in Ga. A positive correlation. 

between these two elements exists in Cr-spinel (Fig. 9.14b) with both lherzolitic 

suites being high in Ga and Ni. Cr-spinels from the low-Ca harzburgitic suite are 

especially low in Ga. High-Cr lherzolites are distinguished from lower-Cr lherzolites 

by their Cr-spinels and clinopyroxenes having lower Ga. Broadly positive 

correlations are seen between Ni and Ti for garnet and Cr-spinel and no correlation is 

apparent with clinopyroxenes (Fig. 9.14d-f). High-Cr lherzolitic garnets and Cr-

spinels have higher Ti and Ni with the low-Ca harzburgites plotting at very low Ti 

and low Ni. Sc and V do not appear to discriminate the suites of samples in either 

mineral (Fig. 9. 14g-i). 
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Figure 9.14: (a) Ni vs. Ga for gamets, (b) Ni vs. Ga for Cr-spinels, (c) Ni vs. Ga for clinopyroxenes, 
(d) Ni vs. Ti for garnets, (e) Ni vs. Ti for Cr-spinels, (1) Ni vs. Ti for clinopyroxenes, (g) V vs. Sc for 
gamets, (h) V vs. Sc for Cr-spinels, (i) V vs. Sc for clinopyroxenes. Symbols as for Fig. 9.9. 

9.4 Summary 

Trace element analysis of the Newlands and Bobbejaan samples has defined the 

range of trace element characteristics for a wide range of bulk rock compositions 

especially evident in garnet Cr-Ca space (Chapter 5). HFSE and FSTE were analysed 

in garnet, clinopyroxene and Cr-spinel and REE and LILE were analysed in garnet 

and clinopyroxene as well. The main discriminants (excluding REE) discovered 

between parageneses are as follows: 

Garnets from the harzburgitic suite are distinctly higher on average in Sr and 

V but lower in Li, Na, Ba, Mn, Co and Ga. 

Clinopyroxenes from the low-Cr, low-Ca lherzolitic samples are lower in 

LILE and HFSE compared to the high-Cr, high-Ca lherzolites. They are also 

higher in V and Sr. 

Spinels from the harzburgitic suite tend to have a larger range of Ti, Ga, Y, 

Zr and Nb compositions than the lherzolitic suite but the majority of the 

transition elements are similar in both. 

Focusing on the REE, a wide range of observations have been made. The patterns for 

garnet and clinopyroxene are shown in summary on Fig. 9.15, which shows selected 

garnet REE profiles for garnets of different Cr and Ca compositions. For the REF the 

emergent points from earlier in the chapter and from looking at Fig. 9.15 are: 

Harzburgitic garnets generally have pronounced humps in the LREE (i.e. 

high Sm/Dy) that become broad at higher Ca. The profiles with pronounced 

humps overlap strongly with REE compositions form peridotitic diamond 

inclusion garnets. 

The lherzolitic profiles tend to have a less pronounced hump (i.e. Sm/Dy is 

smaller) and higher FIREE concentrations (i.e. Ce/Yb is lower) compared to 
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Figure 9.15: REE profiles for gamets and clinopyroxenes (triangle symbols) compared to their garnet 
Cr203-CaO wt. % compositions. Arrows from Chapter 5 showing the zonation trends. Dashed arrow is 
the 'metasomatically zoned' B48 trend. Dashed line is the diamond-graphite constraint and the solid 
line is the lherzolite line (see Chapter 4). 
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Only the rim of zoned sample B48 has what could be described as a 'normal' 

profile. The core of this garnet has a REE profile that resembles the shape of 

BOB401 in Fig. 9.16, 

Garnet and clinopyroxene tEE profiles form a.continuum of compositions 

whose apparent 'end members' are summarised in Fig. 9.16 for garnets and 

defined in Table 9.2. 

The low-Cr Iherzolites tend to possess highly fractionated clinopyroxene REF 

patterns (i.e. very high LREE and very low HREE) with coexisting garnets 

possessing relatively flat profiles. Whereas the high-Cr lherzolites tend to 

have lower LREE and higher HREE with coexisting garnets having 

extremely high HREE concentrations (see Fig. 9.15) 

Clinopyroxene/garnet partitioning of REF in lherzolitic samples indicate a 

clear cpx/grt Dca dependency that conforms to a temperature of 1100°C ± 

100°C according to Harte and Kirkley (1997). 
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Figure 9.16: Summary of the different types of REE profiles obtained for garnets in this study with 
particular samples illustrating the range of profile shapes present. BD1366 is shown for comparison 
Dawson (2004). 
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TYPE Chondrite normalised LREE LREE LREE/ MREE/ 
(example) plot for type examples Bias Hump HREE- BREE 
(cpx present) of Garnet BEE magnitude enrichment 
(BEE peak) profiles 
(setting)  (Nd/Sm) (S 	Y) (Ce/Yb) (Dy/Yb) 

PRIMITIVE 100 

(8D1366) 
(CPX) 0  No 
() 
(Exsolved I 

>1 Not present (<') '  

from opx) 
01 

HUMPED 
(B47) 
(NO CPX) 10 >>j Yes 
(Pr) 
(P-type Dis, 

'—_-- 
- 

>1 Very high (>1) 
<1 

rare in kimb 
conc.) 

01 

TRANSITIO III 

NAL 
II 

(Nd) 

>1 >>l 

Very high 

Yes 

(>1) I  _______ 	_ 
(P-type Dis,  
rare in kimb 
conc.)  

LHERZO- 
LITIC 
(808401)
(CPX) 
(Sm-Eu) 

10 

I  
/ >1 

Low 

Yes  

(-1) 
(P-type Dis,  
rare in kimb - 	Gd 	 000000010 

conc.)  

NORMAL 
(848) ___________ 
(CPX) <1 <1 No 

/ 
(Lu) 
(common in 

/ 
Not present (<<1) 

7 
kimb conc.)  

REE- 
Enriched 
(NEW 114) i, <1 cci No >1 / 
(CPX)  
(Ho) Not present <<1 

(rare in kimb 
0.1 

conc.) 

Table 9.1: REE profile classification scheme with key features of the REE concentrations indicated 
for each profile type. 
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9.5 Discussion 

In this section the implications of the trace element compositions of minerals from 

each of the parageneses are considered. The trace element patterns observed are 

compared to existing ideas on mantle processes from the literature based on analyses 

from other xenoliths, kimberlite concentrate and diamond inclusions. Some 

experimental data is also available on trace element behaviour at high P and T and 

will be taken into account. Particular attention is given to theories for the generation 

of garnet REE profiles. 

In terms of the analyses of trace elements in Newlands and Bobbejaan samples, there 

are several matters that need explanation given the summary of the results (last 

section) and observations in the literature: 

Why do harzburgitic garnets have a humped REE pattern, and why do 

lherzolitic garnets have a broader humped REE pattern given that most 

mantle garnets have a normal pattern? 

What is the reason for the continuum of shapes of REE patterns across the 

major element compositional range of the samples? Is it to do with major 

element compositional effects (e.g. Ca in garnet), mineralogy, exsolution or 

do fluids play a role? 

How do these patterns relate to apparently metasomatically zoned garnet 

crystals from previous studies? 

What is the nature of the bulk rock trace element compositions and how are 

-these generated? 

How do the other trace elements fit into any explanations for the generation 

of the REE patterns? 

Firstly, an overview of existing experimental and theoretical constraints must be 

made. Secondly, a presentation of the existing models for trace element behaviour in 

the mantle is needed before a.discussion of their relative merits may be made. 
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9.51 Consideration from other authors 

9.5.1.1 INITIAL CONSTRAINTS 

Firstly, we must define some limits to the properties of trace elements in minerals 

and melts at relevant depths. This will enable a means to assess how applicable the 

mechanisms involved in various models will be, rather than simply showing how 

closely natural trace element patterns are matched. This will provide a coherent 

framework with which to gauge the success of the contrasting ideas on trace element 

behaviour in the mantle. 

In terms of the properties of melts in the upper mantle, McKenzie (1989) points out 

that the small melt fractions (of the order of 10 3  %) need not ever travel to the 

earth's surface to become an erupted igneous rock. It is suggested that these highly 

potassic melts would have a very low heat capacity (and hence would transport little 

heat) and freeze at depth in the upper mantle between around 950-750°C (i.e. by the 

level of the lower crust on a continental geotherm). These melts would contain 

greater concentrations of LREE and less Ti than known alkali igneous rocks. It is 

only the re-melting of this frozen melt by adiabatic decompression (caused by 

lithospheric stretching) or by increased heat flux (possibly associated with plume 

activity) that will cause low melt fraction igneous rocks such as kimberlite, 

carbonatite and lamproite to reach the earth's surface. 

Experiments determining trace element partitioning between garnet and melt (e.g. 

Simizu and Kushiro, 1975; Harrison and Wood, 1980) and clinopyroxene and melt 

(e.g. Harte and Dunn, 1993) enable the determination of the likely melts in 

equilibrium with particular trace element compositions in garnets and clinopyroxenes 

from natural samples. Garnet/clinopyroxene partition coefficients have been 

examined Harte and Kirkley (1997) in eclogites but the effect of major element 

composition on trace element partitioning may also be applied to peridotites. 
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In terms of the specific diffusion coefficients for the REE in garnet, van Orman et al. 

(2002) have demonstrated experimentally that it is unlikely that LREE would diffuse 

faster than HREE in natural pyrope at 2.8 OPa because diffusion rate can not be 

correlated with ionic radius. 

9.5.2 Models for the generation of mantle garnet REE profiles 

Models fall into 4 categories as shown in Table 9.2. Following the table is a 

summary of these in diagram form (Fig. 9.17). 
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Model References 1. Starting garnet composition and Comments 
Title/Variant 2.-3. further modifications 
(profile source)  

(a) Sub-solidus Shimizu and I. Refractory garnet Diffusion 
non-equilibrium Richardson 2. Bulk system LREE depletion coefficients for REE 
modification (1987), 3. Sub-solidus non-equilibrium vary from La 

(Diamond 
Shimizu and modification through to Lu in 

inclusions, 
Sobolev - garnet 

diamond-bearing 
(1995), 
Shimizu et al. 

xenoliths) (1999)  

(b) Partial Hoal et al. Refractory garnet Further defmition of 
Equilibration with (1994) Partial equilibration towards (a) 
LREE inetasomatic garnet composition 
metasomatic melt Range depends on initial garnet 

(Concentrate) 
composition and degree of 
equilibration  

(b-2) LREE Khazan I. An initial unspecified garnet Variant of (b) using 
disequilibrium, (2006) composition modelling from 
HREE equilibrium Full HREE equilibration with experiments 

(Other workers' 
metasomatic fluid 

data and 
Continuous partial equilibration 

modelling)  
(i.e. disequilibrium) of LREE 

(c) 'Metasomatic Stachel et al. 1. Refractory garnet from melt Relies on very 
Enrichment' (1998), extraction in spinet stab. field. specific enrichment 

Stachel and Declining La-Dy 'enrichment' - of LREE in garnet 
(Diamond Harris (1997) from 'fractionated garnet-bearing 
inclusions, 
diamond-bearing 

source' with MREE, HREE static 

xenoliths) 

(c-2) Griffin et al. Unspecified starting composition Variant of (c) 
Metasomatism by (1999b) (presumable refractory garnet). 
carbonatitic fluid HREE depleted garnet core with 

(Wesselton 
LREE enrichment 

xenoliths) 
Overgrowth and annealing to 

produce normal HREE in rim 
Unlikely that REE diffuse at 
different rates (authors state that this 
requires partial equilibrium which is 
an inconsistency  

(d) Multiple Promprated et I. LREE depleted garnet as a relic of Variant of (c) 
partial melting and al. (2003) partial melting 
metasomatism 2. Primary metasomatic fluid 
events enriches garnet in LREE 

(Snap Lake 
3. Secondary minor partial melting 

xenoliths) 
reduces concentration of the lightest 
REE (La-Ce)  
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Model References 1. Starting garnet composition and Comments 
Title/Variant 2.-3. further modifications 
(profile source)  

(e) 'Metasomatic Stachel et al. Pre-metasomatic refractory garnet Variant of (c) 
Enrichment' (2004) GlOs have LREE enrichment 

(Diamond 
G9s have partial re-equilibration 

inclusions 
with megacryst garnet (i.e. LREE 
decrease,  _HREE_increase)  

(1) Simon et al. 1. Pre-metasomatic refractory bulk Variant of (c) but 
(2003), Simon rock with specific melt fractions applied to bulk rock 
(2004) extracted in spinel and garnet REE composition 

stability fields 
2._'Metasomatic_Enrichment'  

ffifflQW3I_T4:FZI]~1j,47tT,I0M0F 	ETAS 	M, lC-M-Wfff-Q'E 	RATE 
flzCQNLQtøFS..N1W.  

(g) Percolative Burgess and I. Range of initial garnets in column Garnet fractionation 
Fractional Harte (2004) of mantle itself determines the 
Crystallisation 2. Melt percolates up melt column progressive 

and is enriched in LREE/HREE as generation of the 
(Jagersfontem garnet fractionates hump in 
xenoliths)  3. Garnets in rocks equilibrate with peridotitic garnets 

fractionating fluid high in the melt 
column. 

(h) Exsolution Doyle (2002) Original sinusoidal Relies on pre- 
from majorite (clinopyroxene-like) REE pattern. existing humped 

Composition of majorite derived bulk-crystal REE 
(Arnie xenoliths) from bulk rock reconstruction. profile in order to 

Exsolution of garnet and generate a humped 
orthopyroxene in harzburgitic garnet REE profile 
garnets progressively rotates REE 
pattern 

Garnet and clinopyroxene 
exsolution in lherzolites produces 
MREE enriched profile.  

(x) Exsolution Lahaye and Unspecified but 'sigmoidal' REE Variant of (h) 
from Brey (2003) pattern generated by exsolution of 
orthopyroxene  garnet from orthopyroxene  

Table 9.2: Summary of existing models for the formation of humped garnet REE profiles. (a) to (i) as 
for Fig. 9.17. 
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Figure 9.17: Diagrammatic summary of the various existing models for the formation of humped REE 
profiles in mantle ganiets. Models (a) and (b) are differential diffusion models, (c) to (0 are specific 
metasomatic enrichment models, (g) is the model involving percolative fractional crystallisation and 
(Ii) and (i) illustrate the exsolution models. In the diagrams the dashed lines represent the resultant 
'humped' garnet REE profile. Other minerals with dotted or solid lines are labelled individually. 
Arrows represent the differential increase/decrease involved in the modification of pre-existing REF 
profiles. 

9.5.2.1 DIFFERENTIAL DIFFUSION MODELS 

Initially suggested by Shimizu and Richardson (1987), the differential diffusion 

model requires that the LREE diffuse faster than the HREE so that solid state 

diffusion of LREE from the matrix of the rock (a metasomatic fluid) should occur 
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preferentially to that of the HREE forming a hump (see Fig. 9.17a). Hoal et al. 

(1994) analysed REF in kimberlite concentrate garnets from on- and off-craton 

kimberlites in southern Africa. The authors define a set of garnet REE IQs (diffusion 

coefficients) that vary in orders of magnitude LREE to HREE with 

LREE>MREE>HREE. This is the principal factor affecting formation of what they 

call 'sinusoidal' garnet REE patterns and the process by which it is attained is the 

partial re-equilibration with a LREE-enriched melt (see Fig. 9.17b, with the garnet in 

equilibriuni with the LREE-enriched melt shown as a dotted bold line). 

However, the experiments of van Orman et al. (2002) show that there should be no 

significant difference between diffusion rates across the REE in natural pyrope at 30 

kb. Therefore this would indicate that the differential diffusion models are unlikely. 

If the HREE diffuse sufficiently faster than the LREE ('-30 times faster) then a 

model such as that suggested by Khazan (2006) for garnet REE would be feasible. 

Khazan (2006) implies that the LREE in garnet are in a constant state of partial 

equilibrium and only the HREE approach equilibrium with surrounding fluids. Note 

that this is the opposite (i.e. HREE>MREE>LREE) of that required for the model of 

Hoal et al. (1994). 

9.5.2.2 SPECIFIC METASOMATIC ENRICHMENT MODELS 

Stachel et al. (1998) stated that the variety of garnet REE profiles measured in 

harzburgitic and lherzolitic garnets cannot easily be explained by a range of KIas as 

suggested by Hoal et al. (1994). Stachel et al. (1998) proposed a model of 

'metasomatic overprinting' of a refractory peridotitic garnet with a LREE-enriched 

fluid (forming humped profiles) where lherzolitic garnets attain a lower LREE 

abundance through equilibration with an exsolving clinopyroxene. However, the 

authors did not state the exact mechanism for the generation of humped profile, only 

that the metasomatic enrichment decreases strongly from LREE to HREE. 
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Griffin et al. (1999b) suggests that the cores of garnets from the xenoliths they 

studied had a depleted REE pattern that partially equilibrated with a rim that was 

'metasomatically overgrown' in equilibrium with a metasomatic fluid. They 

recognise, however, that partial equilibrium poses a problem in terms of requiring 

differential diffusion (see above). Promprated et al. (2003) suggest a model of 

'metasomatic enrichment' of a refractory garnet by LREE-rich fluids and subsequent 

low degree re-melting reducing only the La and Cc concentrations. Again no 

mechanism for metasomatism is suggested. 

Stachel et al. (2004) review trace element compositions of diamond inclusions and 

revise the model of Stachel et al. (1998) in order to incorporate two types of 

rnetasomatism affecting (i) harzburgites with a high LREE:MREE,HREE,HFSE ratio 

and (ii) lherzolites with a moderate LREE:MREE,HREE,HFSE ratio. The precise 

mechanisms for these 'metasomatic effects' and a definition of both metasomatic 

fluid compositions and also their origin are not explained. This is obviously a major 

problem with many metasomatic models. A metasomatic process seems likely to be 

involved because a super-positioning of events provides a means of generating the 

humped patterns. However it is often difficult to extract information which defines 

the pre-metasomatic composition, the metasomatic fluid composition and the 

influence of any partial equilibration effects. 

Simon et<  al. (2003), Simon (2004) suggest that the bulk rock (Table 9.2f and Fig. 

9.170 HREE composition in Kimberley xenoliths corresponds to ancient melting 

events. The authors attribute humped bulk rock REE profiles to 'significant 

incompatible element addition' or 'metasomatic enrichment'. The exact mechanism 

for this, however, is not defined. 

9.5.2.3 PERCOLATIVE FRACTIONAL CRYSTALLISATION MODEL 

In the model of Burgess and Harte (2004) the mantle is treated as a column of rock 

with an upward percolating MORB-sourde melt infiltrating. Fractional crystallisation 
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of olivine, orthopyroxene and clinopyroxene are modelled to have little effect on the 

relative LREE:HREE ratio whereas fractionation of garnet does -with garnet 

crystallisation, the melt becomes progressively enriched in LREE/HREE as it moves 

up the column. Therefore it is garnet itself that generates the humped profiles as 

existing gamets equilibrate with the LREE-enriched percolating melt. 

The advantage of this model is that the source of the melt is defined and the process 

of 'metasomatic enrichment' (undefined by the 'specific metasomatic enrichment 

models) is defined as a fractionating percolative melt. The mechanism for varying 

enrichment .ofgarnets with LREE is, straightforwardly, equilibration of garnet with 

this melt. These processes may be defined quantitatively and conform to the ideas of 

McKenzie (1989) and van Orman et al. (2002). The model also suggests an 

explanation for garnet cores possessing more enriched REF compositions in that they 

may represent equilibration with pre-existing metasomatic melt percolation events 

superimposed by rims with a more normal REE composition during later higher-

degree melts (fitting with the pattern observed in sample B48). Additionally, garnets 

from lower depth harzburgites have more highly fractionated REE compositions, 

whereas high-P lherzolites close to the base of the lithosphere tend to have garnets 

with more normal patterns. This conforms to the initially deep, primary mantle melt 

of MORB composition which generates a normal garnet REF profile, and this melt 

fractionates while percolating upwards, equilibrating with garnet to form a humped 

profile. 

9.5.2.4 EXSOLUTION MODELS 

The exsolution models do not involve metasomatic fluids of any kind and work 

backwards from the measured mineral compositions of garnets and pyroxenes in 

order to reconstruct the pre-exsolution REF pattern based on their modal proportions. 

Doyle (2002) starts with an assumed majorite composition that is similar to 

clinopyroxene ('sinusoidal') and, in the first case exsolves pyrope and orthopyroxene 

(for harzburgites) and secondly exsolves pyrope and clinopyroxene (for lherzolites). 
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The pyrope in each case attains a humped REE profile with the harzburgitic model 

yielding higher LREE compositions than the lherzolitic one. Additionally, Lahaye 

and Brey (2003) observe garnet exsolving from an orthopyroxenite-bearing 

composite xenolith. The authors suggest that this garnet will have a 'sigmoidal' REE 

pattern but do not provide a quantitative model for its generation. 

The major disadvantage of these models is that the origin of the pre-exsolution 

mineral compositions (for both major and trace elements) is not justified and the 

resultant garnet compositions are not confirmed to agree with the precise patterns 

observed in the xenoliths studied. 

9.5.2.5 INTERPRETATION IN RELATION TO NEWLANDS AND 

BOBBEJAAN SAMPLES 

In this study it has been possible to document exsolution of pyroxenes and Cr-spinel 

from a high-Cr garnet and this is the first major event to affect the Newlands and 

Bobbejaan samples (see Chapter 6) that may be shown by a combination of 

petrographic and geochemical data; Therefore, taking sample B55 which has well 

constrained modal proportions, one can use garnet and clinopyroxene REE 

compositions in this sample to reconstruct the REE composition of the pre-existing 

high-Cr garnet. The result is a relatively flat profile for high-Cr garnet at around 10 

times chondrite and is shown in Fig. 9.18. The harzburgites did not appear to have 

exsolved clinopyroxene (only orthopyroxene which is low in all BEE) so their 

existing garnet REE profiles are modelled without further change to their REE 

composition. Therefore REE profiles in the harzburgitic garnets and the 

reconstructed lhcrzolitic REE profiles are thought to represent the range of ancient 

BEE signatures prior to any exsolution and metasomatic effects. 
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Figure 9.18: REE for analysed garnet (solid black line) and clinopyroxene (grey line) from 1355. 
Dashed line is the mixture of garnet and clinopyroxene in the ratio 80:20 observed as the modal 
proportions in the sample (see modal proportions in Table 6.3), reconstructing the pre-exsolution, 
high-Cr garnet REE profile assuming no melt modification of either clinopyroxene and garnet. 

Since Ca is known to play a role in the partitioning of REE between garnet and 

clinopyroxene (see section 9.3.6), particular REE ratios and ppm values for 

harzburgitc and lherzolitic garnets (with several reconstructed bulk R.EE 

compositions, see Fig. 9.18) are compared to Ca cations in garnet in Fig. 9.19. This 

figure indicates that an increase of Ca-in-garnet appears to: 

linearly reduce the magnitude of the REE hump in garnçt (Fig. 9.19a) 

exponentially reduce the LREE/HREE ratio in garnet (Fig. 9.19b) 

linearly increase the Sin concentration in garnet (Fig. 9.19e) and 

exponentially increase the Yb concentration in garnet (Fig. 9.19 f) 

There are three additional items of note: 

There is a poor correlation of Ca-in-garnet with MREE/HREE ratios and Ce 

concentration (Fig 19.c and d, respectively). 

B48 (identified as being affected by metasomatism) is particularly anomalous 

in compared to the rest of the data in Fig. 9.19a and b, whereas it is only the 
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3. In general the reconstructed compositions (downward pointing triangle 

symbols in Fig. 9. 19a,b,c and Q are not radically different to the garnet 

compositions (upward pointing triangle symbols). They are usually in fitting 

with the best fit trend lines. 

Ca cations in garnet 	- 	 Ca catio,tlh garnet 	 Ca cations in garnet 

Figure 9.19: Ca in garnet (calculated on the basis of 8 cations) Compared to: (a) Magnitude of BEE 
hump defined by Sm/Dy, (b) LREE/HREE defined by CeNORM/YbNORM, (c) MREE/HREE defined by 
DyNOP.MIYbNOP.M, (d) Cc (ppm), (e) Sm (ppm) and (f) Yb (ppm). Lines of best fit are shown with the 
Calculated norm of residuals in the upper right of the plots (where numbers less than 4 indicate a 
reasonable fit). Best fit lines ignore the sample B48, which is affected by metasomatism (B48 is 
plotted as a circle symbol for its rim and a star symbol for its core compositions). Downward pointing 
triangles are reconstructed lherzolitic bulk REE compositions (see Fig. 9.18) and upward pointing 
arrows are the garnets from those samples. 

Therefore, the proposed sequence of events is as follows: 

I. High-Cr garnet equilibrates with REE in the matrix in accordance with the Ca 

concentration in garnet. The pattern happens to be humped for harzburgitic 

garnets and more normal for lherzolitic ones, by means of having a higher 
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HREE content. The mechanism for this is provisionally suggested to be due 

to a Ca effect in garnet. 

Exsolution of orthopyroxene + spinel in harzburgitic gamets caused only 

minor modification to the original garnet REE profile. And, exsolution of 

clinopyroxene ± orthopyroxene + spinel in lherzolitic garnets predominantly 

caused a reduction in LREE in garnets (see Fig. 9.18). 

A final phase of modification in a few samples is in accordance to the 

percolative fractional crystallisation model of Burgess and Harte (2004). 

However, the Newlands and Bobbejaan samples do not provide evidence of a 

wide difference in depths of origin for different samples; thus it is not 

possible to examine changes through a percolative metasomatic column as 

was done for Jagersfontein by Burgess and Harte (2004). 

9.6 Conclusions 

A list of the conclusions of the trace element data and interpretation is as follows: 

LILE analyses indicate that Na in garnet and K in clinopyroxene are higher in 

the high-Cr lherzolitic suite than in lower Cr suites. La is proportional to Sr in 

garnet and clinopyroxene with a higher Sr:La ratio present in the low-Ca 

harzburgitic garnets. 

For HFSE positive correlations exist between Ti, Y, Zr and Nb in garnets and 

Cr-spinels but not clinopyroxenes. High-Cr lherzolitic garnets and Cr-spinels 

have the highest concentrations of HFSE and the low-Ca harzburgites have 

the lowest HFSE. 

The correlation between Ga and Ni is very strong in Cr-spinels and weakly 

present in garnets. Cr-spinels and clinopyroxenes show lower Ga in the high-

Cr lherzolite suite, whereas garnet with higher Ga and Ni is indicative of the 

higher Cr lherzolite and higher Ca harzburgite suite and thought to 

correspond to higher temperatures of equilibration. 
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In lherzolitic samples REE garnet/clinopyroxene partitioning varies with 

garnet Ca content due to the effect of Ca on REE partitioning described in the 

literature (e.g. Harte and Kirkley, 1997). 

Reconstruction of bulk REE compositions in pre-exsolution high-Cr garnets 

indicates a primary.REE, pattern, which is humped for harzburgitic samples 

and, approximately flat in lherzolitic ones. 

Trace element zonation is only apparent in B48, BOB 1 13 which have zoned 

REE profiles that correspond to samples with external Ti zonation. These 

samples appear to have been affected by metasomatism and could conform to 

the percolative fractional crystallisation model of Burgess and Harte (2004) 

since the core-to-rim, humped-to-normal feature is observed, which is 

especially evident in B48. 

Initial bulk trace element compositions (i.e. those preceding the exsolution 

and metasomatic effects in '5' and '6') for the samples are modelled and 

show a correlation with the Ca concentration in garnets. Ca in garnet appears 

to have a progressive effect on incorporation of REE, reducing the LREE 

hump and increasing MREE and HREE concentrations in garnet as more Ca 

is present. 

Therefore point 7 implies the possibility of a single-stage, non-disequilibrium 

process for the modification of existing humped profiles. Unfortunately, there 

is no remaining evidence in the rocks, from either petrographic features or 

chemical zoning preserved in minerals, to suggest further details on the 

generation of these primary REE patterns. An explanation for the extremely 

high Sr in low-Ca, high-Cr garnets remains elusive as well. 

The application of specific models involving 'differential diffusion' or/and 

'metasomatic enrichment' cannot be justified for the Newlands and 

Bobbejaan samples without further evidence of 'pre-primary' compositions. 
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10. Synthesis, Wider Implications and Further Work 

The aim of this chapter is to synthesise the conclusions from Chapters 3 to 9 into a 

coherent and integrated model for the evolution of the Newlands and Bobbejaan 

samples representing the chromite-garnet peridotite assemblages. This will enable an 

assessment of how well the initial aims of the project have been achieved and it will 

also allow discussion of the 'wider implications' of the findings and how they 

contribute to existing understanding of the evolution of the mantle lithosphere. The 

final section, entitled 'further work', will address directions for additional research 

resulting from the findings of this thesis. 

10.1 Synthesis: A Multistage History for the Evolution of 

Newlands and Bobbejaan Samples 

This section is divided into the 5 identifiable evolutionary events (stages) for 

Newlands and Bobbejaan samples in chronological order. Evidence for the details of 

the events and their relative chronology is integrated from the observations and 

conclusions in Chapters 3-9, and summary figures of the garnet zonations and the 

chronology of events are produced in Figs 10.1 and 10.2: 

10.1.1 Stage 1: Earliest known mineralogy 

The Newlands and Bobbejaan samples comprise garnet-rich xenocrysts 

(monogranular) and xenoliths (polygranular) (Chapter 3), with either harzburgitic or 

lherzolitic rock compositions. Within the polygranular samples, the main texture 

evident is granuloblastic with crystals generally in the range 2-5mm. Modally, the 

polygranular samples indicate that the samples originate from garnet-rich (>50% 

garnet in most cases), rocks of peridotitic affinity with rare examples of garnetite 

(>90% garnet). It is expected that other matrix minerals will have been olivine with 

or without minor pyroxene and Cr-spinel although probable olivine and 

orthopyroxene are always altered. Bulk garnet compositions are high in Cr (see Fig. 

10.1, Stage 1) and are suggestive of higher P-T than calculated for the subsequent 

stages. 
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Little is known in detail about this stage and any prior events leading to the 

generation of the earliest known mineralogy since the later events have modified 

mineral compositions. However, given that exsolution-generated inclusions in 

garnets do not have measurably different compositions, it appears that the pre-

exsolution garnets were relatively homogeneous chemically in terms of major 

elements (e.g. see sample B55, X-ray map). According to thermodynamic modelling 

of several samples using the Perplex program, the majority of them are calculated to 

have pre-exsolution Ps and Ts >65kb and> 1300°C. The pre-exsolution, primary 

trace elements patterns in garnets are also thought to have formed before or during 

Stage 1 and normalised REE plots are humped in LREE for harzburgites and 

relatively flat for lherzolites (Chapter 9). 

10.1.2 Stage 2: Exsolution of pyroxene and spinel from garnet 

Within individual garnet crystals the internal texture grades from pristine to annealed 

exsolution textures to one with no inclusions at all (Chapter 3). The exsolution forms 

orthopyroxene and Cr-spinel in harzburgitic garnets and clinopyroxene and Cr-spinel 

± orthopyroxene in lherzolitià gamets. Calculated bulk rock compositions conform to 

the composition of high-Cr garnets (they have 8 cations with 12 oxygens), which 

appears to represent a pre-exsolution bulk crystal composition. When plotted on a 

CaJ(Ca+Mg+Fet) vs. Cr/(Cr+Al) diagram the initial compositions plot at higher 

Ca'(Ca+Mg+Fet) and higher Cr/(Cr+Al) for lherzolitic samples and at higher 

Cr/(Cr+Al) for harzburgitic samples (Fig. 10. 1, Stage 2). Garnet core compositions 

in samples with multiple inclusions reveal that the lower-Cr garnet produced by 

exsolution was relatively homogeneous (e.g. sample B55, Chapter 5). According to 

the sliding reactions postulated (see Chapter 6) and the geothermobarometric 

modelling (see Chapter?) the exsolution event represents a substantial lowering of P 

and T (probably close to a normal continental geotherm) for the samples. 

The primary trace element patterns in garnet are thought to be redistributed amongst 

pyroxenes and spinels as exsolution occurs, modifying the REE patterns in garnet as 
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described in Chapter 9. The textural features within garnet indicate a certain degree 

of disequilibrium even though the rocks they comprise are texturally relatively 

equilibrated (i.e. granuloblastic). The extent of annealing of exsolution textures 

present signifies that the samples were at residing over a diverse range of 

temperatures (probably for an extensive length of time i.e. in the order of millions of 

years). This is confirmed by the range of temperature estimates (e.g. garnet-

clinopyroxene Fe-Mg exchange thermometers) reported in Chapter 7. For example, 

B55 a sample with a pristine exsolution texture is lower temperature than many 

samples that show annealed textures. 

10.1.3 Stage 3a: External zonation - P-T re-equilibration and metasomatism 

Major element external zonation in the majority of garnets and additionally in two 

clinopyroxenes studied (Chapter 5) indicates an event (-0.5-5 Ma from diffusion 

constraints, Chapter 8) producing major element external zonation from garnet to 

matrix and clinopyroxene to matrix. In NEW303 the matrix clinopyroxene (core) and 

matrix garnet (core) pair generate a higher P-T estimate than the one produced using 

rim compositions (Chapter 7). Therefore 'Ed' garnet zonation (external zonation to a 

matrix of diopside ± serpentine ± Cr-spinel) is expected to represent P-T re-

equilibration of garnet with matrix (this overlaps compositionally with type lb 

zonation of Burgess and Harte, 1999). It is also expected that Eg+ zonation (external 

zonations towards a matrix of garnet where Cr decreases towards the rim) and Es 

zonations (zonation towards a matrix of serpentine ± Cr-spinel) are indicative P-T re-

equilibration since they follow the down P-T reaction simulations in Chapter 6 (these 

are shown in Fig. 10.1). External P-T re-equilibration is expected to be contiguous 

with Stage 2. This P-T re-equilibration is at least 25°C and 2kb (NEW303, Chapter 

7) and probably up to 100°C and 6kb (see Perplex simulation for B0B402, Chapter 

7). 

Eca zonation (external zonation towards the matrix involving an increase in Ca ±Ti 

from core to rim) and Eg- zonation (external zonation towards a matrix of garnet 

where Cr increases towards the rim) are the only external zonation types that 
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conform to metasomatic modification since they may be accompanied by strong Ti 

and REE zonation (Chapters 5 and 9). These conform to the zonation types 11th and 

II respectively from Burgess and Harte (1999). Additionally these represent the two 

vectors on the CaI(Ca-1-Fet+Mg) vs. Cr/(Cr+A1) that are at odds with the sliding 

reaction simulations (Fig. 10. 1, lowermost plot). These zonations generate the 

longest diffusion profiles and calculations yield time scales at the high end of all 

external zonations (up to lOs of Ma, Chapter 8). However, it is not possible to 

comment on whether metasomatism occurred prior to, or after external P-T re-

equilibration (in Fig. 10. 1, Stage 3a, the situation for metasomatism occurring at a 

later stage is shown). 

Sample B48 is zoned in Ni and has concentrations in its core and rim, which, 

according to Ni-in-garnet thermometry, indicate that metasomatism affecting the rim 

of the sample occurred at 40°C above the ambient mantle temperature for this 

sample (Chapter 9). This is the only sample to indicate REE zonation where the 

HREE are enriched above the concentration expected for the particular Ca content of 

the garnet. REE in garnet and clinopyrOxene are not thought to be affected by the P-

T re-equilibration since they are not zoned. 

10.1.4 Stage 3b: Internal zonation - P-Ire-equilibration 

Internal zonation towards exsolution-generated inclusions clearly overprints external 

metasomatic zonation (see BOB1 13, illustrated in Fig. 10. 1, Stage 3b). External P-T 

re-equilibration zones are also apparently overprinted by internal zonation. However, 

the initiation of internal zonation may have occurred during some of the time interval 

over which the external zonation operated (see summary points 6 and 7 from Chapter 

8, Section 8.4). Fig. 10.2 indicates that some internal P-T re-equilibration may have 

occurred at the final stages of exsolution as well but this is not preserved in the 

garnet crystals since some textural annealing, post exsolution, is thought to have 

occurred (see Stage 2, in 10.1.2). It is also possible that inclusions may have 

overgrown internally zoned garnet during Stage 2 
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As with external P-T re-equilibration zonation, internal zonation follows very 

specific trajectories on a CaJ(Ca+Mg+Fe t) vs. Cr/(Cr+Al) plot (see Chapter 5). These 

form a continuum of trajectories (i.e. zonation types Is and Id) and conform to the 

down P-T sliding reactions (garnet-spinel transition reactions) as described in 

Chapter 6. Therefore this is interpreted as down P-T re-equilibration of garnet with 

its inclusions. 

Geothermobarometry using existing formulations yield P-T estimates consistently a 

little higher using garnet cores rather than using garnet adjacent to inclusions 

(Chapter 7). And also P-T estimates from clinopyroxene inclusions and garnet 

adjacent to the clinopyroxene inclusion yield P-T estimates lower than both core and 

rim external P-T estimates. These indicate similar values to those of Stage 3a: a 

decrease of at least 40°C and 4kb (NEW303, Chapter 7) and possibly as high as 

100°C and 6kb (see Perplex simulation for B0B402, Chapter 7). Diffusion distances 

indicate that internal re-equilibration was shorter lived (C  0.5 Ma) than external P-T 

re-equilibration (> 0.5Ma) and external metasomatic re-equilibration (—lOMa) 

(Chapter 8). It appears that this internal chethical modification could not be 

associated with the kimberlite magma itself since one would expect, in addition, to 

detect some diffusion towards the kelyphite rims of garnets of a similar magnitude 

and this is not the case. However uplift associated with kimberlite genesis cannot be 

ruled out (see gap with unknown time interval between kimberlite eruption and end 

of internal zonation event in Fig. 10.2). 

Additionally, the RUE in garnet and clinopyroxene are not thought to be significantly 

affected by the P-T re-equilibration since garnet zonation in REE is not detected in 

accordance with their proximity to inclusions. The samples do not appear to have 

been chemically modified again until kimberlite eruption - presumably because the 

closure temperature for diffusion had been crossed. 
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10.1.5 Stage 4: Kimberlite eruption 

The age of the "Belisbank" kimberlite eruption is 118±2.8 Ma 2o using a Rb-Sr 

isochron of kimberlite whole rock and phlogopite macrocrysts (Smith et al., 1985b). 

For the Newlands kimberlite an age of 114.1 ±1.6 Ma.2a is obtained (Smith et al., 

1985b utilising the method as above). The effect of the kimberlite magma itself may 

be seen as micro- and macro-veining in samples and also as kelyphytic rims on 

garnet (see Chapter 3). The kimberlite mechanically disrupted the samples into 

predominantly monogranular garnet macrocrysts and was most probably the agent 

that retrogressed olivine and orthopyroxene by hydration into serpentine. The rapid 

decompression and cooling of the samples as xenoliths and xenocrysts within the 

kimberlite magma appears to have been fast enough not to have instigated any 

significant chemical diffusion in garnet, Cr-spinel or clinopyrocene, preserving the 

previous major and trace element chemical distribution in these minerals. Once near 

the surface the samples will have suffered hydrothermal alteration by carbonated 

fluids until the kimberlite dyke/blow had cooled to a shallow sub-surface temperature 

(<<100°C). The samples will have been in the kimberlite host rock for a further 

—lOOMa and will have been affected by the percolation of meteoric fluids until 

mining activity commenced. 

10.1.6 Ages for the stages 

There are few time markers for the stages of the history of the Newlands and 

Bobbejaan samples described above (see Fig. 10.2). Most recently there is the 

kimberlites' eruption ages over the period 1 12-l2lMa (Smith et al., 1985b) and the 

dates for the Newlands peridotites themselves (conducted by Menzies, 2001 using 

Re-Os isotopes), which indicate a wide range of ages spanning from the Proterozoic 

(minimum Tpjien j um  depletion = 1 .77Ga) to the mid-Archnn (maximum TMOdeI age = 

3.520a). The oldest TRDS and TMA5 overlap with the 3.2-3.3Ga Sm-Nd and Rb-Sr 

model ages of Richardson et al. (1984) for diamond inclusion garnets. 
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Using the diffusion coefficient of Si in olivine at 1000°C (extrapolated from Dohem 

et al., 2002) as an upper limit for the diffusion of Cr in garnet, it is feasible that the 

samples remained at this temperature (i.e. post Stage 3b) for> 1 .770a and up to 

3.54Ga. Therefore the Menzies data may apply to the earliest stages of the formation 

of the samples in this study from Newlands (Bobbejaan peridotitic samples have not 

been analysed for Re-Os). 

Fig 10.2 shows the time window for events observed in the Newlands and Bobbejaan 

samples (i.e. Stages 2-3b) and indicates that the age and overall time interval for the 

main down P-T events (i.e. exsOlution and re-equilibration) and also metasomatism is 

not known. The age of these events could be close to the more ancient Stage 1 (pre-

exsolution) or, equally, they could be close to the recent Stage S (kimberlitic). In 

terms of relative timings for these events, exsolution occurred in a pre-existing garnet 

and olivine-rich rock type and the garnets were relatively homogeneous (see section 

10. 1.1 and 10. 1.2) but there is no handle on the time interval between the generation 

of the earliest known mineralogy and the start of exsolution. 

Multiple inclusions of the same mineral within garnet are not significantly different 

in their compositions, therefore inclusion formation must have been occurring prior 

to the external P-T and metasomatic modifications. Since metasomatism is known, 

firstly, to predate internal P-T re-equilibration and, secondly, to occupy a time period. 

greater than external P-T re-equilibration, it has to predate and post date external P-T 

re-equilibration (this is shown as a dotted line in Fig. 10.2 since it only affects a few 

samples). Internal P-T re-equilibration is known to post date metasomatic zonation 

from the clear geometry of chemical variation found in samples such as BOB 113. 
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Figure 10.2: Chronological summary of the events affecting Newlands and Bobbejaan samples. 
'Dating from Menzies (2001), 2dating from Smith et al. (1985b) (see text for discussion). The final 
max. and nun. P-T values are derived from a final internal P-T estimates whereas pre-exsolution and 
pre-external P-T re-equilibration P-T values are indicative only and derived from Perplex modelling. 

102 Wider Implications 

The implications of the sequence of stages events described in the previous section 

(section 10.1) may be seen in a wider mantle-lithosphere context. With comparison 

to a wide range of previous research, there are some important links and disparities 

that should be highlighted as a final part to this thesis. Firstly the generation of the 

specific compositions of the samples shall be addressed, secondly the implications 

for the major down P-T and metasomatic events of Stages 2-3b, shall be discussed 

and finally the parts of this study relevant to diamond exploration shall be outlined. 

10.2.1 Generation of the bulk rock major element compositions of Newlands and 
Bobbejaan samples 

The events prior to the 'documented story' presented in this thesis remain unknown 

but several considerations may be made: Firstly, justifying the presence of a highly 

garnetiferous rock type is, itself, difficult to conceive in the upper mantle. The Cr-

content of many of the samples is very high (see Chapter 4) and therefore the bulk 

rock requires a large melt extraction volume % since Cr is refractory and will be 

concentrated in a residue. Melt extraction in the spinel stability field would allow for 

a Cr-spinel to remain in the residue, enriching it significantly in Cr and Al. 

Ringwood (1977) suggests the formation of an olivine, orthopyroxene, Cr-spinel 

cumulate in a large igneous plutonic rocks and Bulatov et al. (1977) suggest Cr-

spinel harzburgite formation in an oceanic lithosphere setting. Many authors, e.g. 

Stachel et al. (2004) and Simon (2004), have also used 'ultra-depleted' aspects of 

trace element patterns in diamond inclusions and harzburgitic xenoliths 

(respectively) to justify the presence of an Archaean depletion event. Here there are 

possible links to komatiite formation in the Archaean, since there is abundant 

evidence for large volumes of these lava flows in Archaean greenstone belts (e.g. 

Viljoen and Viljoen, 1969), which would have created highly depleted residues in the 

upper mantle (e.g. Walter, 1998). These residues would be highly magnesian but the 
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extent of Cr-enrichment is unknown and dependent on whether garnet or spinel was 

fractionating in the source. 

Bulatov et al. (1977) and Ringwood (1977) suggest subsequent burial of their 

depleted ultramafic rock types via subduction since this would be one mechanism 

that would allow this rock to be converted to a garnet-rich rock type at pressures at 

least those of the Al-peridotite spinel-garnet transition (15kb, 45km) for a typical 

continental geotherm and probably at considerably higher pressure if Cr/(Cr+Al) is 

high (Klemme, 2004). However, it may be possible to have a melt depletion event at 

deeper levels and negate the need for an extreme burial event altogether. 

Harte et al. (1980) suggest a model for the generation of low-Ca, high Cr/Al and high 

Mg/Fe bulk rock compositions observed for peridotitic diamond inclusions via 

interaction with a melt. The melt hypothesised has a high CO2 content which 

provides a mechanism for removing more CaO than with CO 2-absent melting. Thus 

in situ deep melting can account for the diamond-chromite-harzburgitic assemblage 

is feasible without need for direct subduction of lithosphere. However, this is not 

applicable to the lherzolitic compositions in the Newlands and Bobbejaan samples 

From the evidence preserved in the Newlands and Bobbejaan samples it is not 

possible to discern absolutely which of the above hypotheses is most applicable. 

Since the bulk rock compositions are so close to Cr-garnet + olivine, it is difficult to 

rule out a depletion event that left spine] or garnet in the residue and this could relate 

to komatiitic melt extraction events in the Archaean. Additional diversity of Ca 

compositions observed may be potentially be explained by subsequent and 

differential interaction with a CO 2-rich fluid which may also amplify the high Cr/Al 

and Mg/Fe ratios. The maximum P-T is expected to have been in excess of 65kb and 

1350°C, therefore, unless initial depletion occurred at enormous depths, burial of 

some kind is required for the peak metamorphic mineral assemblage. A possible 
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mechanism for this would be a continental accretionary process, where lithosphere 

with >150km depth is formed relatively rapidly with a similar age for all depths (see 

models of Pearson, 1999). The Newlands and Bobbejaan samples would then 

represent further evidence for crust and mantle coupling in lithospheric roots for 

billions of years. 

10.2.2 Generation of the bulk rock REE compositions of Newlands and 
Bobbejaan samples 

The finding in Chapter 9 that the humped REE compositions of garnets in the 

Newlands and Bobbejaan samples are strongly dependent on Ca concentration in 

garnet allows a range of humped and normal REE profiles to be formed across a 

range of compositions in a single event. This potentially conflicts with a two-stage 

(i.e. bulk REE depletion + LREE enrichment) process, favored by many authors e.g. 

Stachel et al. (2004), and a single stage formation process requires some attention. 

One possible explanation is that the incorporation of REE (and other trace elements) 

into garnet occurred at the time of first formation of garnet as it crystallised from a 

series of melts of variable Ca/(Ca+Mg+Fe) ratio. Such a situation might arise in a 

model like that proposed in Harte et al. (1980) (see above) where a range of Ca 

compositions are produced under the influence of varying from a CO 2-content in the 

melts. Without further constraints, the origin and precise composition of this melt is 

not identifiable. 

A second possibility is that the bulk rock attained an approximately 10 times 

chondrite REE concentration during initial melting in the spinel stability field (see 

last section, model of Ringwood, 1977), but the problem with this is that there is no 

known mineral in a spinel-peridotite that can contain sufficient HREE to explain the 

levels seen in garnets in the samples from this study. Therefore if a single stage 

formation of bulk rock REE concentrations is required, then a primary melting event 

would have to have been in the garnet stability field. Again from the evidence 

preserved in the Newlands and Bobbejaan samples it is not possible to discern 

absolutely which of the above hypotheses is most applicable. 
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10.2.3 Mantle evolution 

Having discussed the chemical constitution of the samples thçprocesses responsible 

for mantle decompression, cooling and metasomatism in the stages described section 

10.1 must be addressed with any quantitative or qualitative constraints available 

placed upon them. With regard to the down P-T events, there are several possible 

explanations (mentioned at the end of Chapter 7) which are dependent on the 

duration of the observed events, for which some diffusion constraints exist (see 

Chapter 8). Therefore, the 0.5 - 5 Ma timescale for external P-T re-equilibration 

(Stage 3a, 5kb = 15 km uplift) would suggest a lower uplift rate of— 3 mm/year 

for a 5 Ma timescale and a higher uplift rate of 30 mm/year for a 0.5 Ma timescale. 

This rate of uplift may allow for an associated cooling along a geotherm of 100°C 

(i.e. 20°C/Ma for a  Ma timescale) if the longer timescale is used, resulting in an 

uplift that is not geologically instantaneous. Since Stages 2-4 are thought to be 

contiguous, this is most likely part of a longer lived (-10 Ma), down P-T event (see 

Fig. 10.2). 

Such a continual decompression-with-cooling history expressed in these different 

ways (i.e. exsolution and major element zonations) has not been described for natural 

samples before. An uplift rate in the order of 3mm/year might be due to collisional 

tectonics, since these kinds of uplift rates have been observed in the recent geological 

past (e.g. associated with continent-continent collision in continental lower crustal 

granulites, Harley, 1989, and also uplift rates of> 6mm/year have been calculated in 

the Nanga Parbat syntaxis, Karakoram massif, NW Himalaya Treloar et al., 1991). If 

a 3mm/year uplift rate acted over the proposed lOMa, then up to 30km total 

unroofing/erosion at the surface would be required. From the examination of the 

crustal cratonic rock units in southern Africa, it is known that assembly of the 

Kaapvaal craton was occurring in the late Archaean (De Wit et al., 1992). Re-Os 

dating of eclogitic diamond inclusion sulphides from kimberlites adjacent to the 

Colesberg magnetic lineament(Richardson et al., 2004) suggest multiple timings for 

diamond formation with the oldest at around 2.9Ga. The authors imply that these 
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diamond formation events were caused by upward migration of C-bearing fluids 

derived from subducted slabs of oceanic lithosphere just prior to continent-continent 

collision. The Colesberg magnetic lineament is thought to represent the suture zone 

between the eastern and western blocks of the Kaapvaal craton. 

In terms of the metasomatism, which is only observed in a few samples from 

Newlands and Bobbejaan, it seems that this episode of chemical modification was 

not temporally distinct from the main down P-I event. Therefore this would conform 

to the diamond formation event described above with regard to syn-orogenesis 

timing and also the evidence for modification of the sub-continental lithospheric 

mantle by means of subduction-related fluids. Additionally, the Jagersfontein 

kimberlite pipe contains xenoliths that have abundant evidence for metasomatic 

modification (see Burgess, 1997; Burgess and Harte, 1999; Burgess and Harte, 2004) 

and this pipe is situated directly over the Colesberg lineament. 

The study of Leost et al. (2003) highlights instances of diamond growth history 

(found in placer deposits in Namibia) that preserves the highest P-T inclusions closer 

to the core and successively lower P-T inclusion assemblages at their rims. That 

study documents a down P-T diamond growth history for eclogitic diamonds but 

would be in accordance with the syn-orogenesis, metasomatic event proposed here 

for the Newlands and Bobbejaan samples. The humped REB compositions of 

peridotitic diamond inclusion gamets (Shimizu and Richardson, 1987) would 

potentially result from encapsulation of the primary mineralogy and chemistry of 

Stage 1 with metasomatic modification occurring in isolated, non-encapsulated 

garnets only (Stage 3a). 

10.2.4 Relationship of Newlands and Bobbejaan samples to diamond 

One sample from this study was observed to contain diamond; it is the lowest Ca 

harzburgitic garnet of all the samples (B08404) and it is from the Bobbejaan 

kimberlite. Therefore the harzburgitic connection is confirmed and the result 
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conforms to the study by Menzies (200 1) where the diamondiferous samples from 

Newlands were predominantly of the harzburgitic paragenesis. Therefore, in the 

Newlands and Bobbejaan samples, high-Cr garnet without regard to Ca does not 

necessarily imply a strong correlation to diamond, whereas it is the high Cr AND low 

Ca garnet that does (Gurney and Switzer, 1973; Gurney, 1984). This conforms to the 

harzburgitic field in diamond facies (G1OD) Grutter et al., 2006). 

10.2.5 Implications for diamond exploration 

A list of points concerning implications of this study for diamond exploration is as 

follows: 

From Cr-Al partitioning between garnet and spinel (Fig. 7.7 and 7.9) and 

Perplex modelling (Fig. 7.12c and d) the garnet compositions that indicate 

equilibration in the diamond stability field are those with Cr/(Cr+Al) > 0.2 

with accompanying low CaJ(Ca+Fe+Mg) (<0.3). This is predominantly 

found in high-Cr harzburgitic samples, i.e. those plotting in the G1OD field 

(Gurney, 1984; Grutter et al., 2006). 

The lherzolitic samples in this study tend to plot at too high temperatures for 

diamond stability, hence the presence of clinopyroxene tends to indicate 

higher temperatures of equilibration. However, along a continental geotherm, 

garnet Cr/(Cr+Al) > 0.25 and CaI(Ca+Fe+Mg) > 0.2 with spinel Cr/(Cr+Al)> 

0.7 should place minerals in the diamond stability field according to Perplex 

modelling. 

A new finding from this study is that Cr-pinels from the lherzolitic 

paragenesis have lower MgI(Mg+Fet) and higher Ti than the harzburgitic Cr-

spinels, but they also have overlapping Cr/(Cr+Al) contents. Spine] 

compositions indicative of the diamond stability field are Cr/(Cr+Al) >0.75 

but also with high Mg/(Mg+Fe) ratios, and are again generally found in the 

harzburgitic samples. Therefore in terms of diamond exploration, if it is the 

harzburgitic diamond paragenesis that is sought, .then one should place 
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particular importance on the high-Mg and lower Ti parts of the DI fields of 

Fipke et al. (1995) (see Fig.4.33a and b in Chapter 4). 

Negative Clapeyron-sloped isopleths (Fig. 7.12c and d) show that an increase 

of temperature has the effect to increase garnet Cr/(Cr+A1) and 

CaJ(Ca+Fe+Mg) in lherzolitic samples and to increase Cr/(Cr+Al) in 

harzburgitic samples. Therefore knowledge of coexisting Cr-spinel 

compositions are useful because it generally has. positively sloped isopleths 

for Cr/(Cr+Al) and should help to constrain the pressure of the garnet-spinel 

pair. 

In Chapter 7 it is shown that Perplex computation of phase diagrams for 

peridotitic bulk rock compositions in CrCFMASNa may be used to generate 

petrogenetic grids from which P and T may be inferred for particular garnet, 

spinel and clinopyroxene mineral compositions. This may be applied to 

xenolith suites from kimberlites to see if diamond stability field mantle has 

been sampled. 

In terms of P-T estimates (Chapter 7), Ni-in-garnet thermometry (Ryan et al., 

1996), single garnet barometry (P38 in Grutter et al., 2006) and single 

clinopyroxene thermometry and barometry (Nimis and Taylor, 2000) do not 

predict pressures and temperatures with sufficient assurance to place 

significance on a verdict of whether the minerals equilibrated in the diamond 

stability field or the graphite stability field. It is the composition of coexisting 

minerals in equilibrium that allows tighter bounds to be placed upon both 

pressure and temperature (see relationship in Fig. 7.8). Therefore an approach 

for geothermobarometry that involves examination of polymineralic 

peridotite xenoliths is endorsed. 
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10.3 Further Work 

10.3.1 Further work on the Newlands and Bobbejaan samples 

The sample set for this study provides a wide range of peridotitic bulk rock 

compositions in terms of Cr/(Cr+Al) and Ca/(Ca+Fe+Mg), they provide an ideal 

means to assess both crystal chemical effects (such as the Ca-in-garnet effect on REE 

incorporation into garnet and pyroxené, see Chapter 9) and also particular aspects of 

mineral chemistry and phase relations in 4-phase (harzburgitic and wehrlitic) and 5-

phase (lherzolitic) assemblages. The samples also provide evidence for a unique set 

of features representing a down P-T event. 

Therefore further study of these samples is recommended for the following: 

Further analysis of trace element compositions of garnet, Cr-spinel and 

clinopyroxene compared to Ca-in-garnet would widen the dataset generated 

in this study. 

Use the full range of bulk rock compositions of the samples to calculate more 

petrogenetic grids using Perplex. Further testing of the accuracy of this 

method is required. 

Isotopic data, especially Lu-Hf dating of the garnets, in the Newlands and 

Bobbejaan samples would be especially beneficial to the chronology of the 

down P-T event and metasomatism, relative to the Archaean formation time 

and the kimberlite eruption age. 

10.3.2 Further work on lines of investigation generated by findings in this study 

1. Since olivine and orthopyroxene major and trace element compositions are 

not known in this study it would be extremely interesting to find similar 

garnet-spinel-bearing samples(possibly from other kimberlites) that have 

fresh olivine and orthopyroxene to analyse. This would provide better P-T 

constraints and also establish phase relations more clearly. 
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In terms of the down P-T event, it would be very interesting if other xenoliths 

could be found in southern Africa that also document this type of history. 

Further definition of the Ca-in-garnet effect on trace element compositions of 

garnet and clinopyroxene would be an interesting line of investigation to 

follow given the preliminary findings in this study (Chapter 9). It would be 

beneficial to find similar correlations in other peridotitic garnets from 

diamond inclusions and also from non-metasomatic xenolith samples. 

The Perplex program should be further tested on natural samples (especially 

Cr-bearing peridotite xenoliths) for which independent geothermobarometry 

may be applied. 
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Appendix I: Analytical Techniques 

For this project I used optical microscopy initially to examine the samples; further 

analysis was carried out on electron and ion microprobes. The following sections 

describe these in more detail with additional information provided in the last section 

on the preparation and use of a new chromite glass standard in ion microprobe 

analysis. In addition Appendix IV contains information on the scanning electron 

microprobe analysis of particular samples, which was used to test for garnet crystal 

orientation by applying the electron backscatter diffraction technique. 

1.1 Optical Microscopy 

Initially a binocular microscope was used with a 'goose neck lamp' to examine the 

range of features visible on the surface of intact and cracked samples. The mineral 

colouration, grain size, mineralogy and texture present was noted to provide context 

for more detailed investigations. The samples that were large enough to display 

textural features were preferentially selected for mounting and microanalysis. Heavy 

mineral concentrate was also examined in a glass dish under the microscope and the 

mantle phases were selected and sorted for mounting and electron microprobe 

analysis. 

Once the selected samples were mounted and polished or made into polished thin 

sections they were examined using a reflected light microscope. The thin sections 

were also examined on a petrographic microscope in plane polarised and cross 

polarised light on a rotating stage providing information on the orientation of 

anisotropic minerals. At this stage photographs were taken of all the polished 

samples in reflected light. More detailed photographs were taken of the distinctive 

features visible and a catalogue of these thin section images was produced including 

both secondary (alteration-type features) and primary features. 
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Primary mineralogy and mineral modal abundance was recorded for all the polished 

samples along with mineral grain sizes. As far as possible polygranular samples were 

distinguished from monogranular ones (see Chapter 3) but those that were 

ambiguous were selected for mineral orientation analysis (see Appendix IV). 

1.2 Electron Microprobe 

Analysis was carried out on Cameca SX100 Electron Microprobe, School of 

GeoSciences, University of Edinburgh and was supervised primarily by Dr. Pete 

Hill. The instrument is part of EMMAC (Edinburgh Materials and Micro-Analysis 

Centre). A description of the sample mounting, electron microprobe beam and 

spectrometer setup and the standards used is as follows: 

1.2.1 	Mounting 

The samples ranged in size from 2-60 mm (long axis) to approximately 2 mm (short 

axis). The larger samples (>20 mm short axis) were cut to the size of a rectangular 

thin section (35 x 15 mm), or circular thin section (25.4 nun diameter) using a 

diamond studded saw, mounted on glass slide using araldite, ground to thickness of 

50 p.m on 40 pm, 20 p.m, 10 pin, and 5 p.m diamond studded laps. They were then 

polished using 3 p.m, 1 p.m, 0.3 p.m diamond paste on motorised laps. 

The medium sized samples (<20 mm short axis, > 2 mm long axis) and coarse 

concentrate grains were positioned directly onto lubricated base plate of 25.4 mm 

(I") round Teflon containers. Araldite poured onto samples and allowed to set on hot 

plate so that air bubbles escaped. Samples were cut using circular diamond studded 

saw to expose the plane of interest. Grinding and polishing as above. 

The small samples (<2 mm long axis) and fine concentrate grains were positioned 

directly into 2 mm holes in 25.4 mm diameter x 5 mm aluminium discs (20 holes per 

disc). Araldite was poured onto samples and allowed to set on hot plate so that air 

bubbles escaped. Grinding and polishing as above. 
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1.2.1.1 CARBON COATING 

Carbon coating was used to prevent charging for samples inserted into the Electron 

Microprobe. All polished samples were carbon coated. Coating was carried out at 

high vacuum using current, through touching and sprung carbon rods (one sharp 

against the other blunt one). This was carried out at a distance of 250 mm, to 

generate carbon sputtering until a current of 0.5 A was attained across a glass slide 

tester. Aquadag (colloidal graphite) was applied to the edges of sample holders to 

allow conduction between sample and its metal holder. 

1.2.2 Beam and spectrometer setup for EDS analysis 

A beam current of 201A was used at 20kv, accelerating voltage, in order to 

maximise counts whilst maintaining a small beam size of approximately 4-5um. A 

beam regulator is installed to insure that the current does not fluctuate during an 

analysis. Table 1.1 shows the setup of the 5 spectrometers for EDS analysis (Energy 

Dispersive Spectrometry): 

Spectometer 1 2 3 4 5 

Crystal' TAP LPET LLIF LIF LTAP 

Pass  Si K Cr Fe Na 

Pass  Al Ca Ni - Mg 

Pass 3 - Ti Mn (Zn) - 

Count Time 
per pass (s)  

20 20 20 40 20 

Bias (V) 1272 1890 1858 1276' 1296 

Gain 2482 1111 30 396 2597 

Dead Time 
(Ls) 

3 3 3 

r1nte 

3 3 

Mode Integral Integral gral Integral Integral 

Base Line 1842 
m 

1310 66 785 2469 

Window (mV) 3608 2548 1638 2548 2250 

Count Preset 2.15E9 2.15E9 2.15E9 2.15E9 2.15E9 

Table 1.1: Spectrometer setup, Zn was measured for certain chromite analyses on spectrometer 4 using 

LIF crystal. 
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In house standards were used for all elements to be analysed and a calibration was 

made for every 4 days of analysis, as well as at the start of an analysis session if it 

had been more than I week since the previous calibration for 20A and 20 Ky. 

Table 1.2 summarises the calibration setup. 

Standard 
name 

Standard type Elem 
ant 

Spect 
romet 
er 

Crystal Background 
Offset (-) 

Background 
Offset (+) 

Peak 
Time 

 (s) 

Bg 
Tim 
e 

Scanni 
ng 

SiK3 Wollastonite Si 1 TAP none 750 20 10 off 

SiK3 Wollastonite Si 5 LTAP none 750 20 10 off 

SiK3 Wollastonite Ca 2 LPET none 750 20 10 off 

AIK2 Corundum Al 1 TAP none 750 20 10 off 

TiK2 Rutile Ti 2 LPET -1000 None 20 10 off 

CrK1 Cr-metaL Cr 3 LLIF none 750 20 10 off 

NiKI Ni-metal Ni 3 LLIF none 750 20 10 off 

MnX1 Mn-metal Mn 3 LLIF none 1000 20 1.0 off 

FeK1 Fe-metal Fe 4 LIF none 1000 40 20 off 

ZnK1 Zn-metal Zn 4 LIF none 1000 20 10 off 

MgK3 511 Olivine jy 5 LTAP none 1250 20 10 off 

NaK3 Jadeite Na 5 LTAP none 750 20 10 10pm 

KK3 Orthoclase K 2 LPET none 1000 20 10 10 pm 

Table 1.2: Calibration standards summary. The standard name comprises the element, line and 
concentration e.g. MgK2 refers to the magnesium standard, K line with the second highest 
concentration of Mg i.e. olivine rather than periclase, which would be MgK1 for the latter. 

During a routine analysis session the spectrometer positioning was verified on the 

andradite standard and a St. John's Island olivine standard was analysed periodically 

(both at least twice a day). This enabled a check to be made on Mg analysis because 

it was most susceptible to small instrument fluctuations. An andradite was also 

analysed occasionally to check that no major fluctuations occurred on each of the 

spectrometers. 

1.2:3 Error statistics and lower limit of detection 

Equations and explanations in this section are similar to those of Burgess (1997). 

%Error = 	
100 

- (a;)) 

Appendix I — Analytical Techniques 	 1-4 



where T is the count time on peak on the sample, Rp counts per second on peak on 

the sample, Rb counts per second on background. Typical error, calculated using the 

above equation, for point analysis of garnet, clinopyroxene and Cr-Spinel, at 20nA, 

are given in Table 1.3. Error is typically indistinguishable from the symbols plotted in 

graphs from Chapters 4 and 5. Absolute values for precision vary depending on the 

phase and the abundance of an element in that phase. Actual precision is certainly 

worse than the ideal precision calculated from counting statistics. This is because of 

the role of other errors in the analysis process. Analysis repeatability indicates a 

relative standard deviation of <1% for major elements (> 1 wt. % oxide) and <5 % 

for minor elements (<1 wt. % oxide.). 

In addition, the theoretical detection limit can also be calculated from counting times 

and count rates for typical elemental concentrations in the minerals analysed. 

Detection Limit at a 2c confidence level = i 
mTb 

Where, m = cts/sec/% element in the standard material, Rb = the background count 

rate (cts/sec) and Tb = the count time on background. The factor m is calculated using 

the count rates obtained on the standard of the element in question. This isdone 

instead of using the count rates obtained on the unknown, because of the very poor 

precision resulting from the low count rates involved. Detection limits for elements, 

calculated with the above equation, for individual point analysis of garnet, 

clinopyroxene and Cr-spinel are given in Table 1.3. 

The lower limit of detectability (LLD) is defined by the relationship: 

LLD = (6/m)*(R!T)"2 

where: R = RB + R (and RB Rp are Background and Peak counts per second on 

the sample respectively), I = TB + T (and TB ,Tp are Background and Peak counting 

times on the sample respectively), m = (Rp-RB)/concentration (in wt%). LLD for 

elements, calculated with the above equation, for individual point analysis of garnet, 

clinopyroxene and Cr-spinel are given in Table 1.3. 
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Detection limit 
(wt. % oxide) 

Lower limit of 
detectability (wt. % 

% Error or relative 
standard deviation (2a) 

EOxide Grt Cpx 

______ oxide) 

 Chr Grt Cpx Chr Grt Cpx Chr 

0.009 0.010 0.010 0.099 0.112 0.003 0.04 0,04 0.53 

TiO 2  0.038 0.036 0.046 0.007 0.003 0.012 0.15 0.36 0.07 

A1 203  0.008 0.007 0.008 0.057 0.015 0.038 0.08 0.28 0.14 

Cr203  0.014 0,012 0.020 0.070 0.027 0.136 0.09 0.24 0.04 

FeO 0.018 0.011 0.023 0.051 0.629 0.084 0.09 0.17 0.05 

MnO 0.012 0.015 0.015 0.012 0.005 0.010 0.35 0.65 0.37 

MgO 0.005 0.005 0.005 0.037 0.039 0.035 0.04 0.04 0.06 

CaO 0.031 6.033 0.031 0.026 0.038 0.001 0.04 0.03 0.42 

Na2 O 0.007 0.007 0.007 0.002 0.014 0.001 0.70 0.18 0.91 

K20 0.006 005  0.007 0.001 0.002 0.001 0.76 0.52 0.64 

NiO 0.014 !0.013  0.016 0.001 0.002 0.004 0.67 0.66 0,44 

(ZnO) 0.018 016 0.019 0.004 0.005 0.008 0.76 0.82 0.61 

Table 1.3: Detection limits, lower limits of detectability and errors for the various oxides in garnet 
(grt), clinopyroxene (cpx) and chrontite (chr) based on electron microprobe counting statistics for 
typical analysis. 

1.2.4 Point analyses 

Point analyses were used for analysis of the kimberlite concentrate where only one or 

two points were required for each grain. These analyses could be queued up with x, y 

and z co-ordinates stored for each point. Approximately 2 % of these points 

produced bad analyses because of unseen flaws in the surface or incorrect stage 

adjustment. The concentrate analyses may be found in their entirety in Appendix X. 

Appendix II contains summary tables of coexisting mineral compositions in samples. 

1.2.5 Traverses 

Automatic traverses were used to analyse a series of points with even spacing along a 

straight line of interest on a sample surface. The focussing was graduated evenly 

from the start point to the end point, to counteract sample loading tilt. Approximately 

15 % of these traverse points produced bad analyses with low/high totals, because 

the automatically selected location happened to be in a crack or pit within the 

sample. These analyses were discarded by inspection afterwards without losing the 
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spatial distance along the traverse. Appendix II contains graphs of the traverses and 

Appendix X contains all traverse data in spreadsheet form. 

1.2.6 X-ray mapping (EDS) 

The X-ray mapping technique is a qualitative mode of analysis that records the 

counts per second intensities of particular elements (one per spectrometer per pass) 

as the stage moves underneath a fixed beam to generate a series of transects. This 

allows a 2-dimensional picture of pixels to be made up, with each pixel recording 

integrated X-ray counts that can be assigned a particular colour or brightness based 

on a spectral chart. The scaling can then be changed so that particular parts of the 

spectrum of counts can be emphasised. 

A variety of setups were used for X-ray mapping of samples, depending on the 

desired elements to be analysed and the sensitivity to be achieved (summarised in 

Table 1.3). The spectrometer positioning was verified on the andradite standard 

before each mapping session. 

Spectrometer 1 2 3 4 5 

Setup 4: Increased Ti 
sensitivity 

Crystal PET LPET LLIF TAP LTAP 

Element Ti Ca Cr Al Mg 

Setup 3: Lower performance 
found with PET on Spec. 4 

Crystal TAP LPET LLIF PET LTAP 

Element Al Ca Cr Ti Mg 

Setup 2: LIF less effective 
than PET 

Crystal TAP LPET LLIF LIF LTAP 

Element Al Ca Cr Ti Mg 

Setup 1: Fe found not to vary Crystal TAP LPET LLIF LIF LTAP 

Element  Al Ca Cr Fe Mg 

Table 1.4: ray mapping spectrometer settings. Setup 4 was the setup that achieved the maximum count 
rates from each spectrometer given the concentrations of elements within the majority of the samples. 

In order to setup an automated map of a sample, or part of a sample the maximum 

and minimum stage co-ordinates in x and y must be known and used to find the mid-

point of a square or rectangular mapping zone. The focussing height of each corner 

of the zone must also be entered so that a 'four corner correction' can be used to 

correct for sample tilt. The, line length, points per line and number of lines must be 

selected to produce a zone with the correct dimensions. The dwell time and step 
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length must be chosen to produce a suitable density of data. Finally the stage is set to 

move underneath a fixed beam; this produces much more consistent data than a setup 

where the beam is allowed to scan across the zone with a fixed stage, which 

introduces variable beam intensity at different positions on the sample surface. Table 

1.4 summarises the variety of beam and analytical conditions utilised for X-ray 

mapping. Appendix III contains all successful maps with details of their specific 

setups. 

Minimum Normal Maximum 

Beam current 50flA 100A 100A 

Accelerating voltage 20KV 20KV 20KV 

Dwell time per pixel 50ms lOOms 200ms 

Step (pm) 4pm 10pm 25pm 

Line length (tm) 2048pm 5 120pm 12800pm 

Points per line 512 512 640 

No. of lines 210 384 512 

Table 1.5: Summary of the range of parameters utilised for X-Ray mapping. 

1.2.7 Other EMP techniques 

WDS (Wavelength Dispersive Spectrometry). This technique provides a qualitative 

measurement of counts per second intensity vs. wavelength of X-rays generated from 

particular minerals. It was used to identify minerals rapidly, according to the relative 

amplitude of their major element peaks, prior to quantitative analysis if necessary. 

BSE (Back-Scattered Electron) images of particular features in samples were 

acquired. Since the intensity of back-scattered electrons is proportional to the mean 

atomic number of the material, this approach enabled the imaging of the precise 

location of minerals in samples (e.g. Fig. 3.20, in sample B55, Chapter 3). Some Cr-

spinels were zoned strongly to high-Cr rims which produces a higher intensity of 

backscatter than the more Al-rich core (Fig. 5.5, Chapter 5). The technique was also 

used to capture textural features and to provide maps for further microanalysis (used 

as navigational aids). Initial scanning for image composition was scanned at 0.5s for 

320 x 240 pixels and the brightness and contrast set accordingly. Once composed, the 
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image was acquired for 30s at 1024 x 768 pixels and finally saved as a bitmap image 

file. 

1.2.8 Data processing 

For each quantitative analysis point, the software for the Cameca SX100 electron 

microprobe uses counts per second intensities for each of the elements analysed to 

calculate weight percent oxide concentrations based on the calibration file and using 

a 'PAP' correction. From these weight % oxide values, the number of cations within 

each mineral was calculated in a spreadsheet on a cation basis (i.e. so that cations 

summed to the number present in the. formula of a given mineral). The number of 

charges was then summed assuming all Fe as Fe 2t Then the charges were corrected 

by creating the appropriate amount of Fe 3+  The formulation follows Ryburn et al. 

(1975) using the formula (e.g. for clinopyroxenes with a 12 oxygen formula) where: 

Fe3 4-(2Si+2Ti+Al+Cr)+(Na+K) and Fe2+=FetFe3* 

This method was preferred to that of Droop (1987) because numbers of cations and 

oxygens are not removed away from their whole number values. However it was 

found that errors on the Si analyses (i.e. ± 1 wt. %) were enough to render the 

resultant Fe 3+  and Fe2t  concentrations unreliable. Therefore all Fe was calculated as 

Fe2  and the formula calculated to the formula sum of cations as described above. All 

analyses in Appendix II are shown with all Fe as FeO (i.e. Fe 2 '). 

1.2.8.1 INCONSITENCIES IN MINERAL FORMULAE CALCULATIONS 

For garnet and spine] the mean weight percent totals are> 100 %, whereas 

clinopyroxenes yield on average just under 100 wt. % oxide totals since they have 

some Na and K of which minor amounts may be lost whilst under the beam. 

For cation concentrations it is apparent that the different datasets present in Chapter 4 

have been analysed using different electron microprobes and different beam and 

spectrometer setups. An example of the resultant cation site occupancy in garnet is 

shown below but similar inconsistencies exist for pyroxene and spinel as well. The 
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sites are theoretically occupied by the following cations (Deer et al. (1962)) with the 

formula unit total shown: 

X site [8]: Ca 2+  Fe2 Mg2  M n 2+  Ni2+ + Na 	Total 3 cations per formula unit 

Y site [6]: A1 3  Cr 3+  Fe 3+  Ti4+ 	 Total 2 cations per formula unit 

Z site [4]: Si4 	 Total 3 cations per formula unit 

Therefore, in the X site, the sum of the main 2+ ions (Ca+Fe+Mg) should total just C 

3, assuming small amounts of Mn and very low amounts of Ni and Na. In the Y site 

the sum of the 3+ ions Al and Cr should total just C 2 assuming small amounts of 

Fe 3+  and Ti present. The Z site should be close to completely filled by Si (summing 

to 3 cations). Overall a cluster of garnet data should form a negatively sloping line 

passing through (or just below due to varying small amounts of Fe 3+  and Mn) the 

ideal cation sum values of 3 (for 2+ ions) and 2 (for 3+ ions). The negative slope 

should be due to the presence of Fe 3+  and also Na, since its substitution will cause 

lower 2+ and higher 3+ cation concentrations in order to compensate for its single 

charge. 

Figure 1.1 shows the difference in analyses from NWT sampling and analyses from 

this study, other Frank Smith data (from the Kimberlite Research Group (KRG), 

University of Cape Town) and data from Menzies (2001). 
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Figure J. 1: (a) 3-I- ions (Cr + Al) vs. 2+ ions (Ca + Mg + Fet) with the ideal 3 and 2 formula units 

shown as straight lines. Cations calculated on a 12 oxygen basis. Analyses from NWT till sampling 

(grey dots, cloud), this study (triangles), other KRG data (squares) and data from Menzies (2001) as 

black dots. (b) as for (a) except cations calculated on an 8 cation basis. 

Calculation to 8 cations (Fig. 1.1 b), rather than to 12 oxygens yields a better cross-

dataset correlation with most data explained by the Fe and Na substitutions. The 

discrepancy in the NWT data using the 12 oxygen method (Fig. I.la) appears mainly 

due to the higher Na values obtained in the analytical method used (see Chapter 4). 

Additionally the NWT dataset appears to have more points that lie far away from the 

general cluster of data. These are likely to be the result of using unfiltered data that 

has not had bad analysis points removed. 

1.3 Ion Microprobe (SIMS) 

Analyses of Newlands and Bobbejaan samples for trace elements was carriedout on 

the Cameca IMS-4f Ion Microprobe using the SIMS (secondary ion mass 

spectrometry) technique. The instrument is part of EMMAC (Edinburgh Materials 

and Micro-Analysis Centre). The total analysis time for all desired elements required 

approximately 45 mins per analysis spot. Samples were analysed during 3 week-long 

sessions over the period 2004 to 2005 and analytical conditions are summarised in 

Table 1.6. 
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Session 1 - Session 1 - Session 2 - Session 3 - 
Light elements Heavy Transition 

elements 
Ni elements 

Elements Li, Na, Si, K, Si, Sr, Y, Zr, 47Ti, 57Fe, 60Ni Si, Ca, Sc, 
16 Ca, Sc, Ti, Fe, Nb, Ba, REE, Ti, V, Cr, Fe, 
Ni Hf Mn, Ni, Ga,  

Sr, Y,Zr,Nb 

Primary beam polarity Negative Negative Negative Negative 

Primary ion beam 160.  160.  16o- 60.  

Net Accelerating voltage 15 key .15 keV 15 keV 15 keV 

Secondary Accelerating 4.5 keV 4.5 keV 4.5 keV 4.5 keV 
voltage  

Beam current 10 nA 10 nA Hi nA 20 nA 

Secondary beam polarity Positive Positive Positive Positive 

Offset -75 eV -75 eV 0 eV --75 eV 

Energy window 40 eV 40 eV 40 eV 40 eV 

Number of cycles 5 10 10 5 

Count time per cycle 5s lOs lOs 55 

Deadtime -12 ns -12 ns -12 ns -12 ns 

Class Standards SRM610 (2) SRM6I0 (2) SRM610 (1) SRM610 (1) 
(frequency of analysis/day)  

Garnet Standards DDI (1) DDJ (1) Diamantkop (2) Do! (1) 
Shimizu (1) Shimizu (1) DDI (2) 

Gore Mtn (2) 
LBM1I (2) 
MNAG(1) 
Spriggs 1 (2) 
Spriggs 2 (2) 
Spriggs 3 (2) 
PN(2) 
PN2A (2) 
PN2B (2) 
Shimizu (2)  

Clinopyroxene Standards Kill Kilburn Kill Kilburn  - - 

Hole (1) Hole (1)  

Chromite Standards - - 	 . - Bushveld: 
Rib (2), LG6 
(1), Ml_(1) 

Table 1.6: Ion Microprobe operating conditions and standards used for the four analysis setups. 

Session 1 focussed on LILE (Large Ion Lithophile Elements), HFSE (High Field 

Strength Elements) and REE (Rare Earth Elements) within garnets and 

clinopyroxenes. Elemental concentrations were calculated by utilising relative ion 

yields that were determined using standards of known concentration. The method of 
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Hinton (1990) was employed and a 500 ppm trace element glass (SRM610) was 

analysed twice each day to calculated silicate ion yields. Concentrations were 

calculated using these ion yields and were checked periodically (twice daily) against 

standard garnet and elinopyroxene standards. 

Session 2 was entirely used to establish a method for Ni analysis in garnet based on 

that carried out by Paula McDade in 2002 (McDade et al. (unpubi.)) using the Ni-in-

garnet standard block housed at EMMAC. The Jagersfontein xenolith suite was 

studied with additional texturally equilibrated samples from Matsoku. Spots analysed 

for the Newlands and Bobbejaan samples were chosen to be close to those analysed 

in Session 1. See 1.3.2 for further details. 

Session 3 was devoted to the transition and high field strength element analysis of 

Cr-spinels, making use of a chromite standard developed for this purpose (see last 

section in Appendix I for details). Garnet and clinopyroxene transition elements were 

also measured at adjacent locations to the other trace element analyses of session 1, 

1.3.1 	Procedure for routine trace element analysis 

The procedure closely follows that of Harte and Kirkley (1997). Clean polished 

samples (see electron probe sample preparation) were coated with a 10 - 30 nm thick 

gold coat to prevent charging. Gold is also beneficial to use because it is removed 

quickly by the ion beam. It is also mono-isotopic, poorly ionising and of high mass 

(so as not to create species that cause interference for the vast majority of masses). 

The sample chamber vacuum was always between 10 -8 to 10-9 mbar during analysis. 

A 10 Gk duoplasmatron 0 beam accelerated at 15 kV (impact energy) was used to 

sputter positively-charged atomic and molecular secondary species from an area 15 

to 20 I.tm in diameter (with a -5im deep pit generated). The sample was maintained 

at a voltage of +4425 V, producing a voltage offset of 75 eV to ensure only high 

energy ions are measured. This procedure has the advantage of decreasing the matrix 
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effect and simplifies the correction procedures for molecular interferences (Hinton 

(1995)). A beam bum-in time of 30 s was used in all sessions for consistency. 

Analytical uncertainties are typically: 	1% or less for concentrations above 10 

ppm; +10-15 % for concentrations in the range 1.0 to 0.1 ppm; and - 50% for 

concentrations of 0.01-0.005 ppm. Fig. 1.2 shows the typiéal counting statistics errors 

for the normalised abundance of all elements analysed for garnet clinopyroxene and 

Cr-spinel. The lower limit of detection is essentially zero because no counts were 

registered for the mass 130.5 which was chosen for a blank. 
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Figure 1.2: 1 :above and ILI below error bars are shown for each element measured in garnet (thin 

solid line), clinopyroxene (thin dashed line) and Cr-Spinel (bold dashed line) on a chondrite 

normalised plot. 

1.3.2 Procedure for Ni-in garnet determination (McDade et al. (unpubl.)) 

1.3.2.1 ANALYTICAL CONDITIONS 

Samples were coated with a 10- 30 nm thick gold coat to prevent charging. A 7 nA 

0 beam accelerated at 15 kV was used to sputter positively-charged atomic and 
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molecular secondary species from an area 20 to 30 p.m in diameter. The sample was 

maintained at a nominal voltage of +4500 V. 

During many SIMS trace element analysis routines, a voltage offset (typically -75 

eV) is employed to ensure only high energy ions are measured. This procedure has 

the advantage of decreasing the matrix effect and simplifies the correction 

procedures for molecular interferences (Hinton (1995)), but it has the disadvantage 

of lowering count rates and thus reducing precision. In the present case we used zero 

energy offset (±50 eV) and a high mass resolution (mIp.m) of -3000 to eliminate 

interferences. For this a I 50im image field and a contrast aperture number of 3 were 

employed. The entrance slits and exit slits were closed sufficiently to provide the 

appropriate mass resolution (see below). 

The isotopes 60Ni, 47  Ti and 57  Fe were measured on each of the standards and 

unknowns. Measurement of the Ti and Fe accompanying elements allows calculation 

I 
of the relative ion yield (Rh') of Ni (RIY = (cps/conc)s

Ni
flda ,,' (cps/conc)reference sfld,rd  ). 

Using RIY elemental ratios rather than single element count-rates minimises any 

errors which may be introduced as a result of instrumental fluctuation, such as 

primary beam variation. 	 - 

Iron and titanium were selected as suitable elements to ratio 60Ni counts to for 

several reasons: i. Iron and titanium are present in sufficiently high concentrations to 

be accurately measured by electron microprobe and hence are independently 

quantifiable; ii. The chosen isotopes are present in sufficiently low concentrations as 

not to overload the electron multiplier; iii. 47  Ti and 17  Fe are resolvable under the 

analytical constraints (m/p.m 3000) required for accurate Ni determination; iv. 

Minimum movement of the magnetic field from the 6°Ni position is required to 

deflect 47Ti and "Fe masses towards the electron multiplier and thus instrument 

instability is minimised; v. Titanium and iron ion yields were found to vary directly 

with their concentrations, as did 60Ni, within the compositional range analysed. 
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Measurements were made in cycles where 47  Ti and 57  Fe counts were collected for I 

S, 60Ni counts were collected for 5 s. Such cycles were repeated a minimum of 20 

times for each analysis, with the number of cycles being increased for samples with 

lower Ni contents. Manipulation of the entrance and exit slits to the magnetic prism 

ensured that flat-topped peaks of each species were transmitted to the electron 

multiplier thus enabling accurate peak jumping during repeated cycling. 

The use of zero voltage offsets in high-resolution ion microprobe analysis requires 

particularly careful attention to detect any potential interfering molecular species. 

This was facilitated by collection of mass spectrums at high mass resolution over 

"Ti, "Fe and "Ni peak positions (Fig. 1). Molecular species potentially capable of 

interfering with detection and measurement of the 47Ti, "Fe and "Ni ions are listed 

in Table 1, along with their displacement from the relevant peaks in millimass units, 

and the resolution required to discriminate these molecular species from those of 

interest. In theory, the most difficult species to discriminate between are "Fe and 

56Fe'H, requiring a resolution of 7800. However, such very high mass resolution and 

accompanying reduction in count rate was avoided by extended (> 12 hours) 

pumping of the multi-sample airlock to high vacuum conditions in order to minimise 

the abundance of 56Fe 1 H. Calculation of Ni concentration using Ti ion yields in 

addition to 57Fe provided a secondary check that 56Fe 1 H interference was minimal. 

1.3.2.2 CALIBRATION OF STANDARDS 

Garnet standards, spanning a comparable major element compositional range to 

potential unknowns, were selected in an attempt to quantify and minimise the effect 

of garnet major element composition on Ni ion yield during ion microprobe analysis. 

Major element analysis of each of the garnet standard materials was undertaken at 

the Grant Institute of Earth Sciences, School of GeoSciences, University of 

Edinburgh using the Cameca Camebax electron microprobe. The analysis procedure 

utilised an accelerating potential of 20 kV, and a beam current of 25 nA. The count 
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time on KElpeaks for each element was 30 s with backgrounds measured for 15 s. At 

least 20 analyses were made on each standard to ensure homogeneity. 

The concentration of Ni in each of the standards was independently determined both 

by TCP-OES at the Department of Geology, University of Leicester and by laser 

ablation ICP-MS at the Department of Geological Sciences, University of Cape 

Town. Wet chemical analyses of standard materials were undertaken using a Philips 

PV 8060 ICP-OES. Complete dissolution of the sample (30 to 50 mg) was achieved 

by addition of hydrofluoric and perchloric acids, with the resultant solution being 

subjected to microwave digestion at 100 psi for 2 hours Subsequent to digestion the 

samples were evaporated to dryness and taken up in a small volume of 10% HC1 for 

analysis. High spatial resolution analyses were undertaken using a Perkin Elmer Elan 

6000 ICP-MS attached to a Cetac LSX-200 laser. Each standard was analysed 

between 5 and 9 times. Only the standards for which the ICP-OES and LA-ICP-MS 

Ni estimates fell within 1 U error were selected as suitable for ion microprobe 

calibration. Fig. II illustrates the calibration curve established. NOTE: intercept does 

not equal 0. 

Ni ppm (ICP-OES) 

Figure 1.3: Calibration curve using garnet Ni standards for IMP Ni/Fe vs. Ni concentration established 
using ICP-OES analysis. Solid line is least squares best fit R 2  97.7 % with ± 1 Dun-weighted error on 

the best fit line shown as dashed lines. 
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Major element and cation compositions together with the Ni concentration for each 

garnet standard are compiled in Table 2, and their relative compositions are 

illustrated in Fig. 2 along with the Jagersfontein garnet compositions analysed in this 

study. The composition of the garnet standards ranged from Mg# (Mg/Mg + Fe 2 ) 

0.48 to 0.83, and Ca/(Ca + Mg ± Fe 2 ) from 0.12 to 0.15. In addition to pyrope-rich 

compositions the non-peridotitic 'Gore Mountain' almandine garnet (Mg# 0.48, 

Ca/(Ca + Mg + Fe2 ) 0.12) was included to aid quantification of the matrix effect. 

However the effect was found to be small because NiRIYs from this sample did not 

deviate from those of the other garnets. The standard suite also includes garnet from 

LBM1 1, a peridotite xenolith from Matsoku, Lesotho. This xenolith, originally 

studied by Cox et al. (1973), has previously been subjected to proton microprobe Ni 

analysis by Griffin et al. (1989). Our Ni value (47 ± 3 ppm) falls within error of that 

proposed by Griffin et al. (1989) at 43 ± 4 ppm. Additionally, Griffin et al. (1989) 

reported the garnet rims from the high-temperature sheared peridotite PHN 1611 to 

contain 126 ± 11 ppm Ni. This concurs with our value of 130 ± 6 ppm demonstrating 

the reproducibility between proton and ion microprobe analysis. 

A plot of Ni contents versus NiRLY produces a working curve (Fig. 3) from which the 

Ni content of unknowns can be determined. The reported Ni contents were primarily 

obtained using ion yields relative to "Fe rather than 47  Ti, since estimates of Fe 

content by EMPA are likely to be more accurate than those of Ti because of the 

higher concentrations of iron typically found in pyrope garnet. However Ti aided in 

more precise relative peak positioning on particularly low Ni samples, and always 

provided a secondary check on Fe ion yield calculations. 

1.3.2.3 ENERGY DISTRIBUTIONS 

During the course of the study analyses at varying energy offsets were also - 

attempted, in order to examine whether the small deviation of standard data from the 

ideal working curve in Fig. 3 were the result of a matrix effect or natural 

compositional variation. The variation of 47Ti, "Fe, and 60Ni counts per second 

relative to sample voltage are illustrated in Fig. 4. The energy distribution profiles for 
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47Ti, 57Fe and 60Ni are shown in Fig. 4. During ion microprobe analysis samples 

may accumulate a negative charge due to incomplete removal of 0- ions via 

conduction by the thin gold coat on the sample surface. This results in the shifting of 

the energy curves in Figure 4 towards the right, resulting in a loss of counts, and a 

change in the relative count rates of different species at high offsets (e.g. —50 volts or 

more). However the similarity in shape of the high energy 47Ti, 57Fe and 60Ni ion 

profiles in Figure 4 shows close consistency in count rate ratios for the elements 

from zero offset up to - -30 V offset. This demonstrates that significant charging can 

be accommodated during analysis of the sample before significant loss of counts, and 

precision occurs. In many cases, particularly in the case of samples with <40 ppm 

Ni, the use of a voltage offset made it more difficult to calibrate the magnet 

accurately on the Ni peak prior to analysis during the peak-centring routine. Thus use 

of a voltage offset could, in cases, give a lower than expected Ni concentrations due 

to counts being collected 'off-peak'. Overall, the best estimates of Ni concentration 

in garnet were obtained using zero offset. 

1.3.2.4 ACCURACY AND PRECISION OF Ni ANALYSES 

Counting statistics were optimised by increasing the voltage across the electron 

multiplier prior to analysis, in order to obtain the maximum 60Ni count-rate : voltage 

ratio from a particular sample. The standard error of the mean (lo) on a typical 20 

cycle analysis was found to be generally <1% of the total counts. The detection limit 

for Ni in garnet was found to be less than 1 ppm. 

ICP-OES analysis assumed a detection limit of 6 ppm, and an accuracy of ±5% 

determined from repeated analysis of Wi and JH1 international reference standards 

containing 75 and 56 ppm Ni respectively. These concentrations are comparable with 

typical Ni contents of peridotitic garnets. Errors on Fe and Ti contents in the garnet 

standards by electron microprobe are of the order of± 0.10 and ± 0.01 wt% (3o) 

respectively. 

Overall the error for Ni determination in a typical garnet possessing 60 ppm Ni, 

utilising the standard working curve method illustrated in Fig. 3, would be - ± 3.5 
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ppm Ni. This results in a temperature error of between 10 and 22°C depending on 

which Ni in garnet thermometer calibration is employed. 

1.4 Chromite Standard Preparation and Use in Analysis 

Chromite standard preparation took place in May 2003, October 2003 and March 

2004. The IMP analysis session was in May 2004. 

1.4.1 	Standard material selection 

The chromitite layers of the Bushveld Intrusion, RSA, were chosen as standards 

because of their abundance, major element homogeneity and relatively large grain 

size. Mantle Cr-spinels have grain sizes usually <0.5mm and are too rare in xenoliths 

to make a useful standard. Sample MRI (Rlb) is a 0.5 kg specimen from Ben Harte 

and Robin Lee (Univ. of Edin.) and was selected for high trace element content of 

bulk rock, which contains a 1cm undulose layer of chomitite grading into an 

orthopyroxene + minor plagioclase matrix. One block was used for the production of 

a polished mount (2.54cm disc) and a polished thin section of the same dimensions 

was borrowed from Robin Lee. 

1.4.2 Chromite separation procedure: 

The following steps (in note form) were followed to derive a pure chromite separate, 

which can be dissolved into a homogeneous glass. Problems encountered are 

indicated in sequence. 

1.4.2.1 CRUSHING 

• Saw cut Rib into 15mm slabs 

• Drill blocks of chromitite richest in chromite out from rock sample 

• Crush and pull out aggregates of chromite + plagioclase and chromite + 

orthopyroxene and crush so that they separate 

Crush further in WC (tungsten carbide) percussion mortar (steel base, 

cardboard shield) to 50 mesh size then sieve to recover —50+100, —100+200 

and —200 mesh sizes 
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. Then examine to find the largest sieve size that contains essentially cleavage 

fragments only with minimal surface contamination 

. Ultrasonic for 30 mins in D.I. water. Dry overnight at 50°C. 

1.4.2.2 MAGNETIC SEPARATION 

Magnetic separation to remove most non-chromite material from a crushed sample 

was undertaken on the Franz Isodynamic Separator, Model Li: 

Slope of 15°, an angle of sideways tilt 12°, a current 0.20 Amps 

. Acid wash in HF overnight at 60°C to dissolve remaining non-chromite 

material and dry for 3 hours in evacuation chamber 

Hand pick any non-chrornite fragments under microscope 

. Sieve at 0.177 mm. to remove undissolved pellets of plagioclase and 

orthopyroxene. 

1.4.2.3 HEAVY LIQUID SEPARATION 

Magnetically separated samples were further purified by use of heavy liquids: 

• Diiodornethane (CH212) was not dense enough at 3.31 glcc and would not 

differentiate composite orthopyroxene + minor chromite grains (- 3.4glcc) 

from chromite only grains 

• Pure chromite is 4.6 glcc so if it is present in grains of orthopyroxene it will 

raise the particle's density 

. Clerici's solution (a mixture of thallium formate (Tl(CH02)) and thallium 

malonate (Tl(C3H304)) was used 

• Dissolve Clerici crystals by heating glass bottle and adding DI water 

• Pour into evaporating dish containing density tablets (3.8 glcc, 3.9 g/cc and 

4.04 g/cc) and graphite chips to sequester impurities 

• Heat to evaporate water until solution density is 4 glcc 
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Put sample (-S  1 cc) and Clerici solution (30 ml) into pinched 50 ml test tube 

and agitate for 30 s so that light grains are liberated 

• Place tube into centrifuge at 2000 rpm for 20 mins 

. Insert teflon stopper into pinched part of tube and pour out light fraction into 

a filtered (50 jim) vacuum drainer whilst washing the tube with DI water 

• Rinse stopper into collection flask with DI water 

• Pour heavy fraction into separate filtered vacuum drainer and wash test tube 

and filter funnel thoroughly with DI water and subsequently acetone 

• Remove filter funnels and dry on paper for 1 hour 

• Examine under microscope for impurities (grains are charged and jump 

around) 

Re-evaporate Clerici wash to desired density 

1.4.3 	Fluxing Procedure (1) 

Separated samples were then fluxed using the following procedure (chromite is 

particularly refractory so it requires a high flux:chromite ratio): 

• Grind to flour sized particles in automated agate mortar 

• Weigh out 0.3g packets 

• Mix with ultrapure lithium tetraborate (Li2B407) flux 

• Fuse 0.015g sample with 1.5g flux at 1100 °C for 20 mins in Pt crucible 

• Pour onto metal plate and press into disc with metal weight 

• Allow to cool on hotplate for 30 mins 

• The result is chromite particles remain as fragments in green!brownglass 

• This procedure left chromite residue at base of crucible. 
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1.4.4 Fluxing Procedure (2) 

Parallel procedure run with 'Spec pure' Si02 in place of sample for use as a blank 

test hereafter called 'Si-blank'. 

. Grind to flour sized particles in agate mortar 

Keep dry in oven at 100°C 

• Measure 0.15 g sample into Pt crucible 

• Mix thoroughly with 

• 0.l5gSiO 

0.075 g Na2CO3 

4.5 g Li2B407/Li2BO2 (50:50 mix) 

• Fuse at 1200°C for 30 mins 

. Pour onto metal plate (200°C) 

. Recover remaining drops from crucible 

• Allow to cool on hotplate for 10 mins 

The result is a low viscosity dark green glass with no residue 

1.4.5 Solution procedure for ICPMS (boron removal required) 

• Break glass disc Rib (and run parallel procedure for Si-blank) and select 

-0.3g chip for dissolution 

• Dissolve weighed chips in 9m1 HF and iml HNO3 for 5 hours on a hotplate 

and check there is no undissolved material, then dry and dissolve in ultrapure 

water. 

• Prepare boron columns (following method of Tonarini et al. (1997)): 

- 0.3 ml Amberlite 743 (50 mesh) boron-specific ion-exchange resin 

loaded into Teflon columns (h = 20mm, r = 2mm), flow-rate adjusted 

to C 0.5mllmin 

Clean twice with 5 ml 6M HCI 
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- Clean twice with 5 ml ultrapure water 

- Condition with 2m1 3M NH40H and 3m1 ultrapure water 

- Dry samples for 24hrs 

For REE analysis on TIMS, Y and Re standards were added so that the REEs are 

bracketed in terms of mass, thus allowing a check for the overall REE yield of the 

method. In order to concentrate the REEs, the dissolved sample was loaded into ion 

exchange columns and a light to middle REE elution and a HREE elution were 

collected, dried and dissolved in nitric acid. The samples were analysed using 

standard analytical procedure on TIMS at SUERC, East Kilbride. This yielded sub 

ppb REE concentrations and only ppb concentrations when multiplied up to gain the 

original pure chromite concentration. Therefore, this was deemed too low to provide 

viable regular analyses on most analytical instruments and certainly too low for use 

as a standard. Analysis was directed towards the transition elements. 

1.4.6 Solution procedure for ICP-OES 

. Break glass disc Rlb (and run parallel procedure for Si-blank) and select - 

0.3g chip. Dissolve in 10 ml 2% nitric acid 

• Prepare lOml of standards for grouped Co, Ca, Sr, Y, Zr, Nb, Hf in 2% nitric 

with 0. 1, 1 and 1 Oppm concentrations 

Prepare lOml of standards for grouped Cu, Sc, V, Ga, Ni, Zn, Mn in 2% nitric 

with 1, 10 and lOOppm concentrations 

Prepare lOml of standards for grouped Fe, Cr in 2% nitric with 10, 100 and 

SoOppm concentrations. 

The resultant solutions were run using standard procedure on ICP-OES (inductively 

coupled plasma optical emission spectrometer, School of Chemistry, University of 

Edinburgh) for analytes as listed in Table 1.7. This used in house standards (Ca, Sc, 

V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Y and Zr) as mentioned above to create working 

calibration curves. Sr, Nb, Hf were also analysed using standards supplied by 

SUERC. Zn and Ca were high in the Si-blank glass analysed in parallel with the 

standard itself on ICP-OES, therefore, reliable standard concentrations could not be 
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obtained for these elements. Hf, Sr, Sc returned anomalously high values in the glass 

standard, which is thought to be due to poor calibration curves on ICP-OES. Since 

this only concerns three elements and since development time on ICP-OES was not 

available due to staffing, this was not pursued further. Finally, the ppm values in the 

glass were multiplied up to yield ppm concentrations in the pure chromite from Rib, 

so that the chromite block itself could be used as a standard. 

The chromite standard glass contained the following concentrations of trace elements 

as determined by ICP-OES (Table 1.7): 

Analyte Rib Standard 
Glass (ppm) 

Rib standard 
mineral (ppm) 

Si-blank glass 
(ppm) 

Ca 0.095 89.11 12.13 

Co 0.301 282.35 5.36 

Cr 309 289851 n.d. 

Cu 0.179 168 n.d. 

Fe 251.9 236289 Md. 

Ga 0.296 1225 24.56 

Hf 1.306 2062 1.99 

Mn 2.198 n.d. 

Nb 0.213 1.79 

Ni 1.294 n.d. 

Sc n.d 

OnA 

n.d 

Sr n.d 0.18 

V 2.034 n.d. 

Y 0.005 4.69 n.d. 

Zn 1.266 1188 3205.34 

Zr 0.01 9.38 3.42 

Table 1.7: Concentrations of standard glass, standard and Si-blank glass measured by ICP-OES. 

1.4.7 SIMS analyses of spinel trace elements in standards and unknowns 

The ion yields for transition elements in chromites are very close to the NIST610 

glass (used for silicate analysis) and higher than the FeSi glass of Kilburn and Hinton 

(2001). This was checked using Ti, Cr, Mn, Fe values, since these were known 

independently. Therefore the 'matrix effect' for analysing Cr-spinels is negligible, 
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relative to garnet and pyroxene. The predominantly lithium tetraborate glass, which 

contained the standard material Rib, has not produced comparable ion yields and 

was not used to generate ion yield files. The standard block used contains large 

chromite grains that produced repeatable counts per second intensities within 

counting .statistics error. Therefore counts per second per ppm were calculated in the 

Rib standard block so that the elements known from electron probe and ICP-OES 

analysis were faithfully reproduced. Cr was the primary normalisation element. 

Zn and Cu have particularly high mass interference on SlIMS and were not analysed 

in this ion microprobe study. Hf, Sr and Sc were analysed on SIMS without 

characterisationl by ICP-OES. Therefore, these values have not been checked for 

reliability, since concentration in the standard was not known. For the unknowns an 

ion yield file was created, using the NIST SRM610 glass and counts per second 

intensities were converted to elemental wt. % ppm in unknown Cr-spinel grains from 

Newlands and Bobbejaan samples. 
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Appendix II: Summary Tables and EMPATraverseS* 

(*see  also data CD) 

Contents: 

Table 11.1: Sample summary table with petrographic sample type, number of profiles, 

number of X-Ray maps and the type of internal and/or external zonation observed. 

Table 11.2: Sample zonation distances presented for Mg, Ca, Al, Cr, Ti, Fe and Mn 

with the type of profile according to definitions in Chapter 8. 

Table 11.3: Core-rim and inclusion garnet (and 2 clinopyroxenes in grey) 

compositions for the samples. 

Table 11.4: Coexisting mineral inclusions and their host garnet (adjacent to 

inclusions) compositions for the samples. 

Traverses: Introduction to the traverses referring to the data CD (Appendix II): 

Electron microprobe traverses across garnets, Cr-spinels and clinopyroxenes 

included on the data CD (see inside back cover) 

Sample Petrographic 
Class 

Profiles 1Z Ray 
 Maps 

External 
Zonation 

Internal 
Zonation 

N16 Ms (1) 0 Eu - 

N23 M (1) 0 Eu - 

N30 Ms 1 0 Eu - 

N87 Ps (1) 0 - 

N97 M (1) 0 - - 

N158 Ms (1) 0 - Is 

NEW003 M 2 1 Eu - 

-37 
EW00S Ms (1) 1 Eu Is  

NEW007 Pdsc 1 1 Ed Id 

NEW012 - (1) 0 Eu Ic 

NEW0I4 - 1 0 Eu - 

NEW019 Msc 1 0 Eu - 

NEW022 - (1) 0 Eu - 

NEW023 - 1 0 Eu - 

NEW024 Msc 2 1 Eu Is, Ic 

NEW025 Ms 1 0 Eu - 

NEW026 Msc (1) 0 - Is 

NEW032 M 1 0 Eu - 

NEW038 Mc 1 0 Eu - 
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Sample Petrographic 
Class 

Profiles X-Ray 
 Maps 

External 
Zonation 

Internal 
Zonation 

NEW039 - 1 0 Eu - 

NEW042 Msc (1) 0 Eu - 

NEW046 - (1) O Eu - 

NEW047 M 1(1) 1 Eu? Is 

NEW058 Mdc (2) 0 Eu Id 

NEW059 Psc 1(1) .1 Eg Is, IC 

NEW063 Pdcs 1(1) 3 Ed Id 

NEW065 Mdsc 2 2 Eu Id, Is 

NEW068 Msd 1 0 Eu Is 

NEW069 Mc 2(2) 1 - Ic 

NEW070 Ps 1(1) 1 Eg Is, Id 

NEW071 Mds 1(1) 0 Eu Is 

NEW073 - (1) 0 Eu - 

NEW074 Msc 1(1) 1 Eu Is 

NEW078 Mdc 1(2) 2 - Id 

NEW079 Msc (1) 0 Eu Is 

NEW083 Mc 1 1 Eu? Ic 

NEW086 Ms (1) 0 Eu Is 

NEW088 Ps 1 0 Eu Is 

NEW094 - 1 0 Eu - 

NEW095 - (1-) 0 Eu - 

NEW096 - (1) 0 ? - 

NEW098 Msc 1 0 Eu Is 

NEW101 M 1 1 En - 

NEW107 Mdsc 1 0 Eu - 

NEW109 Msc 1 0 Eu Is 

NEW110 Ms (1) 0 - - 

NEW111 Md (1) 0 Eu - 

NEW114 Mdc 2(1) 1 Eu Id 

NEW115 Mds 1 0 Eu ?Id 

NEW119 Ms (1) 0 ? ? 

NEW288 Mc 1(1) 1 - IC 

NEW301 Pgsc 1(2) 1 Eg is 

NEW302 Msc 2 0 Eu Is 

NEW303 Psd 1 1 Eu Is 

NEW307 Psd (1) 1 Ed Id 
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Sample Petrographic 
Class 

Profiles X-Ray 
 Maps 

External 
Zonation 

Internal 
Zonation 

NEW308 Ps (1) 1 Es Is 

NEW402 Ms 1 1 Eu Is 

NEW403 Ms 1 0 Eu Is 

NEW404 Ms I I Eu Is 

NEW405 Ps 1 0 - - 

NEW406 Ms 1 0 Eu Is 

NEW407 Ps 1 0 

NEW408 Ms (1) 0 Eu - 

NEW4O9 Ms (1) 0 Eu - 

NEW410 Ps (1) 1 Es - 

NEW420 Pds (1) 0 Es - 

NEW421 Pd 1 0 Ed Id 

NEW422 Ms (1) 0 - - 

NEWOPX Mgc 1 (2) 2 Eopx - 

NEWS? Mdc 2(1) 2 - Id 

LEIOOI Mdc (1) 1 - Id 

LEI002 M (1) 0 - - 

LEI003 M (1) 0 - - 

LE1004 M (1) 0 - - 

LEIOOS M (1) 0 Eu - 

LE1006 M (1) 0 Eu - 

LEI007 M 1 0 Eu - 

LEI008 M (1) 0 - - 

LEI009 M (1) 0 - - 

LEI010 M (1) 0 Eu - 

LEI011 M (1) 0 Eu - 

LEI012 M (1) 0 - - 

112 M 1 0 Eu? ? 

B3 M 1 0 Eu - 

84 M (1) 0 - - 

115 - (1) 0 Eu. - 

844 Pds 1(2) 1 Eg Id 

848 Mdtr. I I Eu - 

B55 Mdcs 1 (2) 2 - Id 

B152 - 1 0 Eu Is 

B0B027 Ps (1) 0 Es - 
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Sample Petrographic 
Class 

Profiles X-Ray 
 Maps 

External 
Zonation 

Internal 
Zonation 

80B050 Ps (1) 0 Es - 

B0B076 M 1 0 Eu - 

110B113 Msc 3(1) 2 Eu Is 

B0B167 Ps (1). 1 Eu Is 

B0B168 Ps 1 0 - - 

80B301 Mdsc 1 1 - Id, Is, Ic 

80B304 Ms (1) 1 - Is 

B08305 Ps (1) 0 Es Is 

B0B306 Mdc (1) 0 Eu Id 

B0B307 Ps (1) 0 Es - 

B0B308 Ps (1) 0 Es - 

BOB401 Pdcs 1 2 Ed Id 

B08402 Pdcs 1 2 Ed Id 

013403 Pdsc 1 0 Ed Id 

B0B404 Ms 1(1) 1 Eu Is 

BO B405 Md 1 0 Eu Id 

BOBKJMB Ps (1) 1 Es Is 

Table 11.1 All samples analysed for major elements indicating the petrographic classification from 
chapter 3, the number of traverses made in appendix II with the number on CD in brackets, the 
number of X-ray maps in appendix III, external and internal zonation types if evident. Italics indicate 
only a slight manifestation of zonation type and bold indicates strong manifestation of zonation type. 
11 = observation not made. 
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Sample Zona 
tion 
Type 

Profile Type 
(i.f. = inner 

flat)  

Zonation Length Scale to the nearest analysis point 
(pm) (brackets denote internal zonation) 

Mg Ca Al Cr Ti Fe Mn 

N16 Eu Rim Growth 1100 - - - 1100 1100 1100 

N23 Eu 750 - 750 750 - - - 

N30 Eu - -1000 —1000 1560 1560 - - 1560 

N87 - - - - - - - - 

Nl58 (250) (250) (250) (250) (-) 

N97 

 

NEW003 Gradual change 2000 2000 2000 2000 2000 

NEWOOS (500) (-) (770) (770) (-) (-) (-) 

NEWOO7 jEdId  Internal i-f. (500) (500) (500) (500) (-) (-) (-) 

NEWOI2 (100) (100) (100) (100) (100) 

NEWOI4 - - - - - 

NEWOI9 Gradual change 2200 2200 

NEWO22 - - - - - -. - 

NEWO23 Eu 580 580 580 580 - 580 - 

NEW024 Eu, Ic 

Is 

External if 

Internal if 

450 

(-) 

450 

(250) 

1490 

(-) 

1490 

(250) 

- 

(-) 

- 

(-) 

- 

(-) 

NEW025 Eu - - 800 800 - - - 

NEW026 Is (700) (700) (700) (700) (-) (-) (-) 

NEW032 Eu Rim Growth 1000 1000 1650 1650 - - - 

NEW038 Eu External if 1100 1400 1400 1400 1400 - - 

NEW039 Eu Rim Growth 800 1200 1000 1000 - 500 - 

NEW04I Eu, Ic - - 800 800 - - - 

NEW042 Eu - - 1200 1200 - - - 

NEW046 Eu 1750 1750 1310 1310 - - - 

NEW047 Eu?,Is Rim Growth? - - 1200 1200 - - - 

NEW058 Eu, Id (130) (-) (-) (100) (-) (-) (-) 

NEW059 Eg, Ic 

Is 

External i.f 

Internal if. 

- 

(-) 

- 

(-) 

500 

(150) 

500 

(-) 

- 

(-) 

- 

(-) 

- 

(-) 

NEW063 Ed, Id External if 1000 1000 500 500 400 800 - 

NEW065 Eu, Is 

Id, Internal if. (600) (600) (500) (500) (-) (-) (-) 

NEW068 Eu 

Is 

External if. 

Gradual change 

1250 

(900) 

1250 

(900) 

1250 

(900) 

1250 

(900) 

- 

(-) 

- 

(-) 

- 

(-) 

NEW069 Ic External if. (550) (580) (550) (550) (300) (?) (-) 

NEW070 Eg, Id Gradual change (800) (800) (750) (750) (-) () (800) 

NEW07I Eu, Is Gradual change (-) (560) (280) (280) (-) () () 

NEWO73 Eu - - - - - - - 

pto  
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Sample Zona 

Hon 

Type 

Profile Type 
(i. f = inner 

flat)  

Zonation Length Scale to the nearest analysis point 

(Am) (brackets denote internal zonation) 

Mg Ca Al Cr Ti Fe Mn 

NEW074 Eu, 

Is 

External if. 

Gradual change 

2400 

(800) 

3200 

(700) 

>1000 

(400) 

>1000 

(400) 

3200 

(700) 

- 

(-) 

1000 

(500) 

NEWO78 Eu, Id Internal if. (500) (420) (350) (320) (250) (-) (-) 

NEW079 Eu, Is 3000 3000 3000 3000 1000 1000 1000 

NEW083 Eu?Ic Gradual change (500) (500) (500) (500) (-) (-) (-) 

NEW086 Eu,Is 1500 - 1500 1500 - - - 

NEW088 Eu, Is External if. - - 1800 1800 - - - 

NEW094 Eu Outer flat - - 2000 2100 -. - - 

NEW095 Eu -. - 500 - - - 

NEW096 Eu 2500 - - 2500 - - - 

NEW098 Eu, Is External if 1100 1800 1700 1700 - - - 

NEWIOI Eu Rim Growth 700 800 800 800 500 - - 

NEWI07 Eu Rim Growth? 700 700 800 800 - - - 

NEWI09 Eu,ls 

- 

Rim Growth 	 1 

& outer flat 

- 1000 1500 1500 700 - - 

NEWIIO - - - - - - ISO - 

NEW!!! Fu 1000 1000 1000 1000 - - - 

NEWII4 Eu, Id Internal if (1000) (850) (750) (750) (550) - - 

NEWIIS Eu Rim growth 1500 1500 1500 1500 - - - 

NEWII9 - - - - - - - - 

NEW288 Ic I & outer flat (450) (400) (450) (450) (500) (400) - 

NEW30I Eg, Is External if. 1100 1100 1000 1000 -. - - 

NEW302 Eu, Is Internal if - - - - - - - 

NEW303 Eu 

Is 

Gradual change 

Internal if. 

- 

(-) 

1000 

(300) 

1000 

(300) 

1000 

(300) 

- 

(-) 

- 

(-) 

- 

(-) 

NEW307 Ed 

Id 

(300) - (800) (700) - - - 

NEW308 Es 

Is 

External if 

Internal if. 

- 

(-) 

1000 

(500) 

1000 

(500) 

1000 

(500) 

- 

(-) 

- 

(-) 

- 

(-) 

NEW401 Is Internal if. - (1400) (550) (550) - - - 

NEW402 Eu, 

Is 

External if. 

Internal if 

1500 

(-) 

- 

(-) 

- 

(1000) 

- 

(1000) 

- 

(-) 

- 

(1000) 

- 

(-) 

NEW403 Eu, Is External i.f 2100 1800 1400 1500 - - - 

NEW404 Eu 

Is 

External if. 

Gradual change 

2500 

(700) 

2500 

(700) 

2500 2500 

(700)  

- - - 

NEW405 - Gradual change - - - - - - - 

NEW406 Eu 

Is 

External if. 

Gradual change 

1000 

(200) 

1000 

(200) 

500 

(200) 

700 

(200) 

1000 

(1000) 

- - 

pto  
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Sample Zona 
tion 
Type 

Profile Type 
(ii'. = inner 

flat)  

Zonation Length Scale to the nearest analysis point 
(Am) (brackets denote internal zonation) 

Mg Ca Al Cr Ti Fe Mn 

NEW407 - - - - - - - - 

NEW408 Eu 1600 1600 1600 1600 - - - 

NEW409 Eu 1000 - 1600 1600 - - - 

NEW4I0 Es 1000 1000 1000 1000 - - - 

NEW420 Es - - - - - - - 

NEW42I - - - - - - - - 

NEW422 - - - - - - - - 

NEWOPX Eopx External if 300 300 200 200 300 300 300 

NEWSP Id Internal if. (1000) (1200) (1000) (1000) (1000) (-) (-) 

LEIOQI id Internal if (500) (500) (500) (500) (-) (500) () 

LEI002 - - - - - - - - 

LEI003 - - - - - - - - 

LEI004 - - - - - - - - 

LEI005 Eu 500 500 - - - - - 

LEI006 Eu 1000 - 700 500 - 500 - 

LE1007 Eu I & outer flat 950 750 900 - 800 

LEI008 - - - - - - 

Lfl009 - - - [J' LEIOIO Eu - - - - - 

LEIOII Eu - - 0 - 500 

LEIOI2 - - -  - - - 

82 Eu External if, 2500 2500 2500 2500 - - - 

B3 Eu RirnGrowth — 

core flat 

1500 1500 1000 1000 - - 1500 

B4 - - - - - - - - 

B5 Eu 1000 1000 1000 1000 - - - 

844 Eg 

Id 

Outer flat 

Gradàal change 

- 

(-) 

2000 

(500) 

1500 

(800) 

1800 

(800) 

- 

(500) 

1000 

(500) 

1800 

(500) 

B47 Eu 

Is 

External if 

Gradual change 

2100 

(-) 

- 

(-) 

2000 

(1200) 

2000 

(1200) 

- 

(-) 

- 

(-) 

- 

(-) 

B48 Eu External if 4000 4000 3800 4200 - 1800 - 

B55 Id Gradual change (-) (700) (500) (500) (500) (-) () 

8152 Eu 

Is 

Rimgrowth - 

core flat 

Gradual change 

2000 

(700) 

2000 

(700) 

1600 

(600) 

1600 

(600) 

2000 

(500) 

- 

(-) 

- 

(-) 

B0B027 Es - - - - - - - 

BOB050 Es - - - - - - - 

B0B065 Es, Is  
pto  
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Sample lAna 
tion 
Type 

Profile Type 
(if. = inner 

flat)  

Zonation Length Scale to the nearest analysis point 
(pm) (brackets denote internal zonation) 

Mg Ca Al Cr Ti Fe Mn 

B0B076 Eu Rim Growth 1600 1700 1800 1800 - - 2500 

BOBII3 Eu 

Is 

I & outer flat 

Internal if. 

2900 

(300) 

3400 

@00) 

500 

(400) 

800 

(400) 

3000 

(400)  

- - 

B0B167 Eu 

Is 

Outer flat 

Internal if. 

- 

(500) 

- 

(500) 

4000 

(-) 

4000 

(-) 

- 

(-) 

- 

(-) 

- 

(-) 

B0B168 - - - - - - - - 

BOB30I Id, 

ls,lc 

Internal i:f. (500) (500) (500) (500) (-) (-) (-) 

B08304 Is (700) (-) (500)  

B0B305 Es, Is - - - - - - - 

B0B306 Eu, Id 2400 2400 2400 2400 - - - 

B0B307 Es - - - - - - - 

BOB308 Es - - - - - - - 

BOB401 Ed 

Id 

Outer flat 

Internal if. 

2300 

(500) 

2400 

(500) 

3000 

(500) 

3000 

(500) 

1000 

(-) 

2400 

(-) 

500 

(-) 

B0B402 Ed 

Id 

Gradual change 

Gradual change 

1500 

(1000) 

1500 

(1000) 

1000 

(500) 

1000 

(500) 

- 

(500) 

- 

(500) 

- 

(-) 

B0B403 Ed, Id Gradual change 1 	(2000) (2000) (1500) (1500) (-) (-) (1500) 

B0B404 Eu 

Is 

External if. 

Gradual change 

4000 

(-) 

4000 

(-) 

2000 

(800) 

2000 

(800) 

- 

(-)  

- - 

BOB405 Eu 

Id 

External if. 

Internal if. 

2300 

(500) 

2400 

(700) 

2100 

(300) 

2200 

(500) 

2000 

(-) 

2000 

(500) 

- 

(-) 

BOBKIM 

B 

Es 

Is 

1000 

(-) 

- 

(700) 

1000 

(300) 

- 

(500) 

- 

(-) 

- 

(-) 

- 

(-) 

Table 11.2: All samples analysed for major elements indicating the external and internal zonation types 
present with the distance of any measurable diffusion type noted in tim for zoned major elements. 
Internal zonation is in brackets and on the same row as the particular zonation type listed. 
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11.1 Traverses 

Garnet, chromite and clinopyroxene traverses are shown on the data CD with the 

different elements plotted on the y-axes (scale in cations, calculated by summing to 8 

cations for garnet and clinopyroxene and 6 for Cr-spinel) and horizontal distance 

plotted on the x-axis (scale in Am, calculated from stage positions output from 

SX100 instrument). The entire numerical tabulation of each traverse, including their 

weight percent values, may also be found on the data CD. Garnet traverse profiles 

are presented in alphabetical order. Ti, Al, Cr, Fet, Mn, Mg, Ca and Na 

concentrations are graphed for garnet where iron is calculated as total iron (Fet). Si is 

not shown due to inaccuracies in its measurement. K, V, Zn and Ni concentrations 

are not shown as traverses due to their low abundance in garnet. Chromite profiles 

are graphed as for garnet without Na and with Zn when analysed. Clinopyroxene 

profiles have K in addition to the elements presented for garnet. 

Due to cracking and kimberlite veining in the samples an average of-20 % of the 

automated traverse analyses had to be discarded. These were distinguished by having 

high or low (> 102.0 and <98.0 wt. %) analysis totals indicating a pit and high K20 

values (>0.05 wt. %) indicating partial kimberlitic contamination of the analysis. 

At the tops of the following pages are the sample names, the type of zonations 

observed (i.e. 'Id', 'Es' etc), the analysis spacings in Am and note as to whether there 

is an X-ray map of the samples. There is also a description of the parts of crystal 

analysed along the traverse in sequence e.g. 'Rim-core-rim' indicates that the 

traverse starts at the rim, goes through the centre of the mineral which may be, but is 

not necessarily, close to the true core and finishes at the opposite rim. 'Edge-

inclusion-core' is used for monogranular samples containing inclusions and would 

indicate that the traverse started at the edge of the sample (in a garnet), passed over 

an inclusion and ended at a core-region of the garnet that is far from inclusions. 

Labels on graphs show the location in terms of horizontal distance of features such as 

rim, core and inclusions. 
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Appendix III: X-Ray Maps (see data CD) 

Appendix Idetails the X-ray mapping technique itself. Each of the Core] Draw files 

in Appendix III (data CD) contains 4-5 maps of different elements and sometimes a 

backseattered electron map of a sample. Some maps are smaller scale and do not 

contain the whole sample and are referred to as 'zoom maps'. The locations of these 

smaller scale maps are shown on the whole sample maps if present. The locations of 

any profiles from Appendix II are also indicated on the maps. Additionally 

information as to the spectrometer setup for the maps are shown at the lower right of 

the pages. Note that samples displaying zonation in X-ray maps will tend to show 

greater variation than that measured by traverses because of the limited spatial 

coverage (i.e. one or two 1-D traverses per sample). 
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Appendix IV: EBSD Results 

The EBSD (electron backscatter diffraction) technique was used on the SEM 

(scanning electron microscope) at University of Edinburgh. The purpose was to 

establish the number of garnet grains present in certain samples where the 

polygranular/monogranular sample type was ambiguous. i.e. if the garnet across the 

entire sample is oriented in one direction then it is deemed monogranular and if there 

are more than one orientations, polygranular. 

The EBSD technique collects diffraction patterns from a highly polished sample 

surface. Selected samples were reground flat using a 20 Am diamond lap and 'Siton 

polished' for 6 minutes to produce a clean, flat and unscratched sample surface. Siton 

polishing chemically erodes the sample surface to create a flat crystal surface to 

generate well defined diffraction patterns Samples were then placed into a holder and 

silver dag was applied to the edge of the sample and its contact with the holder to 

prevent charging. 

The sample was placed into the SEM analysis chamber and a workable vacuum 

achieved. A pre-existing calibration was used for 20 mm distance from analysis spot 

to camera so the camera was positioned accordingly and the sample was brought into 

focus at 20 mm. Once the beam was placed onto suitable spots, the magnification 

was increased to 500 X and a background diffraction pattern was gathered whilst 

rotating the sample. Then a stationary diffraction pattern was gathered and the 

software told that the phase concerned is a pyrope garnet. The 'stationary' diffraction 

patterns are matched to those expected for an ideal pyrope garnet (model exists on 

software) and the best fit orientation is automatically recorded for each analysis 

point. 

The number of analysis points per sample varied from 14 to 45 depending on the area 

of the garnet that was needed to be covered. Following are the stereonet plots of 

garnet {100} directions in individual samples. Since garnet is cubic, the (100) 

direction is identical crystallographically to (0 10) and (001) and so a single garnet 

orientation is represented by three clusters of points (there is about a 3° error with 
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this technique), two orientations by six clusters of points and three orientations by 

nine clusters of points. The number of data points on the right hand panel. The results 

are summarised in Table IV. 1. 

Sample Number of garnet 
orientations present 

Polygranular/monogranular 
designation 

B55 I Monogranular 
B0B065 3 Polygranular 
BOB113 1 Monogranular 
B0B168 2 Polygranular 
B0B308 I Monogranular 
BOB310 1 Monogranular 
BOB401 1 Monogranular 
NEW059 3 Polygranular 
NEW307 2 Polygranular 
NIEW308 1 Monogranular 
NEW422 I Monogranular 

Table IV.1 
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Figure IV. 1: B55 
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Figure IV. 3: BOB I 13 
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Appendix V: Trace Element Analyses 

On the following page is the average trace clement ppm values for garnet, 

clinopyroxene and Cr-spinel in samples selected for ion microprobe SIMS analysis. 

See Appendix I for details on the analytical techniques and see data CD for the 

complete trace element analyses in spreadsheet form. 
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