60 research outputs found

    Spatial and temporal variation of metal concentrations in adult honeybees (Apis mellifera L.)

    Get PDF
    Honeybees (Apis mellifera L.) have great potential for detecting and monitoring environmental pollution, given their wide-ranging foraging behaviour. Previous studies have demonstrated that concentrations of metals in adult honeybees were significantly higher at polluted than at control locations. These studies focused at a limited range of heavy metals and highly contrasting locations, and sampling was rarely repeated over a prolonged period. In our study, the potential of honeybees to detect and monitor metal pollution was further explored by measuring the concentration in adult honeybees of a wide range of trace metals, nine of which were not studied before, at three locations in the Netherlands over a 3-month period. The specific objective of the study was to assess the spatial and temporal variation in concentration in adult honeybees of Al, As, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Ti, V and Zn. In the period of July–September 2006, replicated samples were taken at 2-week intervals from commercial-type beehives. The metal concentration in micrograms per gram honeybee was determined by inductive coupled plasma–atomic emission spectrometry. Significant differences in concentration between sampling dates per location were found for Al, Cd, Co, Cr, Cu, Mn Sr, Ti and V, and significant differences in average concentration between locations were found for Co, Sr and V. The results indicate that honeybees can serve to detect temporal and spatial patterns in environmental metal concentrations, even at relatively low levels of pollution

    Aerobic nonylphenol degradation and nitro-nonylphenol formation by microbial cultures from sediments

    Get PDF
    Nonylphenol (NP) is an estrogenic pollutant which is widely present in the aquatic environment. Biodegradation of NP can reduce the toxicological risk. In this study, aerobic biodegradation of NP in river sediment was investigated. The sediment used for the microcosm experiments was aged polluted with NP. The biodegradation of NP in the sediment occurred within 8Β days with a lag phase of 2Β days at 30Β°C. During the biodegradation, nitro-nonylphenol metabolites were formed, which were further degraded to unknown compounds. The attached nitro-group originated from the ammonium in the medium. Five subsequent transfers were performed from original sediment and yielded a final stable population. In this NP-degrading culture, the microorganisms possibly involved in the biotransformation of NP to nitro-nonylphenol were related to ammonium-oxidizing bacteria. Besides the degradation of NP via nitro-nonylphenol, bacteria related to phenol-degrading species, which degrade phenol via ring cleavage, are abundantly present

    Preserved Myocardial Deformation after Successful Coarctation Repair: A CMR Feature-Tracking Study

    Get PDF
    Contains fulltext : 190059.pdf (publisher's version ) (Open Access

    Diagnosis, imaging and clinical management of aortic coarctation

    No full text
    Coarctation of the aorta (CoA) is a well-known congenital heart disease (CHD), which is often associated with several other cardiac and vascular anomalies, such as bicuspid aortic valve (BAV), ventricular septal defect, patent ductus arteriosus and aortic arch hypoplasia. Despite echocardiographic screening, prenatal diagnosis of CoA remains difficult. Most patients with CoA present in infancy with absent, delayed or reduced femoral pulses, a supine arm-leg blood pressure gradient (>20 mm Hg), or a murmur due to rapid blood flow across the CoA or associated lesions (BAV). Transthoracic echocardiography is the primary imaging modality for suspected CoA. However, cardiac magnetic resonance imaging is the preferred advanced imaging modality for non-invasive diagnosis and follow-up of CoA. Adequate and timely diagnosis of CoA is crucial for good prognosis, as early treatment is associated with lower risks of long-term morbidity and mortality. Numerous surgical and transcatheter treatment strategies have been reported for CoA. Surgical resection is the treatment of choice in neonates, infants and young children. In older children (>25 kg) and adults, transcatheter treatment is the treatment of choice. In the current era, patients with CoA continue to have a reduced life expectancy and an increased risk of cardiovascular sequelae later in life, despite adequate relief of the aortic stenosis. Intensive and adequate follow-up of the left ventricular function, valvular function, blood pressure and the anatomy of the heart and the aorta are, therefore, critical in the management of CoA. This review provides an overview of the current state-of-the-art clinical diagnosis, diagnostic imaging algorithms, treatment and follow-up of patients with CoA

    Diagnosis, imaging and clinical management of aortic coarctation

    No full text
    Coarctation of the aorta (CoA) is a well-known congenital heart disease (CHD), which is often associated with several other cardiac and vascular anomalies, such as bicuspid aortic valve (BAV), ventricular septal defect, patent ductus arteriosus and aortic arch hypoplasia. Despite echocardiographic screening, prenatal diagnosis of CoA remains difficult. Most patients with CoA present in infancy with absent, delayed or reduced femoral pulses, a supine arm-leg blood pressure gradient (>20 mm Hg), or a murmur due to rapid blood flow across the CoA or associated lesions (BAV). Transthoracic echocardiography is the primary imaging modality for suspected CoA. However, cardiac magnetic resonance imaging is the preferred advanced imaging modality for non-invasive diagnosis and follow-up of CoA. Adequate and timely diagnosis of CoA is crucial for good prognosis, as early treatment is associated with lower risks of long-term morbidity and mortality. Numerous surgical and transcatheter treatment strategies have been reported for CoA. Surgical resection is the treatment of choice in neonates, infants and young children. In older children (>25 kg) and adults, transcatheter treatment is the treatment of choice. In the current era, patients with CoA continue to have a reduced life expectancy and an increased risk of cardiovascular sequelae later in life, despite adequate relief of the aortic stenosis. Intensive and adequate follow-up of the left ventricular function, valvular function, blood pressure and the anatomy of the heart and the aorta are, therefore, critical in the management of CoA. This review provides an overview of the current state-of-the-art clinical diagnosis, diagnostic imaging algorithms, treatment and follow-up of patients with CoA

    Π₯имичСскоС окислСниС ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² трансформации нСсиммСтричного Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Π³ΠΈΠ΄Ρ€Π°Π·ΠΈΠ½Π° Π² Π²ΠΎΠ΄Π΅

    No full text
    ОкислСниС нСсиммСтричного Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Π³ΠΈΠ΄Ρ€Π°Π·ΠΈΠ½Π° (ΠΠ”ΠœΠ“) ΠΏΡ€ΠΈ очисткС Π²ΠΎΠ΄Ρ‹ ΠΈΠΌΠ΅Π΅Ρ‚ ряд нСдостатков, связанных с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ±ΠΎΡ‡Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² трансформации. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ…ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² очистки ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°ΠΌ трансформации ΠΠ”ΠœΠ“ Π² настоящий ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΌΠ°Π»ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½Π°. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ рассмотрСна ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… химичСских окислитСлСй ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ основным ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°ΠΌ трансформации ΠΠ”ΠœΠ“ – 1-Ρ„ΠΎΡ€ΠΌΠΈΠ»-2,2-Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Π³ΠΈΠ΄Ρ€Π°Π·ΠΈΠ½Π°, Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Π°ΠΌΠΈΠ½ΠΎΠ°Ρ†Π΅Ρ‚ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π°, N-Π½ΠΈΡ‚Ρ€ΠΎΠ·ΠΎΠ΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Π°ΠΌΠΈΠ½Π° ΠΈ 1-ΠΌΠ΅Ρ‚ΠΈΠ»-1Н-1,2,4-Ρ‚Ρ€ΠΈΠ°Π·ΠΎΠ»Π°. Π’ качСствС окислитСлСй ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ² Π€Π΅Π½Ρ‚ΠΎΠ½Π°, ΠΏΠ΅Ρ€ΠΌΠ°Π½Π³Π°Π½Π°Ρ‚ калия ΠΈ Π½ΠΈΡ‚Ρ€ΠΈΡ‚ натрия. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²Π΅Π½Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ загрязнитСлСй ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ высокоэффСктивной Тидкостной Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ. ΠŸΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ‹ окислСния опрСдСляли ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π³Π°Π·ΠΎΠ²ΠΎΠΉ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎ-масс-спСктромСтрии Π² сочСтании с Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ„Π°Π·Π½ΠΎΠΉ микроэкстракциСй. 1-Π€ΠΎΡ€ΠΌΠΈΠ»-2,2-Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Π³ΠΈΠ΄Ρ€Π°Π·ΠΈΠ½ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ окислялся, образуя Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ соСдинСния: N-Ρ„ΠΎΡ€ΠΌΠΈΠ»-N-ΠΌΠ΅Ρ‚ΠΈΠ»Π³ΠΈΠ΄Ρ€Π°Π·ΠΎΠ½ Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄Π° Π² присутствии Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π° Π€Π΅Π½Ρ‚ΠΎΠ½Π°, 1,4-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎ-1,4-Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»-5Н-Ρ‚Π΅Ρ‚Ρ€Π°Π·ΠΎΠ»-5-ΠΎΠ½ ΠΏΡ€ΠΈ дСйствии ΠΏΠ΅Ρ€ΠΌΠ°Π½Π³Π°Π½Π°Ρ‚Π° калия ΠΈ N-ΠœΠ΅Ρ‚ΠΈΠ»-N-Π½ΠΈΡ‚Ρ€ΠΎΠΌΠ΅Ρ‚Π°Π½Π°ΠΌΠΈΠ½ Π² присутствии Π½ΠΈΡ‚Ρ€ΠΈΡ‚Π° натрия. Π”ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ любого окислитСля ΠΊ раствору 1-Ρ„ΠΎΡ€ΠΌΠΈΠ»-2,2-Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Π³ΠΈΠ΄Ρ€Π°Π·ΠΈΠ½Π° ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ N-Π½ΠΈΡ‚Ρ€ΠΎΠ·ΠΎΠ΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Π°ΠΌΠΈΠ½Π°. ОкислСниС Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Π°ΠΌΠΈΠ½ΠΎΠ°Ρ†Π΅Ρ‚ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π»ΠΎ с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ гидроксиацСтонитрила, Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Ρ„ΠΎΡ€ΠΌΠ°ΠΌΠΈΠ΄Π° ΠΈ 1,2,5-Ρ‚Ρ€ΠΈΠΌΠ΅Ρ‚ΠΈΠ»ΠΏΠΈΡ€Ρ€ΠΎΠ»Π°. Бпустя 30 Π΄Π½Π΅ΠΉ послС ввСдСния окислитСлСй Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Π°ΠΌΠΈΠ½ΠΎΠ°Ρ†Π΅Ρ‚ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ» Π½Π΅ обнаруТивался Π² присутствии Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π° Π€Π΅Π½Ρ‚ΠΎΠ½Π° ΠΈ ΠΏΠ΅Ρ€ΠΌΠ°Π½Π³Π°Π½Π°Ρ‚Π° калия, Π½ΠΎ Π² ΠΎΠ±Ρ€Π°Π·Ρ†Π΅ с Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π½ΠΈΡ‚Ρ€ΠΈΡ‚Π° натрия Π΅Π³ΠΎ концСнтрация достигала 77,3 ΠΌΠ³/Π». Π’ присутствии Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π° Π€Π΅Π½Ρ‚ΠΎΠ½Π°, ΠΏΠ΅Ρ€ΠΌΠ°Π½Π°Π³Π½Π°Ρ‚Π° калия ΠΈ Π½ΠΈΡ‚Ρ€ΠΈΡ‚Π° натрия концСнтрация N-Π½ΠΈΡ‚Ρ€ΠΎΠ·ΠΎΠ΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Π°ΠΌΠΈΠ½Π° Π² ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΠ»Π°ΡΡŒ Π½Π° 85, 80 ΠΈ 50%, соотвСтствСнно. Π’ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π΅ концСнтрация N-Π½ΠΈΡ‚Ρ€ΠΎΠ·ΠΎΠ΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Π°ΠΌΠΈΠ½Π° снизилась Π½Π° 50%, Ρ‡Ρ‚ΠΎ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π½ΠΈΡ‚Ρ€ΠΈΡ‚ натрия Π½Π΅ влияСт Π½Π° содСрТаниС N-Π½ΠΈΡ‚Ρ€ΠΎΠ·ΠΎΠ΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Π°ΠΌΠΈΠ½Π° Π² Π²ΠΎΠ΄Π΅. Волько Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ² Π€Π΅Π½Ρ‚ΠΎΠ½Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡŽ 1-ΠΌΠ΅Ρ‚ΠΈΠ»-1Н-1,2,4-Ρ‚Ρ€ΠΈΠ°Π·ΠΎΠ»Π° Π² Π²ΠΎΠ΄Π΅ Π½Π° 50% Π·Π° 30 Π΄Π½Π΅ΠΉ. Π’ присутствии Π΄Ρ€ΡƒΠ³ΠΈΡ… окислитСлСй концСнтрация 1-ΠΌΠ΅Ρ‚ΠΈΠ»-1Н-1,2,4-Ρ‚Ρ€ΠΈΠ°Π·ΠΎΠ»Π° снизилась Π½Π° 15-20%. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ провСдСния исслСдований Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ² Π€Π΅Π½Ρ‚ΠΎΠ½Π° ΠΏΠΎΠΊΠ°Π·Π°Π» сСбя Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эффСктивным окислитСлСм.
    • …
    corecore