40 research outputs found
Biomarker, Imaging, and Clinical Factors Associated With Overt and Covert Stroke in Patients With Atrial Fibrillation.
BACKGROUND
Atrial fibrillation is a major risk factor for stroke and silent brain infarcts. We studied whether a multimodal approach offers additional insights to the CHA2DS2-VASc score in predicting stroke or new brain infarcts on magnetic resonance imaging (MRI) over a 2-year follow-up.
METHODS
Swiss-AF is a prospective, multicenter cohort study of patients with known atrial fibrillation. We included patients with available brain MRI both at enrollment and 2 years later. The dates of the baseline and follow-up visits ranged from March 2014 to November 2020. The primary outcome was assessed 2 years after baseline and was defined as a composite of clinically identified stroke or any new brain infarct on the 2-year MRI. We compared a multivariable logistic regression model including prespecified clinical, biomarker, and baseline MRI variables to the CHA2DS2-VASc score.
RESULTS
We included 1232 patients, 89.8% of them taking oral anticoagulants. The primary outcome occurred in 78 patients (6.3%). The following baseline variables were included in the final multivariate model and were significantly associated with the primary outcome: white matter lesion volume in milliliters (adjusted odds ratio [aOR], 1.91 [95% CI, 1.45-2.56]), NT-proBNP (N-terminal pro-B-type natriuretic peptide; aOR, 1.75 [95% CI, 1.20-2.63]), GDF-15 (growth differentiation factor-15; aOR, 1.68 [95% CI, 1.11-2.53]), serum creatinine (aOR, 1.50 [95% CI, 1.02-2.22]), IL (interleukin)-6 (aOR, 1.37 [95% CI, 1.00-1.86]), and hFABP (heart-type fatty acid-binding protein; aOR, 0.48 [95% CI, 0.31-0.73]). Overall performance and discrimination of the new model was superior to that of the CHA2DS2-VASc score (C statistic, 0.82 [95% CI, 0.77-0.87] versus 0.64 [95% CI, 0.58-0.70]).
CONCLUSIONS
In patients with atrial fibrillation, a model incorporating white matter lesion volume on baseline MRI and selected blood markers yielded new insights on residual stroke risk despite a high proportion of patients on oral anticoagulants. This may be relevant to develop further preventive measures
Serum neurofilament light in atrial fibrillation: clinical, neuroimaging and cognitive correlates
Emerging evidence suggests that atrial fibrillation is associated with cognitive dysfunction independently of stroke, but the underlying mechanisms remain unclear. In this cross-sectional analysis from the Swiss-atrial fibrillation Study (NCT02105844), we investigated the association of serum neurofilament light protein, a neuronal injury biomarker, with (i) the CHA; 2; DS; 2; -VASc score (congestive heart failure, hypertension, age 65-74 or >75 years, diabetes mellitus, stroke or transient ischaemic attack, vascular disease, sex), clinical and neuroimaging parameters and (ii) cognitive measures in atrial fibrillation patients. We measured neurofilament light in serum using an ultrasensitive single-molecule array assay in a sample of 1379 atrial fibrillation patients (mean age, 72 years; female, 27%). Ischaemic infarcts, small vessel disease markers and normalized brain volume were assessed on brain MRI. Cognitive testing included the Montreal cognitive assessment, trail-making test, semantic verbal fluency and digit symbol substitution test, which were summarized using principal component analysis. Results were analysed using univariable and multivariable linear regression. Neurofilament light was associated with the CHA; 2; DS; 2; -VASc score, with an average 19.2% [95% confidence interval (17.2%, 21.3%)] higher neurofilament per unit CHA; 2; DS; 2; -VASc increase. This association persisted after adjustment for age and MRI characteristics. In multivariable analyses, clinical parameters associated with neurofilament light were higher age [32.5% (27.2%, 38%) neurofilament increase per 10 years], diabetes mellitus, heart failure and peripheral artery disease [26.8% (16.8%, 37.6%), 15.7% (8.1%, 23.9%) and 19.5% (6.8%, 33.7%) higher neurofilament, respectively]. Mean arterial pressure showed a curvilinear association with neurofilament, with evidence for both an inverse linear and a U-shaped association. MRI characteristics associated with neurofilament were white matter lesion volume and volume of large non-cortical or cortical infarcts [4.3% (1.8%, 6.8%) and 5.5% (2.5%, 8.7%) neurofilament increase per unit increase in log-volume of the respective lesion], as well as normalized brain volume [4.9% (1.7%, 8.1%) higher neurofilament per 100 cm; 3; smaller brain volume]. Neurofilament light was inversely associated with all cognitive measures in univariable analyses. The effect sizes diminished after adjusting for clinical and MRI variables, but the association with the first principal component was still evident. Our results suggest that in atrial fibrillation patients, neuronal loss measured by serum neurofilament light is associated with age, diabetes mellitus, heart failure, blood pressure and vascular brain lesions, and inversely correlates with normalized brain volume and cognitive function
Hermann Mark – A Pioneer of Polymer Science
Hermann Mark can be credited for being one of the founders of the field of polymer science and for being the father of polymer education in the United States. From the beginning, Hermann Mark understood how polymers behaved as they underwent temperature changes or as they were deformed. Over his long and productive lifetime, Hermann Mark published 20 books and over 500 articles. His Institute of Polymer Science at the Brooklyn Polytechnic University in New York served as the incubator for some of the most notable polymer scientists of the second half of the twentieth century
Editorial for the Special Issue on Discontinuous Fiber Composites
The papers published in this special edition of the Journal of Composites Science will give the polymer engineer and scientist insight into what the existing challenges are in the discontinuous fiber composites field, and how these challenges are being addressed by the research community. [...
Discontinuous Fiber Composites
Discontinuous fiber-reinforced polymers have gained importance in the transportation industries due to their outstanding material properties, lower manufacturing costs and superior lightweight characteristics. One of the most attractive attributes of discontinuous fiber reinforced composites is the ease with which they can be manufactured in large numbers, using injection and compression molding processes. Typical processes involving discontinuous fiber reinforced thermoplastic composite materials include injection and compression molding processes as well as extrusion. Furthermore, the automotive and appliance industries also use thermosets reinforced with chopped fibers in the form of sheet molding compound and bulk molding compound, for compression and injection-compression molding processes, respectively. A big disadvantage of discontinuous fiber composites is that the configuration of the reinforcing fibers is significantly changed throughout production process, reflected in the form of fiber attrition, excessive fiber orientation, fiber jamming and fiber matrix separation. This process-induced variation of the microstructural fiber properties within the molded part introduces heterogeneity and anisotropies to the mechanical properties, which can limit the potential of discontinuous fiber reinforced composites for lightweight applications. The main aim of this Special Issue is to collect various investigations focused on the processing of discontinuous fiber reinforced composites and the effect processing has on fiber orientation, fiber length and fiber density distributions throughout the final part. Papers presenting investigations on the effect fiber configurations have on the mechanical properties of the final composite products and materials are welcome in the Special Issue. Researchers who are modeling and simulating processes involving discontinuous fiber composites as well as those performing experimental studies involving these composites are welcomed to submit papers. Authors are encouraged to present new models, constitutive laws and measuring and monitoring techniques to provide a complete framework on these groundbreaking materials and facilitate their use in different engineering applications
Editorial for the Special Issue on Discontinuous Fiber Composites, Volume II
This Special Issue on discontinuous fiber composites and its published papers, like its predecessor, give the polymer engineer and scientist an insight into challenges and research topics in the field of discontinuous fiber-reinforced composites [...
Melt Conveying in Single-Screw Extruders: Modeling and Simulation
Numerous analyses have modeled the flow of polymer melts in the melt-conveying zones of single-screw extruders. While initial studies mainly provided exact analytical results for combined drag and pressure flows of Newtonian fluids, more recently developed, numerical methods seek to deepen the understanding of more realistic flow situations that include shear-thinning and non-isothermal effects. With the advent of more powerful computers, considerable progress has been made in the modeling and simulation of polymer melt flows in single-screw extruders. This work reviews the historical developments from a methodological point of view, including (1) exact analytical, (2) numerical, and (3) approximate methods. Special attention is paid to the mathematical models used in each case, including both governing flow equations and boundary conditions. In addition, the literature on leakage flow and curved-channel systems is revisited