532 research outputs found
Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns
Recent empirical evidence suggests that the long-run dependence in financial market volatility is best characterized by a slowly mean-reverting fractionally integrated process. At the same time, much shorter-lived volatility dependencies are typically observed with high-frequency intradaily returns. This paper draws on the information arrival, or mixture-of-distributions hypothesis interpretation of the latent volatility process in rationalizing this behavior. By interpreting the overall volatility as the manifestation of numerous heterogeneous information arrivals, sudden bursts of volatility typically will have both short-run and long-run components. Over intradaily frequencies, the short-run decay stands out most clearly, while the impact of the highly persistent processes will be dominant over longer horizons. These ideas are confirmed by our empirical analysis of a one-year time series of intradaily five-minute Deutschemark - U.S. Dollar returns. Whereas traditional time series based measures for the temporal dependencies in the absolute returns give rise to very conflicting results across different intradaily sampling frequencies, the corresponding semiparametric estimates for the order of fractional integration remain remarkably stable. Similarly, the autocorrelogram for the low-pass filtered absolute returns, obtained by annihilating periods in excess of one day, exhibit a striking hyperbolic rate of decay.
Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts
Volatility permeates modern financial theories and decision making processes. As such, accurate measures and good forecasts of future volatility are critical for the implementation and evaluation of asset pricing theories. In response to this, a voluminous literature has emerged for modeling the temporal dependencies in financial market volatility at the daily and lower frequencies using ARCH and stochastic volatility type models. Most of these studies find highly significant in-sample parameter estimates and pronounced intertemporal volatility persistence. Meanwhile, when judged by standard forecast evaluation criteria, based on the squared or absolute returns over daily or longer forecast horizons, ARCH models provide seemingly poor volatility forecasts. The present paper demonstrates that ARCH models, contrary to the above contention, produce strikingly accurate interdaily forecasts for the latent volatility factor that is relevant for most financial applications.
No-Arbitrage Semi-Martingale Restrictions for Continuous-Time Volatility Models subject to Leverage Effects, Jumps and i.i.d. Noise: Theory and Testable Distributional Implications
We develop a sequential procedure to test the adequacy of jump-diffusion models for return distributions. We rely on intraday data and nonparametric volatility measures, along with a new jump detection technique and appropriate conditional moment tests, for assessing the import of jumps and leverage effects. A novel robust-to-jumps approach is utilized to alleviate microstructure frictions for realized volatility estimation. Size and power of the procedure are explored through Monte Carlo methods. Our empirical findings support the jump-diffusive representation for S&P500 futures returns but reveal it is critical to account for leverage effects and jumps to maintain the underlying semi-martingale assumption.
Correcting the Errors: A Note on Volatility Forecast Evaluation Based on High-Frequency Data and Realized Volatilities
This note develops general model-free adjustment procedures for the calculation of unbiased volatility loss functions based on practically feasible realized volatility benchmarks. The procedures, which exploit the recent asymptotic distributional results in Barndorff-Nielsen and Shephard (2002a), are both easy-to-implement and highly accurate in empirically realistic situations. On properly accounting for the measurement errors in the volatility forecast evaluations reported in Andersen, Bollerslev, Diebold and Labys (2003), the adjustments result in markedly higher estimates for the true degree of return-volatility predictability. Cette note développe des méthodes d'ajustement, sans spécifier le modèle, qui corrigent le biais induit par les erreurs de mesures de la volatilité dans la mesure de performance des méthodes de prévision de la volatilité. Les procédures, qui utilisent la récente théorie asymptotique de Barndorff-Nielsen et Shephard (2002a), sont faciles à mettre en ?uvre et très performantes dans les situations empiriques usuelles. En particulier, la prise en compte des erreurs de mesures dans les procédures de prévision de Andersen, Bollerslev, Diebold et Labys (2003), amène à des performances de prévision de la volatilité très élevées.Measurement errors; model-free adjustment procedures; integrated volatility; realized volatility; high-frequency data; time series forecasting; Mincer-Zarnowitz regressions, Erreurs de mesure; méthode d'ajustement; volatilité intégrée, volatilité réalisée; données à haute fréquence; prévision de série chronologiques; régressions de Mincer-Zarnowitz
Parametric and Nonparametric Volatility Measurement
Volatility has been one of the most active areas of research in empirical finance and time series econometrics during the past decade. This chapter provides a unified continuous-time, frictionless, no-arbitrage framework for systematically categorizing the various volatility concepts, measurement procedures, and modeling procedures. We define three different volatility concepts: (i) the notional volatility corresponding to the ex-post sample-path return variability over a fixed time interval, (ii) the ex-ante expected volatility over a fixed time interval, and (iii) the instantaneous volatility corresponding to the strength of the volatility process at a point in time. The parametric procedures rely on explicit functional form assumptions regarding the expected and/or instantaneous volatility. In the discrete-time ARCH class of models, the expectations are formulated in terms of directly observable variables, while the discrete- and continuous-time stochastic volatility models involve latent state variable(s). The nonparametric procedures are generally free from such functional form assumptions and hence afford estimates of notional volatility that are flexible yet consistent (as the sampling frequency of the underlying returns increases). The nonparametric procedures include ARCH filters and smoothers designed to measure the volatility over infinitesimally short horizons, as well as the recently-popularized realized volatility measures for (non-trivial) fixed-length time intervals.
Parametric and Nonparametric Volatility Measurement
Volatility has been one of the most active areas of research in empirical finance and time series econometrics during the past decade. This chapter provides a unified continuous-time, frictionless, no-arbitrage framework for systematically categorizing the various volatility concepts, measurement procedures, and modeling procedures. We define three different volatility concepts: (i) the notional volatility corresponding to the ex-post sample-path return variability over a fixed time interval, (ii) the ex-ante expected volatility over a fixed time interval, and (iii) the instantaneous volatility corresponding to the strength of the volatility process at a point in time. The parametric procedures rely on explicit functional form assumptions regarding the expected and/or instantaneous volatility. In the discrete-time ARCH class of models, the expectations are formulated in terms of directly observable variables, while the discrete- and continuous-time stochastic volatility models involve latent state variable(s). The nonparametric procedures are generally free from such functional form assumptions and hence afford estimates of notional volatility that are flexible yet consistent (as the sampling frequency of the underlying returns increases). The nonparametric procedures include ARCH filters and smoothers designed to measure the volatility over infinitesimally short horizons, as well as the recently-popularized realized volatility measures for (non-trivial) fixed-length time intervals.
Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility
A rapidly growing literature has documented important improvements in financial return volatility measurement and forecasting via use of realized variation measures constructed from high-frequency returns coupled with simple modeling procedures. Building on recent theoretical results in Barndorff-Nielsen and Shephard (2004a, 2005) for related bi-power variation measures, the present paper provides a practical and robust framework for non-parametrically measuring the jump component in asset return volatility. In an application to the DM/$ exchange rate, the S&P500 market index, and the 30-year U.S. Treasury bond yield, we find that jumps are both highly prevalent and distinctly less persistent than the continuous sample path variation process. Moreover, many jumps appear directly associated with specific macroeconomic news announcements. Separating jump from non-jump movements in a simple but sophisticated volatility forecasting model, we find that almost all of the predictability in daily, weekly, and monthly return volatilities comes from the non-jump component. Our results thus set the stage for a number of interesting future econometric developments and important financial applications by separately modeling, forecasting, and pricing the continuous and jump components of the total return variation process.
Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility
A rapidly growing literature has documented important improvements in volatility measurement and forecasting performance through the use of realized volatilities constructed from high frequency returns coupled with relatively simple reduced-form time series modeling procedures. Building on recent theoretical results from Barndorff-Nielsen and Shephard (2003c,d) for related bi-power variation measures involving the sum of high-frequency absolute returns, the present paper provides a practical framework for non-parametrically measuring the jump component in realized volatility measurements. Exploiting these ideas for a decade of high-frequency five-minute returns for the DM/$ exchange rate, the S&P500 market index, and the 30-year U.S. Treasury bond yield, we find the jump component of the price process to be distinctly less persistent than the continuous sample path component. Explicitly including the jump measure as an additional explanatory variable in an easy-to implement reduced form model for realized volatility results in highly significant jump coefficient estimates at the daily, weekly and quarterly forecast horizons.Continuous-time methods, jumps, quadratic variation, realized volatility, bi-power variation, high-frequency data, volatility forecasting, HAR-RV model
- …