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1 Introduction

The burgeoning literature on time-varying financial market volatility is abound with

empirical studies in which competing models are evaluated and compared on the basis of

their forecast performance. Contrary to the typical setting for economic forecast evaluation,

the variable of interest in that context - the volatility - is not directly observable but

rather inherently latent. Consequently, any ex-post assessment of forecast precision must

contend with a fundamental errors-in-variable problem associated with the measurement of

the realization of the forecasted variable. Growing recognition of the importance of this

issue has led a number of recent studies to advocate the use of so-called realized volatilities,

constructed from the summation of finely sampled squared high-frequency returns, as a

practical method for improving the ex-post volatility measures.

The use of realized volatility as the practical benchmark may be justified by standard

continuous-time arguments. Assuming that the sampling frequency of the squared returns

utilized in the realized volatility computations approaches zero, the realized volatility then

consistently estimates the true (latent) integrated volatility under quite general conditions,

where importantly, the latter concept corresponds to the realization of the (cumulative)

instantaneous variance process over the relevant horizon (see, e.g., Andersen and Bollerslev,

1998; Andersen, Bollerslev, Diebold and Labys, 2001; Barndorff-Nielsen and Shephard, 2001,

2002a,b, 2004a; Comte and Renault, 1998; along with the recent survey by Andersen,

Bollerslev and Diebold, 2003). Unfortunately, market microstructure frictions distort the

measurement of returns at the highest frequencies so that, e.g., tick-by-tick return processes

blatantly violate the theoretical semi-martingale restrictions implied by the no-arbitrage

assumptions in continuous-time asset pricing models. These same features also bias empirical

realized volatility measures constructed directly from the ultra high-frequency returns, so in

practice the measures are instead typically constructed from intraday returns sampled at an

intermediate frequency.1 As such, the integrated volatility is invariably measured with error

(see, e.g., the numerical calculations in Andreou and Ghysels, 2002, and Bai, Russell, and

Tiao, 2000). The exact form of the measurement error will, of course, depend on the assumed

model structure (see, e.g., Meddahi, 2002, and Barndorff-Nielsen and Shephard, 2002a), but

it will generally result in a downward bias in the estimated degree of predictability obtained

through any forecast evaluation criterion that simply uses the realized volatility in place

of the true (latent) integrated volatility. Although this bias may be large (Andersen and

Bollerslev, 1998), it is almost always ignored in empirical applications.

We address that issue by developing general model-free adjustment procedures that

1For instance, the daily realized volatilities in Andersen, Bollerslev, Diebold and Labys (2003) (henceforth
ABDL (2003)) discussed further below are based on the summation of squared half-hourly foreign exchange
rate returns, but either 5-minute or 15-minute returns are other common choices in the literature.
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allow for the calculation of simple unbiased loss functions in realistic forecast situations.

Moreover, the adjustments are simple to implement in practice. The derivation exploits the

asymptotic (for increasing sampling frequency) distributional results in Barndorff-Nielsen

and Shephard (2002a). While these results explicitly rule out so-called leverage effects,

building on the recent insights in Barndorff-Nielsen and Shephard (2004b), we show that the

same approximate adjustment procedures apply in the context of the general eigenfunction

stochastic volatility class of models pioneered by Meddahi (2001) explicitly allowing for

non-zero contemporaneous correlations between the separate shocks in the return and

volatility processes. Following Andersen and Bollerslev (1998) and ABDL (2003), we focus

our forecast comparisons on the value of the coefficient of multiple correlation, or R2, in the

Mincer-Zarnowitz style regressions of the ex-post realized volatility on the corresponding

model forecasts,2 but our procedures are general and could be applied in the adjustment of

other loss functions used in the evaluation of any arbitrary set of volatility forecasts. On

applying the procedures in the context of ABDL (2003), we obtain markedly higher estimates

for the true degree of return-volatility predictability, with the adjusted R2’s exceeding their

unadjusted counterparts by up to forty-percent.

We proceed as follows. The first subsection below introduces the notions of integrated and

realized volatility, along with the (feasible) asymptotic distribution theory due to Barndorff-

Nielsen and Shephard (2002a). The development of the practical and easy-to-implement

adjustment procedures based on this theory is then presented in the next subsection,

followed by our theoretical extensions explicitly allowing for leverage effects. Utilizing these

results, the last section provides a reassessment of the empirical evidence in ABDL (2003)

related to the fit of the Mincer-Zarnowitz style volatility regressions. The accuracy of the

asymptotic approximations - which form the basis for our approach - is confirmed through

Monte Carlo simulations for models calibrated to reflect empirically relevant and challenging

specifications. The details of the simulations and some of the technical proofs are deferred

to two Appendixes.

2 Theory

We focus on a single asset traded in a liquid financial market. Assuming that the sample-path

of the logarithmic price process, {log(St), 0 ≤ t}, is continuous, the class of continuous-time

stochastic volatility models employed in the finance literature is then conveniently expressed

in terms of the following generic stochastic differential equation (sde),

d log(St) = µtdt + σtdWt , (1)

2This particular loss function is directly inspired by the work of Mincer and Zarnowitz (1969), and we
will refer to the corresponding regressions as such; see also the discussion in Chong and Hendry (1986).
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where Wt denotes a standard Brownian motion given an increasing filtration {Ft, t ≥ 0}, the

drift term µt and the spot volatility σt are both càdlàg processes, such that
∫ t

0
σ2

udu < ∞
a.s. for any t > 0. We also assume that the process (µt, σt, Wt) is adapted to the filtration

{Ft}. Consequently,
∫ t

0
σudWu is a local martingale and log(St) a semi-martingale (see, for

instance, Protter, 2004).

2.1 Integrated and Realized Volatility

Although the sde in equation (1) is very convenient from a theoretical arbitrage-free

pricing perspective, practical return calculations and volatility measurements are invariably

restricted to discrete time intervals. In particular, focusing on the unit time interval, the

one-period continuously compounded return for the price process in equation (1) is formally

given by,3

rt ≡ log(St)− log(St−1) =

∫ t

t−1

µudu +

∫ t

t−1

σudWu , (2)

with the corresponding integrated volatility,

IVt ≡
∫ t

t−1

σ2
udu , (3)

affording a natural measure of the inherent, or notional, return variability (see, e.g.,

Andersen, Bollerslev and Diebold, 2003, for further discussion of the integrated and notional

volatility concepts).4

Of course, the integrated volatility is not directly observable. However, by the theory

of quadratic variation (see, e.g., Protter, 2004, for a general discussion), the corresponding

realized volatility defined by the summation of the 1/h intra-period squared returns, r
(h)
t ≡

log(St)− log(St−h),

RVt(h) ≡
1/h∑
i=1

r
(h)2
t−1+ih, (4)

where 1/h is assumed to be an integer, converges uniformly in probability to IVt as h → 0.

The consistency of the realized volatility relies on the (conceptual) idea of an ever

increasing number of finer sampled high-frequency returns, or h → 0. However, as previously

noted, the requisite semi-martingale property of returns invariably breaks down at ultra-high

frequencies, so that in actual applications market microstructure frictions in effect put a limit

3For notational simplicity, we focus our discussion on one-period return and volatility measures, but the
general results and associated measurement error adjustment extend in a straightforward manner to the
multi-period case.

4The integrated volatility also plays a crucial role in the pricing of options; see, e.g., Garcia, Ghysels, and
Renault (2003).
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on the number of return observations per unit time interval that may be used productively

in the computation of the realized volatility measures. As such, the realized volatility will

necessarily be subject to a finite-sample (non-zero h) measurement error vis-a-vis the true

(latent) integrated volatility, say

Ut(h) ≡ RVt(h)− IVt . (5)

This observation was the original motivation for the development of the Barndorff-Nielsen

and Shephard (2002a) asymptotic theory, which gives us a tool with which to study the

errors for finite h.

Specifically, assuming that the mean, {µu, u ≥ 0}, and volatility, {σu, u ≥ 0}, processes

are jointly independent of {Wu, u ≥ 0}, it follows from Barndorff-Nielsen and Shephard

(2002a, 2004a) that,5

zt ≡
√

h−1
Ut(h)√
2IQt

law→ N (0, 1), (6)

where the integrated quarticity, IQt, is defined by

IQt ≡
∫ t

t−1

σ4
udu . (7)

Moreover, under these same assumptions the integrated quarticity may be consistently

estimated by the (standardized) realized quarticity

RQt(h) ≡ 1

h

1

3

1/h∑
i=1

r
(h)4
t−1+ih . (8)

These asymptotic results allow for general model-free approximations to the distribution of

the realized volatility error. In particular no parametric or finite moment assumptions are

made on the {µu, u ≥ 0} and {σu, u ≥ 0} processes to derive this result.

2.2 Practical Measurement Error Adjustments

The results discussed in the previous section imply that the time t + 1 realized volatility

error is (approximately) serially uncorrelated and orthogonal to any variables (volatility

5Importantly, the same asymptotic distributional results have recently been shown by Barndorff-Nielsen
and Shephard (2004b) to hold in the case of leverage, or dependence between the {σu, u ≥ 0} and {Wu, u ≥ 0}
processes, under the assumption that

∫ t

0
µ2

udu < ∞. However, the measurement error adjustment procedures
developed here involve an additional covariance term in the leverage case that is not covered by this theory.
Hence, we continue under the maintained assumption of no leverage effects, returning to the general leverage
case in Section 2.3 below.
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forecasts) in the time t information set.6 This justifies the common use of realized volatility

as a convenient simple and unbiased, albeit potentially noisy, benchmark in ex-post volatility

forecast evaluations and model comparisons.

Specifically, consider the Mincer-Zarnowitz style regressions of the realized volatility on

a set of predetermined regressors (volatility forecasts) employed in ABDL (2003) among

others.7 Assuming that the underlying continuous time process satisfies a weak uniform

integrability condition so that the consistency of RQt(h) for IQt also guarantees convergence

in mean (see, e.g., Billingsley, 1995, page 338, and Hoffmann-Jørgensen, 1994, Section 5.13,

page 376), it follows directly from the definition in equation (5) that,

V ar[RVt(h)] = V ar[IVt] + V ar[Ut(h)] + 2Cov(Ut(h), IVt).

Meanwhile, equations (6), (7) and (8) readily imply that V ar[Ut(h)] = 2hE[RQt(h)] + o(h).

Moreover, it follows from Meddahi (2002) that if {µu, u ≥ 0}, {σu, u ≥ 0}, and {Wu, u ≥ 0}
are jointly independent, the covariance term vanishes. Obviously, the condition that the

mean and volatility processes are independent is unduly strict in general. However, the

covariance between the conditional mean and variance will invariably be small (negligible)

over short horizons (daily or weekly) for small values of h. Formally, the resulting covariance

between the realized volatility error and the integrated volatility will be of order less than h,

as argued at length in Section 4.2 of Andersen, Bollerslev and Diebold (2003). Combining

these results, we therefore have

V ar[IVt] = V ar[RVt(h)] − 2hE[RQt(h)] + o(h). (9)

Hence, any MSE type forecast evaluation criteria based on a comparison of the volatility

forecasts with the ex-post RVt(h) in place of IVt will on average overstate the true variability

of the forecast errors by 2hE[RQt(h)]. In particular, ignoring the o(h) term, it follows

that the (feasible) R2 from the commonly employed Mincer-Zarnowitz regression will under-

estimate the true predictability as measured by the (infeasible) R2 from the regression of the

future (latent) integrated volatility on the same set of predetermined regressors (volatility

forecasts) by the multiplicative factor: V ar[RVt(h)]/{V ar[RVt(h)]− 2hE[RQt(h)]}.8

6In the case of zero drift, equations (9) and (11) in Meddahi (2002) imply that Ut+1(h) =
2

∑1/h
i=1

∫ t+ih

t+(i−1)h
(
∫ u

t+(i−1)h
σsdWs)σudWu, and as a result E[Ut+1(h) | Ft] = 0 for all h > 0. With a non-zero

drift, this same orthogonality condition holds approximately for small values of h.
7Although this is not required for the Barndorff-Nielsen and Shephard (2002a, 2004a,b) asymptotic theory

discussed in the previous section, the Mincer-Zarnowitz regression implicitly assumes that the variable of
interest, i.e., the integrated and realized volatility processes, have finite second order moments. This in turn
requires that the fourth moment of σt is finite. This holds for any affine and log-normal diffusion, and is also
satisfied for the GARCH diffusions considered in the Monte Carlo experiment discussed in the Appendix.

8As previously noticed by Meddahi (2002), the approximation in (9) also allows for the construction of
more efficient (in the sense of MSE) model-free integrated volatility estimates, by downweighting the realized
volatility by the multiplicative factor {V ar[RVt(h)] − 2hE[RQt(h)]}/V ar[RVt(h)] and adding the constant
{E[RVt(h)]2hE[RQt(h)]}/V ar[RVt(h)].
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Meanwhile, the predictive regressions and related loss functions reported in the extant

volatility literature are often formulated in terms of the realized standard deviation,

RVt(h)1/2, or the logarithmic standard deviation, log RVt(h)1/2. To properly gauge the

true predictability in those situations the sample variances of the transformed realized

volatilities may be similarly replaced by (feasible) expressions for the true (latent) variances,

V ar[IV
1/2
t ] and V ar[log IV

1/2
t ], respectively.9 To this end, it follows from equation (6) and a

second-order Taylor series expansion of the square-root function of RVt(h) around IVt, that

conditional on the sample-path realization of the (latent) point-in-time volatility process (see

the Appendix),

RVt(h)1/2 ≈ IV
1/2
t + 2−1/2h1/2IV

−1/2
t IQ

1/2
t zt −

h

4
IV

−3/2
t IQtz

2
t . (10)

Thus, subject to the necessary uniform integrability conditions on the underlying continuous-

time process ensuring convergence in mean of the relevant quantities (see also Barndorff-

Nielsen and Shephard, 2004a),

E[IV
1/2
t ] = E[RVt(h)1/2] +

h

4
E[RVt(h)−3/2RQt(h)] + o(h),

so that in particular

V ar[IV
1/2
t ] = V ar[RVt(h)1/2] − h

2
E[RVt(h)1/2]E[RVt(h)−3/2RQt(h)] + o(h). (11)

The variance of the square-root of the realized volatility, as used in a number of previous

empirical studies, obviously exceeds the expression in (11) by the absence of the second

(positive) term on the right-hand-side of the equation. This in turn will result in a downward

bias in the R2’s from the (feasible) Mincer-Zarnowitz predictive regressions formulated in

terms of RVt(h)1/2 in place of IV
1/2
t .

By similar arguments (see the Appendix),10

log RVt(h) ≈ log IVt + 21/2h1/2IV −1
t IQ

1/2
t zt − hIV −2

t IQtz
2
t , (12)

and,

[log RVt(h)]2 ≈ [log IVt]
2 + 23/2h1/2IV −1

t [log IVt]IQ
1/2
t zt +

− 2hIV −2
t (1− log IVt)IQtz

2
t ,

(13)

9Any transformed unbiased forecast for IVt+1 will generally not be unbiased for IV
1/2
t+1 or log IV

1/2
t+1 .

However, allowing for a non-zero intercept and a slope coefficient different from unity in the Mincer-Zarnowitz
regression of the future transformed realized volatilities on the transformed forecasts explicitly corrects this
(unconditional) bias in the forecasts; see also the discussion in Andersen, Bollerslev and Meddahi (2004).

10Interestingly, the Monte Carlo evidence in Barndorff-Nielsen and Shephard (2003) also suggests that
the asymptotic approximation obtained by equating z2

t to one in (12), i.e., [log RVt(h) − log IVt +
hIV −2

t IQt]/[21/2h1/2IV −1
t IQ

1/2
t ], is closer to a standard normal distribution than the approximation

obtained by applying the delta-rule directly to (6), i.e., [log RVt(h)− log IVt]/[21/2h1/2IV −1
t IQ

1/2
t ].
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so that again subject to the necessary integrability conditions,

V ar[log IVt] = V ar[log RVt(h)] − 2hE[RVt(h)−2(1− log RVt(h))RQt(h)]

− 2hE[log RVt(h)]E[RVt(h)−2RQt(h)] + o(h).
(14)

The accuracy of the distributional assumption and second-order Taylor series expansions

underlying the (feasible) expressions for the latent variances in equations (9), (11), and (14)

are underscored by the simulation results for the baseline models reported in Table A1 of

the Appendix.11 It is evident that the simulated medians and ninety-percent confidence

intervals for the asymptotic approximations to V ar[IVt], V ar[IV
1/2
t ] and V ar[log(IV

1/2
t )]

are extremely close to the simulated sampling distributions for the true variances (labelled

h = 1/∞) as long as the frequency of the returns used in the calculation of the realized

volatility and quarticity measures, RVt(h) and RQt(h), respectively, exceeds half-an-hour,

or h ≤ 1/48.12

Similar arguments could, of course, be applied with any other twice continuously

differentiable function of integrated volatility in order to obtain an approximate value for

V ar[f(IVt)]. This in turn would allow for simple model-free approximations to the true

(infeasible) R2’s that would obtain in the hypothetical regressions of f(IVt) on any forecasts

by scaling the (feasible) R2’s from the corresponding regressions based on f(RVt(h)) by the

multiplicative adjustment factor, V ar[f(RVt(h))]/{V ar[f(IVt(h))]}.

2.3 Leverage Effects

The assumptions underlying the adjustment procedures discussed in the previous section

formally rule out leverage effects. This is especially problematic for equity index returns,

which are often found to be negatively correlated with future volatility (e.g., Black, 1976;

and Nelson, 1991). Meanwhile, as noted above Barndorff-Nielsen and Shephard (2004b) have

recently shown that the same approximate Central Limit Theorem in equation (6) remains

valid in this situation, so that in particular V ar[Ut(h)] = 2hE [RQt(h)] + o(h). Of course,

the calculation of V ar[IVt] from equation (5) still requires the Cov(Ut(h), IVt) term, which is

complicated by the possible dependence between the {σu, u ≥ 0} and {Wu, u ≥ 0} processes.

However, building on the powerful eigenfunction stochastic volatility (ESV) class of models

11The accuracy of (6) and the corresponding CLT for RVt(h)1/2 and log(RVt(h)) based on the ∆-method
has also previously been investigated by Barndorff-Nielsen and Shephard (2003).

12To highlight the practical importance of the asymptotic adjustments developed above, we also calculated
the simple naive estimators for V ar[IVt], V ar[IV

1/2
t ] and V ar[log(IV

1/2
t )] ignoring the h terms in equations

(9), (11), and (14), given by V ar[RVt(h)], V ar[RVt(h)1/2] and V ar[log(RVt(h)1/2)], respectively. For the
two-factor affine diffusion model in the second panel of Table A1 and h = 1/48 these variances overstate the
true variability of the integrated volatility measures by 44.9, 40.9, and 41.3 percent, respectively; see also
the related analytical calculations in Andersen, Bollerslev and Meddahi (2004).
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introduced by Meddahi (2001),13 it is possible to show that the covariance term generally

takes the form 2hE[rt]Cov[rt, RVt(h)] + o(h).14 Consequently,

V ar[IVt] = V ar[RVt(h)] − V ar[Ut(h)] − 2Cov[Ut(h), IVt]

= V ar[RVt(h)] − 2h E[RQt(h)] − 4h E[rt] Cov[rt, RVt(h)] + o(h).
(15)

Hence, relative to equation (9) in the previous section, the leverage effect introduces

the additional 4hE[rt]Cov[rt, RVt(h)] term in the (feasible) asymptotic approximation to

V ar[IVt].

In actual empirical applications 2E[rt] and Cov[rt, RVt(h)] will both generally be orders of

magnitude smaller than E[RQt(h)] so that, invariably, the magnitude of the new adjustment

term will be negligible relative to the 2hE[RQt(h)] term. To illustrate, consider the five-

minute high-frequency S&P500 and U.S. T-Bond futures returns spanning the period from

January 1990 through December 2002.15 The relative importance of the leverage adjustment

term, as measured by the daily 2E[rt]Cov[rt, RVt(h)]/E[RQt(h)] ratios, equal −7.85× 10−5

and −6.94 × 10−4 for each of the two markets. Also, for the DM/$, Yen/$, and Yen/DM

half-hour returns underlying the empirical results in ABDL (2003) discussed below, these

same daily ratios for the full December 1986 through June 1999 sample period equal 1.01×
10−4, −7.87×10−5, and 3.54×10−4, respectively. Clearly an inconsequential addition to the

approximation for V ar[IVt] in (9).

These empirical observations are further corroborated by the Monte Carlo simulation

results for the leverage models with constant as well as time-varying drifts reported in Tables

A2 and A3. The medians in the asymptotic approximations to V ar[IVt], V ar[IV
1/2
t ] and

V ar[log(IV
1/2
t )] in equations (9), (11), and (14), respectively, derived under the assumption

of no leverage are all right-on the true medians (labelled h = 1/∞). Moreover, as long as

the frequency of the returns used in the calculation of the realized volatility and quarticity

measures exceeds half-an-hour, or h ≤ 1/48, the simulated distributions for the leverage

models are indistinguishable from the corresponding distributions for the same models

without leverage reported in Table A1.

In short, the realized volatility measurement error adjustment procedures developed in

the preceding section remain highly accurate in empirically realistic situations allowing for

13The use of eigenfunctions in modelling Markovian time series was pioneered by Chen, Hansen and
Scheinkman (2000). The ESV class of models is very general, encompassing all of the continuous-time
volatility models most commonly employed in the literature, including the GARCH diffusion model of Nelson
(1990), the log-normal diffusion model popularized by Hull and White (1987) and Wiggins (1987), and the
square-root diffusion model of Heston (1993), along with multi-factor extensions of all these models.

14For a formal proof, see the earlier Andersen, Bollerslev and Meddahi (2003) working paper version of
this note.

15These data have previously been analyzed in Andersen, Bollerslev, Diebold and Vega (2003) from a very
different perspective. We refer the reader to that study for a more detailed description of the data source
and return construction.
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both leverage and time-varying drift. We next turn to a re-interpretation of the empirical

evidence related to the Mincer-Zarnowitz volatility regressions reported in ABDL (2003)

based on an application of these procedures.

3 ABDL (2003) Revisited

The forecast comparisons in ABDL (2003) are based on daily realized volatilities constructed

from high-frequency half-hourly, or h=1/48, spot exchange rates for the U.S. dollar, the

Deutschemark and the Japanese yen spanning twelve-and-a-half years.16 Separate forecast

evaluation regressions are reported for the “in-sample” period comprised of the 2,449

“regular” trading days from December 1, 1986 through December 1, 1996, and the shorter

“out-of-sample” forecast period consisting of the 596 days from December 2, 1996 through

June 30, 1999. Separate results are also reported for one-day-ahead and ten-days-ahead

forecasts. However, for all series and both sample periods and forecast horizons, a simple

AR(5) model estimated directly from the realized volatilities generally performs as well or

better than any of the many alternative models considered, including several GARCH type

models estimated directly to the high-frequency data (both with and without corrections

for the pronounced intradaily seasonal pattern in volatility). The representative R2’s

for the DM/$, Yen/$, and Yen/DM forecast regressions for RVt+1(1/48), RVt+1(1/48)1/2,

log RVt+1(1/48)1/2, RVt+10,10(1/48), RVt+10,10(1/48)1/2, and log RVt+10,10(1/48)1/2, where

RVt+10,10(1/48) ≡ RVt+1(1/48) + RVt+2(1/48) + ... + RVt+10(1/48), as reported in ABDL

(2003) and the accompanying appendix, are given in square brackets in Table 1.17

By failing to account for the measurement errors in the future realized volatilities, these

R2’s understate the true degree of predictability in the (latent) integrated volatilities. This

problem is rectified by the main entries in Table 1, which report the adjusted R2’s obtained

by applying the (feasible) asymptotic approximations in equations (9), (11), and (14), along

with the relevant multiplicative adjustment factors.18 The results are quite striking. For

some of the forecasts horizons and rates, the “true” R2’s exceed the standard predictive

R2’s, as reported in ABDL (2003), by up to forty percent. For instance, the in-sample,

one-day-ahead R2 for the DM/$ series given in the very first entry in the table equals 0.219,

whereas the true (albeit estimated) R2 is substantially higher at 0.314. As such, the results

16The high-frequency data were generously provided by Olsen & Associates in Zürich, Switzerland; see
Dacorogna, Gencay, Müller, Olsen and Pictet (2001) for further discussion of the data capture, filtering, and
return construction.

17The out-of-sample period contains a “once-in-a-generation” move in the Japanese Yen on October 8,
1998. Somewhat higher R2’s, but qualitatively similar results, were obtained by excluding this and the
neighboring two days; see ABDL (2003) and the accompanying appendix for further discussion and sensitivity
analysis along these lines.

18The adjustments are constructed separately for each series and for the in-sample and out-of-sample
periods using the corresponding realized volatility and quarticity series.
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clearly highlight the importance of appropriately adjusting for measurement error when

assessing the quality of volatility forecasts in practical empirical applications.

Table 1: ABDL (2003) Adjusted Predictive R2’s

IV IV 1/2 log IV 1/2

In-Sample, One-Day-Ahead
DM/$ 0.314 [0.219] 0.399 [0.351] 0.482 [0.431]
Yen/$ 0.315 [0.229] 0.412 [0.374] 0.476 [0.433]
Yen/DM 0.450 [0.361] 0.559 [0.499] 0.630 [0.567]
Out-of-Sample, One-Day-Ahead
DM/$ 0.200 [0.158] 0.296 [0.246] 0.350 [0.285]
Yen/$ 0.230 [0.197] 0.366 [0.338] 0.419 [0.373]
Yen/DM 0.215 [0.189] 0.378 [0.344] 0.483 [0.424]
In-Sample, Ten-Days-Ahead
DM/$ 0.411 [0.374] 0.463 [0.436] 0.499 [0.473]
Yen/$ 0.386 [0.355] 0.414 [0.396] 0.424 [0.407]
Yen/DM 0.536 [0.513] 0.606 [0.589] 0.653 [0.637]
Out-of-Sample, Ten-Days-Ahead
DM/$ 0.182 [0.168] 0.209 [0.195] 0.228 [0.213]
Yen/$ 0.197 [0.187] 0.287 [0.279] 0.347 [0.336]
Yen/DM 0.186 [0.178] 0.301 [0.293] 0.401 [0.390]

Note: The table reports the adjusted predictive R2’s from the Mincer-Zarnowitz regressions of the
realized volatilities on the AR(5) volatility forecasts in ABDL (2003), along with the corresponding
unadjusted R2’s (in square brackets). The realized volatility measures are constructed from high-
frequency half-hour returns. The “in-sample” period covers December 1, 1986 through December
1, 1996, while the “out-sample” period spans December 2, 1996 through June 30, 1999.

Interestingly, the numerical values for the adjusted R2’s for the DM-dollar series in Table 1

are quite close to the exact theoretical R2’s implied by the specific two-factor affine diffusion

discussed in Andersen, Bollerslev and Meddahi (2004). This is especially noteworthy in

so far the parameter values for this model are based on the identical DM-dollar sample

underlying the results reported on in Table 1. This suggests that the simple AR(5) models

for the realized volatilities estimated in ABDL (2003) - when adjusted for the measurement

error problem - capture a degree of predictability that is consistent with that implied by

a conventional two-factor affine model. This type of benchmarking of the true predictive

power of such reduced-form forecast procedures relative to that of a specific continuous-time

volatility model would, of course, be impossible without the type of measurement error

correction developed here.
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4 Concluding Remarks

Building on the recent theoretical results of Barndorff-Nielsen and Shephard (2002a,

2004a,b), this note develops a set of simple and practically feasible expressions for calculating

true measures of return volatility predictability relative to that of the corresponding

underlying (latent) integrated volatility. The procedures are general and could be applied

in the evaluation of any volatility forecasts. The analytical results for the eigenfunction

stochastic volatility class of models and accompanying simulation based evidence confirm

that the procedures work equally well in situations with pronounced leverage effects. On

specifically applying the procedures to the ex-post forecast evaluation regressions reported

in ABDL (2003), we document sizeable downward biases in terms of the previously reported

predictive powers. More generally, the practical techniques developed here hold the promise

for further development of new and improved easy-to-implement volatility forecasting

procedures guided by proper benchmark comparisons. The techniques should also prove

useful in more effectively calibrating the type of continuous-time models routinely employed

in modern asset pricing theories.
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Appendix 1: Monte Carlo Simulations

In order to assess the accuracy of the distributional assumptions and second-order Taylor series expansions
underlying the asymptotic approximations in (9), (11), and (14) in empirically relevant specifications and
sample sizes compatible with those of ABDL (2003), Tables A1-A3 report the simulated medians and ninety-
percent confidence intervals (in square brackets) across 1,000 replications, each consisting of 2,500 “days.”
We report the results for a total of nine different continuous-time models along with 1/h = 288, 96, 48, and
1, corresponding to the use of “5-minute,” “15-minute,” “half-hourly,” and “daily” returns.

The first three models reported in Table A1 fix the mean returns at zero, and assume that the volatility
and the Brownian motion driving the price process are independent, i.e., no leverage effects. In the general
equation

d log(St) = µdt + σt dWt = µdt + σt

[
ρ1 dW1,t + ρ2 dW2,t +

√
1− ρ2

1 − ρ2
2 dW3,t

]
,

one has µ = ρ1 = ρ2 = 0, which leads to

d log(St) = σtdW3,t.

The numbers in the first panel refer to the GARCH(1,1) diffusion analyzed in Andersen and Bollerslev
(1998),

dσ2
t = 0.035(0.636− σ2

t )dt + 0.144 σ2
t dW1,t .

The second panel gives the results for the two-factor affine diffusion estimated by Bollerslev and Zhou (2002),
σ2

t = σ2
1,t + σ2

2,t, where

dσ2
1,t = 0.5708(0.3257− σ2

1,t)dt + 0.2286 σ1,tdW1,t ,

dσ2
2,t = 0.0757(0.1786− σ2

2,t)dt + 0.1096 σ2,tdW2,t .

These parameter values were obtained from estimation based on the identical DM-dollar sample used in
ABDL (2003). The third set of numbers refer to the log-normal diffusion reported in Andersen, Benzoni and
Lund (2002) with volatility dynamics governed by

d log(σ2
t ) = − 0.0136[0.8382 + log(σ2

t )]dt + 0.1148 dW1,t .

All of the models in Table A1 satisfy the Barndorff-Nielsen and Shephard (2002a, 2004a) regularity conditions
discussed in Sections 2.1 and 2.2.

The results reported in Table A2 are based on the same three volatility specifications, but incorporate
a positive drift and strong leverage effects. For the one-factor GARCH and log-normal diffusions,

d log(St) = 0.0314 dt + σt[−0.576 dW1,t +
√

1− 0.5762dW3,t] ,

where the values for the drift and leverage parameters are taken from Andersen, Benzoni and Lund (2002).
For the two-factor affine model the instantaneous return dynamic is governed by,

d log(St) = 0.0314 dt + σt[0.9 dW1,t − 0.4 dW2,t +
√

1− 0.92 − 0.42dW3,t] ,

with the two leverage parameters adapted from the estimates reported in Chernov, Gallant, Ghysels and
Tauchen (2003).

In addition to the contemporaneous correlation between the return and volatility for the leverage models
in Table A2, the last set of models in Table A3 also include a volatility feedback, or ARCH-in-mean, effect
in the drift component. Specifically, for the two one-factor models,

d log(St) = (0.0314 + 0.3σ2
t ) dt + σt[−0.576 dW1,t +

√
1− 0.5762dW3,t] ,

while for the two-factor model,

d log(St) = (0.0314 + 0.3σ2
t ) dt + σt[0.9 dW1,t − 0.4 dW2,t +

√
1− 0.92 − 0.42dW3,t] .

The value of the slope coefficient in the drift is taken from Chernov (2003).
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Table A1: Asymptotic Variance Approximations
Baseline Volatility Models

h V ar[IVt] V ar[IV
1/2
t ] V ar[log(IV

1/2
t )]

GARCH(1,1) Diffusion
1/∞ 0.170 0.0647 0.138

[0.117, 0.265] [0.0518, 0.0853] [0.112, 0.168]
1/288 0.170 0.0647 0.138

[0.116, 0.266] [0.0517, 0.0854] [0.112, 0.168]
1/96 0.171 0.0648 0.138

[0.116, 0.266] [0.0520, 0.0859] [0.112, 0.168]
1/48 0.170 0.0650 0.139

[0.115, 0.268] [0.0520, 0.0861] [0.112, 0.169]
1 0.167 0.208 1.19

[0.0923, 0.313] [0.175, 0.248] [1.08, 1.30]
Two-Factor Affine
1/∞ 0.0259 0.0126 0.0261

[0.0222, 0.0316] [0.0111, 0.0145] [0.0235, 0.0290]
1/288 0.0260 0.0126 0.0261

[0.0222, 0.0316] [0.0111, 0.0145] [0.0234, 0.0291]
1/96 0.0260 0.0126 0.0263

[0.0221, 0.0315] [0.0111, 0.0146] [0.0235, 0.0294]
1/48 0.0259 0.0127 0.0267

[0.0219, 0.0315] [0.0112, 0.0148] [0.0238, 0.0302]
1 0.0245 0.136 1.07

[0.00617, 0.0462] [0.125, 0.149] [0.973, 1.16]
Log-Normal Diffusion
1/∞ 0.145 0.0544 0.109

[0.0640, 0.333] [0.0328, 0.0946] [0.0764, 0.163]
1/288 0.144 0.0543 0.109

[0.0643, 0.338] [0.0330, 0.0943] [0.0762, 0.163]
1/96 0.145 0.0546 0.109

[0.0642, 0.337] [0.0330, 0.0952] [0.0766, 0.164]
1/48 0.144 0.0547 0.109

[0.0635, 0.341] [0.0331, 0.0953] [0.0769, 0.165]
1 0.145 0.177 1.15

[0.0529, 0.390] [0.127, 0.252] [1.05, 1.27]

Note: The table reports the simulated medians and ninety-percent confidence intervals (in square
brackets) for the asymptotic approximations in equations (9), (11), and (14) across 1,000 replications, each
consisting of 2,500 ”days.”
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Table A2: Asymptotic Variance Approximations
Volatility Models with Leverage and Constant Drift

h V ar[IVt] V ar[IV
1/2
t ] V ar[log(IV

1/2
t )]

GARCH(1,1) Diffusion
1/∞ 0.170 0.0647 0.138

[0.117, 0.265] [0.0518, 0.0853] [0.112, 0.168]
1/288 0.170 0.0647 0.138

[0.116, 0.262] [0.0518, 0.0849] [0.112, 0.168]
1/96 0.170 0.0647 0.138

[0.116, 0.265] [0.0520, 0.0852] [0.112, 0.168]
1/48 0.170 0.0650 0.138

[0.115, 0.268] [0.0520, 0.0853] [0.113, 0.168]
1 0.165 0.205 1.16

[0.0964, 0.303] [0.173, 0.247] [1.07, 1.27]
Two-Factor Affine
1/∞ 0.0259 0.0126 0.0261

[0.0222, 0.0316] [0.0111, 0.0145] [0.0235, 0.0290]
1/288 0.0260 0.0126 0.0261

[0.0221, 0.0317] [0.0111, 0.0145] [0.0234, 0.0292]
1/96 0.0261 0.0127 0.0263

[0.0222, 0.0321] [0.0112, 0.0145] [0.0236, 0.0294]
1/48 0.0262 0.0129 0.0267

[0.0221, 0.0323] [0.0112, 0.0150] [0.0239, 0.0301]
1 0.0370 0.139 1.07

[0.0155, 0.0654] [0.128, 0.154] [0.973, 1.16]
Log-Normal Diffusion
1/∞ 0.145 0.0544 0.109

[0.0640, 0.333] [0.0328, 0.0946] [0.0764, 0.163]
1/288 0.144 0.0545 0.109

[0.0640, 0.336] [0.0329, 0.0941] [0.0763, 0.162]
1/96 0.145 0.0545 0.109

[0.0637, 0.337] [0.0331, 0.0952] [0.0763, 0.163]
1/48 0.146 0.0547 0.110

[0.0635, 0.340] [0.0335, 0.0943] [0.0766, 0.162]
1 0.145 0.177 1.15

[0.0515, 0.375] [0.127, 0.251] [1.04, 1.27]

Note: See Table A1.
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Table A3: Asymptotic Variance Approximations
Volatility Models with Leverage and Time-Varying Drift

h V ar[IVt] V ar[IV
1/2
t ] V ar[log(IV

1/2
t )]

GARCH(1,1) Diffusion
1/∞ 0.170 0.0647 0.138

[0.117, 0.265] [0.0518, 0.0853] [0.112, 0.168]
1/288 0.170 0.0648 0.138

[0.116, 0.262] [0.0518, 0.0850] [0.112, 0.168]
1/96 0.171 0.0647 0.138

[0.116, 0.266] [0.0521, 0.0853] [0.112, 0.168]
1/48 0.171 0.0652 0.138

[0.116, 0.270] [0.0521, 0.0855] [0.113, 0.168]
1 0.196 0.225 1.17

[0.116, 0.398] [0.189, 0.272] [1.05, 1.27]
Two-Factor Affine
1/∞ 0.0259 0.0126 0.0261

[0.0222, 0.0316] [0.0111, 0.0145] [0.0235, 0.0290]
1/288 0.0261 0.0126 0.0262

[0.0222, 0.0318] [0.0111, 0.0146] [0.0235, 0.0292]
1/96 0.0264 0.0128 0.0265

[0.0225, 0.0324] [0.0113, 0.0147] [0.0238, 0.0296]
1/48 0.0268 0.0131 0.0272

[0.0226, 0.0329] [0.0115, 0.0152] [0.0243, 0.0306]
1 0.0661 0.163 1.09

[0.0362, 0.106] [0.150, 0.180] [0.998, 1.18]
Log-Normal Diffusion
1/∞ 0.145 0.0544 0.109

[0.0640, 0.333] [0.0328, 0.0946] [0.0764, 0.163]
1/288 0.145 0.0545 0.109

[0.0641, 0.336] [0.0329, 0.0942] [0.0764, 0.163]
1/96 0.145 0.0546 0.109

[0.0639, 0.337] [0.0332, 0.0954] [0.0764, 0.163]
1/48 0.146 0.0548 0.110

[0.0636, 0.342] [0.0336, 0.0948] [0.0768, 0.163]
1 0.164 0.192 1.15

[0.0608, 0.543] [0.136, 0.281] [1.04, 1.27]

Note: See Table A1.
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Appendix 2: Technical Proofs

Proof of equations (10), (11), (12), (13), and (14). Let f(·) be a twice-differentiable function. By (6)
and a second order Taylor approximation of f(·) at the point RVt(h) around IVt, it follows that

f(RVt(h)) ≈ f(IVt) + f ′(IVt)
√

2hIQt zt +
1
2
f ′′(IVt)2hIQt z2

t . (A.1)

Consequently,

E[f(RVt(h))] = E[f(IVt)] + E[f ′(IVt)
√

2hIQt zt] +
1
2
E[f ′′(IVt)2hIQt z2

t ] + o(h)

= E[f(IVt)] + E[f ′(IVt)
√

2hIQtE[zt | σu, t− 1 ≤ u ≤ t]]

+
1
2
E[f ′′(IVt)2hIQtE[z2

t | σu, t− 1 ≤ u ≤ t]] + o(h)

= E[f(IVt)] +
1
2
E[f ′′(IVt)2hIQt] + o(h),

so that,

E[f(RVt(h))] = E[f(IVt)] +
1
2
E[f ′′(RVt(h))2hRQt(h)] + o(h) (A.2)

provided E[f ′′(RVt(h))RQt(h)]−E[f ′′(IVt)IQt] = o(1). Equations (10), (12), and (13) follows by applying
(A.1) to the functions f1(x) = x1/2, f2(x) = log(x), and f3(x) = log(x)2, where f ′

1(x) = 2−1x−1/2,
f ′′
1 (x) = −2−2x−3/2, f ′

2(x) = x−1, f ′′
2 (x) = −x−2, f ′

3(x) = 2x−1 log(x), and f ′′
3 (x) = 2x−2(1 − log(x)).

Applying (A.2) to the function f1(·), results in (11). Similarly, applying (A.2) to the functions f2(·) and
f3(·), yields (14).�
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