
NBER WORKING PAPER SERIES

NO-ARBITRAGE SEMI-MARTINGALE RESTRICTIONS FOR CONTINUOUS-TIME
VOLATILITY MODELS SUBJECT TO LEVERAGE EFFECTS, JUMPS AND I.I.D.

NOISE: THEORY AND TESTABLE DISTRIBUTIONAL IMPLICATIONS

Torben G. Andersen
Tim Bollerslev

Dobrislav Dobrev

Working Paper 12963
http://www.nber.org/papers/w12963

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
March 2007

This research was supported by a grant from the National Science Foundation to the NBER for Andersen
and Bollerslev.  We would like to thank two anonymous referees, Christian Bontemps, and Nour Meddahi
for many helpful suggestions, which greatly improved the papers.  We also thank participants at the
International Finance Conference at the University of Copenhagen, September 2005, and the Time
Series Conference at the University of Montreal, Canada, December 2005, as well as seminar participants
at University of Maryland, Robert H. Smith School, University of Wisconsin, Madison; and the University
of Chicago. The views expressed herein are those of the author(s) and do not necessarily reflect the
views of the National Bureau of Economic Research.

© 2007 by Torben G. Andersen, Tim Bollerslev, and Dobrislav Dobrev. All rights reserved. Short
sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided
that full credit, including © notice, is given to the source.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6784622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


No-Arbitrage Semi-Martingale Restrictions for Continuous-Time Volatility Models Subject
to Leverage Effects, Jumps and i.i.d. Noise: Theory and Testable Distributional Implications
Torben G. Andersen, Tim Bollerslev, and Dobrislav Dobrev
NBER Working Paper No. 12963
March 2007
JEL No. C15,C22,C52,C80,G10

ABSTRACT

We develop a sequential procedure to test the adequacy of jump-diffusion models for return distributions.
We rely on intraday data and nonparametric volatility measures, along with a new jump detection
technique and appropriate conditional moment tests, for assessing the import of jumps and leverage
effects. A novel robust-to-jumps approach is utilized to alleviate microstructure frictions for realized
volatility estimation. Size and power of the procedure are explored through Monte Carlo methods.
Our empirical findings support the jump-diffusive representation for S&P500 futures returns but reveal
it is critical to account for leverage effects and jumps to maintain the underlying semi-martingale assumption.

Torben G. Andersen
Kellogg School of Management
Northwestern University
2001 Sheridan Road
Evanston, IL  60208
and NBER and CREATES
t-andersen@kellogg.northwestern.edu

Tim Bollerslev
Department of Economics
Duke University
Box 90097
Durham, NC 27708-0097
and NBER and CREATES
boller@econ.duke.edu

Dobrislav Dobrev
Dept. of Finance, Kellogg School of Management
Northwestern University
2001 Sheridan Road, Evanston, IL 60208
d-dobrev@kellogg.northwestern.edu



1.  Introduction

Financial market volatility research has thrived over the last decades. New  insights have been generated

about as fast as data accessibility and computational power allowed the focus to shift from quarterly and

monthly frequencies to daily data series. It is therefore striking that the recent widespread availability of

a decades worth of high-frequency intraday data for a broad cross-section of actively traded financial

assets has not fundamentally altered the landscape. ARCH and related stochastic volatility models

implemented at the daily level remain the workhorses for practical volatility modeling. This reflects the

limited progress achieved in using intraday data directly for volatility modeling and forecasting over the

longer daily and monthly horizons of primary interest in applications. Of course, a variety of market

microstructure and announcement studies exploit high-frequency data to great effect, but these dense data

sets have still not been fully harnessed in regards to their implications concerning lower frequency return

dynamics. Meanwhile, some promising alternatives relying on summary statistics extracted from intraday

data have been entertained, for example models using daily ranges, e.g., Garman and Klass (1980),

Parkinson (1980), Gallant, Hsu and Tauchen (1999) and Alizadeh, Brandt and Diebold (2002) and - very

recently - the so-called realized volatility or variation measures, e.g., Andersen and Bollerslev (1998),

Andersen, Bollerslev, Diebold and Labys (henceforth ABDL) (2001, 2003), Barndorff-Nielsen and

Shephard (henceforth BN-S) (2002a,b), and Meddahi (2002). Substantial advances have been obtained

through such approaches, and the construction of improved daily volatility measures from ultra-high

frequency data is currently an active research area, see, e.g., Hansen and Lunde (2006) for an overview.

This article sheds further light on the characteristics of high-frequency asset return processes and

their implications for daily return distributions. Our contribution is best appreciated in the context of the

widely documented finding that the conditional distribution of the daily return innovation in standard

volatility models invariably is heavy tailed and possesses extreme outliers. It is well known that ARCH

models provide consistent volatility filters - as the underlying data is sampled at ever finer frequencies -

for extracting the conditional variance process from return series driven by a pure diffusion; see, e.g.,

Nelson (1990, 1992). Within this setting, the returns are locally conditionally Gaussian, so one may

intuitively reason that the daily returns, appropriately standardized by the (realized) volatility over the

course of the trading day, should be Gaussian as well. Furthermore, empirically, it has been found that

this standardization produces normalized returns that indeed appear approximately Gaussian, although

formal tests still typically reject normality fairly convincingly; see ABDL (2000, 2001), and Andersen,

Bollerslev Diebold and Ebens (2001). This points to the potential usefulness of the above result, while

also indicating that there may be features in the actual data which invalidate the underlying intuition.

One such critical feature is the presence of an asymmetric relation between the high-frequency

return and volatility innovations, as implied by the so-called leverage or volatility feedback effects; see,



1  Ané and Geman ultimately rely on the number of transactions to characterize the event time evolution. In

our model-free context, it is particularly important to avoid such auxiliary variables, as the imputed normality then
invariably depends on additional model assumptions, see also the Gillemot, Farmer and Lillo (2005) discussion and
critique of the empirical findings in Ané and Geman (2000).
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e.g., the recent discussions in Gençay and Selçuk (2004) and Bollerslev, Litvinova and Tauchen (2005).

If such an asymmetric relation is at work, the result should fail in theory, even if the underlying process

is a continuous semi-martingale. However, through the “time-change theorem for continuous local

martingales” we may restore the Gaussianity of appropriately standardized returns by sampling prices in

“event” or “financial” time, as given by equal sized increments to the volatility process rather than in

calendar time, i.e., equidistant time intervals. This result is valid for all (no-arbitrage) diffusive semi-

martingale representations of the price process and, importantly, does not rely on any data beyond the

prices themselves. This observation has also been used by Peters and de Vilder (henceforth PV) (2004)

and has a remarkable precedent in largely unnoticed work by Zhou (1998) who deals, heuristically, with

both i.i.d. noise and leverage. The basic notion is also invoked in Ané and Geman (2000).1

The above scenarios largely exhaust the relevant possibilities when the underlying asset return

process evolves as a continuous semi-martingale. Meanwhile, there is an increasing body of empirical

work which concludes that continuous-time models must incorporate jumps or dis-continuities in order to

provide a satisfactory characterization of the daily return process. Although the jump-diffusion setting is

fully compatible with the no-arbitrage framework of financial asset pricing theory, as detailed in e.g.,

Back (1991), the presence of jumps take us outside the domain of the statistical framework and the time-

change theorem discussed above. However, recent advances in the realized volatility literature include

nonparametric data-driven procedures explicitly designed to identify jumps from underlying high-

frequency return series; see BN-S (2004, 2005), Andersen, Bollerslev and Diebold (henceforth ABD)

(2005), and Huang and Tauchen (2005). This suggests that we, following a preliminary jump detection

and extraction step, may be able to apply the above reasoning and directly explore if the appropriately

normalized trading day returns, adjusted for jumps, are Gaussian. However, constructing a jump-adjusted

intraday return series requires knowledge not only of whether a jump occurred on a given trading day,

but also about the number of jumps and the exact intervals during which they manifest themselves. In

order to accomplish this task, we develop a novel jump detection procedure which we - surprisingly -

find to perform better than the regular BN-S inspired technique for a number of realistic scenarios.

In combination, our approach constitutes a novel sequential procedure for exploring whether a

jump-diffusion offers a reasonable characterization of the return generating process. It also raises the
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question of how the standardized returns in event time behave if the underlying price path exhibit jumps.

Furthermore, do we have the power to detect jumps through existing identification techniques?

More generally, information regarding the strength of jump intensities and sizes, the significance

and magnitude of leverage effects, along with direct estimates of the time series of diffusive volatility,

are of immediate import for an array of important issues, including the causes behind extreme return

realizations, the general risk-return tradeoff and the associated pricing of financial assets, the portfolio

allocation problem, the construction of improved risk management techniques, and derivatives pricing.

The possibility to gain insights into these issues through direct analysis of intraday return series under

minimal auxiliary assumptions is intriguing.  We address these issues through an empirical illustration

based on a 2-minute intraday S&P 500 futures return series covering a relatively long sample period from

1988 to 2004, and through an extensive simulation study. Finally, we also explore the impact of market

microstructure noise and the intraday volatility pattern on our findings. For the former, we introduce a

simple robust-to-jumps technique which is necessary for meaningful analysis of i.i.d. noise in our setting.

The paper progresses as follows.  Section 2 provides additional motivation and formally outlines

the framework. Section 3 explores the finite sample behavior of our new sequential test procedure for

assessing the adequacy of the standard jump diffusive framework. We explore the properties of tests for

empirically calibrated models under a variety of scenarios, including pure diffusions and jump-diffusions

with and without leverage and microstructure noise.  Section 4 presents our empirical analysis for the

S&P500 futures returns.  We find strong evidence for the presence of both jumps and leverage effects.

Moreover, we cannot to reject the hypothesis that the jump-adjusted and appropriately standardized event

time returns is i.i.d. Gaussian. As such, our findings are consistent with asset prices being generated by

an arbitrage-free jump-diffusive process. We also conclude that a pure diffusive representation, as in PV

(2004), is unlikely to provide an adequate characterization of the price process.  Section 5 concludes.

2.  Theoretical Background

We let the logarithmic asset price process evolve according to a generic jump-diffusion. Even if the

underlying prices cannot be observed at every instant, the recorded quote and transaction prices may be

seen as, possibly noisy, observations from this continuously evolving process. Moreover, the sudden

release of news or arrival of orders will often induce a distinct shift, or jump, in the asset price. The

jump-diffusive setting is also theoretically appealing as it implies, under standard regularity, that the

price process constitutes a special semi-martingale, thus ruling out arbitrage, see, e.g., Back (1991).

Furthermore, it enables us, in principle, to derive the distribution of discretely observed returns at any



2
  This assumption allows for discrete jumps in the volatility process. Recent work on Lévy-driven stochastic

volatility models include BN-S (2001), Carr, Geman, Madan and Yor (2003), and Todorov and Tauchen (2005).
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frequency through aggregation, or integration, of the increments to the underlying process. Finally, it is a

flexible setting with the potential to accommodate all major features of daily financial return series.

Our foremost interest is in gaining insight into the descriptive validity of the semi-martingale

representation for asset prices as embodied within the general jump-diffusion setting. The main limitation

is that we exclude Lévy jump processes with infinite jump intensity, see, e.g., Carr, Geman, Madan and

Yor (2002), as we only allow for “rare” jumps occurring at a finite rate. Hence, key issues are to what

extent the jump-diffusion representation is consistent with empirical data and what specific features of

the specification are necessary in order to adequately describe the observed return processes.

2.1.  Quadratic Variation, Realized Volatility, and Trading Day Return Distributions

We focus on the univariate case. Let p(t) denote the time t logarithmic asset price.  The generic jump-

diffusion process may then be expressed in stochastic differential equation (sde) form,

dp(t)   =   :(t) dt  +  F(t) dW(t) +  6(t) dq(t) ,       0#t#T, (1)

where :(t) is a locally bounded variation process, the volatility process F(t) is strictly positive and

càglàd,2 W(t) is a Wiener process, dq(t) is a counting process with dq(t)=1 if there is a jump at time t and

dq(t)=0 otherwise with (possibly time-varying) jump intensity 8(t), and 6(t) refers to the corresponding

jump size.  The quadratic variation of the cumulative return process, r(t) /  p(t) -  p(0), is given by

(2)

Let the discretely sampled )-period returns be denoted by, rt,) / p(t) - p(t-)). The daily realized volatility

is then defined by the summation of the corresponding 1/) high-frequency intraday squared returns,

(3)

where, without loss of generality, 1/) denotes an integer.  As emphasized by Andersen and Bollerslev

(1998), ABDL (2001, 2003), BN-S (2002a,b) and Comte and Renault (1998), among others, by the

theory of quadratic variation this realized volatility converges uniformly in probability, under weak
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regularity, to the corresponding increment to the quadratic variation process, i.e. for  )60,

(4)

In the absence of jumps, the realized volatility is thus consistent for the so-called integrated variance and,

importantly, if jumps are present the realized volatility is consistent for the sum of the integrated variance

and the cumulative sum of squared jumps. Hence, the realized volatility approximates (for ) > 0) the

total (ex-post) return variability, whether the source is the diffusive or the jump component of the return

process. Note also that the drift (mean) process has no effect on the limiting result in (4). Throughout, we

will be operating with sufficiently high-frequency return series and short return horizons such that the

mean process can be safely ignored. Thus, for simplicity, we set :(t) = 0  in the sequel.

2.1.1.  No Leverage or Jumps in the Return Generating Process

The quadratic variation represents the cumulative variability of the continuously evolving return process.

As such, it is the natural concept for the realized return variation over [0,t] as argued by ABD (2004) and

ABDL (2003). This is particularly transparent in a pure diffusive setting without leverage effects, for

which the volatility process F(t) is independent of the innovation process W(t), as it then follows that, 

(5)

where F{F(J)}0#J#t  denotes the F-field generated by the sample path of F(J) for 0#J#t. The integrated

variance thus provides a natural measure of the true latent t-period return variability.

It is important to keep in mind that the integrated variance term in equation (5) represents the ex-

post or realized return variability. Ex-ante, letting the relevant information set at time u be denoted by

ö(u), the corresponding concept of forward looking return variability is given by, 

(6)

Since the volatility process generally is genuinely stochastic, see, e.g., Andersen (1992), the realized or

integrated variance equals (ex post) the expected variance, V(t), plus an innovation term. Consequently,

even when the correct model is used to predict future return variability, in accordance with equation (6),
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the standardized returns will be fat-tailed relative to a Gaussian benchmark,

  (7)

On the other hand, returns normalized appropriately by the realized return variability are truly Gaussian,

(8)

This result provides a rationalization for why financial returns normalized by volatility forecasts

from standard models exhibit fat tails; see, e.g., Bollerslev (1987), Nelson (1991), Chib, Nardari and

Shephard (2002), and Forsberg and Bollerslev (2002). At the same time, the result in (8) is infeasible as

it relies on standardization with the true integrated volatility, which generally is latent. Nonetheless, it

provides the impetus for the development of precise ex-post measurements of the realized return

variability. The basic insight is that, by the consistency result in equation (4), high quality intraday data

should facilitate improved measurement of the actual return variability. However, a number of practical

complications arise in implementing these ideas.

In principle, we should use all available price and quote observations so as to mimic the limiting

operation, )60, as best possible. Meanwhile, the assumption that transaction prices or quotes follow a

semi-martingale is blatantly violated at the very finest sampling frequencies where the discrete price grid

and bouncing between bid and ask prices implies that recorded price changes are either zero or “large”

relative to the expected return variability over small time intervals. The average time between ticks for

liquid securities often amounts to just a few seconds. The return volatility over such short intervals is

typically an order of magnitude less than the lowest feasible price change as dictated by the price grid.

Therefore, we only expect the semi-martingale property to provide a decent approximation over horizons

such as one- or five minutes, depending on the price grid, market structure and liquidity. As noted above,

these issues are the subject of intense scrutiny within a rapidly expanding literature, see e.g., Aït-Sahalia,

Mykland and Zhang (2005), ABDL (2000, 2003), Bandi and Russell (2004a,b), Bollen and Inder (2002),

Corsi, Zumbach, Müller and Dacorogna (2001), Hansen and Lunde (2006), Oomen (2005), Zhang, Aït-

Sahalia and Mykland (2005), and Zhou (1996). In this study, we can only use return intervals of one

minute or longer due to available S&P 500 futures data. We end up relying on two minute returns as a

compromise between acquiring additional information through more frequent sampling and avoiding



3
  The asymptotic (for )60) theory in BN-S (2002a) and Andersen, Bollerslev and Meddahi (2004, 2005)

provides a framework for assessing the latter effect.

4
  Formally, any continuous local martingale (started at the origin), Y, can be decomposed as Y  =  B B Q  where

B denotes a standard Brownian motion and Q represents the quadratic variation of Y, see, e.g., Karatzas and Shrieve
(1991), Theorem 4.6. As noted earlier, Zhou (1998) and PV (2004) have implemented these ideas previously, although
the former did not explicitly associate this procedure with a strategy to deal with leverage style effects.
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excessive noise through the accumulation of microstructure distortions. This is the identical frequency

settled upon by PV (2004). Nonetheless, we also explicitly invoke a correction for i.i.d. microstructure

noise which may remain relevant at this frequency, as argued in, e.g., Hansen and Lunde (2006).

Taken together, the results inspire a practical test of the hypothesis that a return process may be

treated as generated by a pure diffusion without leverage effects under minimal auxiliary assumptions.

The idea is to construct the realized volatility measures along the lines indicated in equation (3), then

substitute this integrated variance estimate into equation (8), and finally test whether the standardized

trading period return series is statistically distinguishable from a sequence of i.i.d. draws from a N(0,1)

distribution. Of course, this involves a joint hypothesis as any rejection also may arise from estimation

errors in the integrated variance measure due to more complex market microstructure effects and/or the

finite sample biases induced by the discrete intraday sampling frequency.3 Hence, it is important to assess

if the theory provides a reasonable guide to the distributional properties of actual return series. We shed

additional light on these issues in the simulation based investigations below.

2.1.2.  The Impact of Leverage

There is compelling evidence that many markets, including those for equity indices, are characterized by

a pronounced asymmetric relationship between return and volatility innovations. This is often labeled a

“leverage effect” although this asymmetry arguably has little, if anything, to do with the underlying

financial leverage; see, e.g., Campbell and Hentschel (1992), Bekaert and Wu (2000), and Bollerslev,

Litvinova and Tauchen (2005). In this case, the results from Section 2.1.1 are not valid. A key issue is

whether this makes a practical difference for the distribution of standardized returns. A second question

is whether it is feasible to restore distributional results for this scenario. We explore these issues here.

When the volatility process, F(t), is correlated (negatively) with the return innovation process,

W(t), then knowledge of the daily integrated variance is informative regarding the realization of the daily

return innovation. Hence, equations (5) and (8) can no longer hold. Nonetheless, the Dambis-Dubins-

Schwartz theorem (Dambis, 1965, and Dubins and Schwartz, 1965) ensures that a suitably time-changed

continuous martingale is a Brownian Motion.4 Hence, appropriately sampled returns will be Gaussian



5
  The notion of “event” time is related to the Mixture-of-Distributions Hypothesis (MDH) originally proposed

by Clark (1973), and further developed by Epps and Epps (1986), Tauchen and Pitts (1983), Andersen (1996), and
Andersen and Bollerslev (1997a) among others.  However, the MDH explicitly operates with a second observable proxy
for market activity, namely the trading process, whereas event time here is defined directly with reference to the price
process itself. Our approach is also similar in spirit to the concept of theta-time advocated by Olsen and Associates (see,
e.g., Dacorogna et al, 2001). The application of a time-change devise also has important precedents in the statistics
literature, see, e.g., Lai and Siegmund (1983) and, recently, Chang and Park (2004). In a different context, Oomen (2006)
has recently  advocated the use of transaction time sampling in the construction of superior realized volatility estimates.
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even in the leverage case. In particular, without jumps the return series in equation (1) is i.i.d. Gaussian if

sampled at equidistant increments of the quadratic variation process. Specifically, for a fixed positive

period of “financial” time J*, we sample the logarithmic price process at times,  0 = t0,  t1 , .... ,  tk , ... , 

where the calendar time sampling points are defined by

  (9)

so that returns are computed over intervals of identical quadratic variation, J*. It is natural to calibrate J*

so that the average calendar period associated with the event-time returns equals one trading day. Note

that the associated “event” return horizons may reflect highly variable calendar time lengths.5 

 Denoting the sequence of returns sampled in financial time by

 Rk   /   p(tk ) - p(tk-1 ),     k  =  0, 1, 2, ... , (10)

the following distributional result holds, even in the case of leverage,

k = 0, 1, 2, ... . (11)

This result is considerably more general than the distributional result in equation (8), and importantly

applies for any continuous martingale. As such, this provides a novel way of gauging the presence and

strength of the leverage effect by comparing the properties of returns standardized by realized volatility

versus the returns obtained from sampling in financial time. This is a fully nonparametric approach,

independent of specific modeling choices for the leverage effect and/or the diffusive volatility component.

Of course, there will invariably be some measurement error induced into the procedure, as discussed

previously, so the simulation setting in Section 3 is important for gauging the practical implications.

2.1.3.  Intraday Jump Identification

The preceding sections assume the price process follows a continuous sample path diffusion. However, a



6
  This is also consistent with a recent and rapidly expanding literature documenting almost instantaneous price

reactions in response to the release of a number of perfectly timed macroeconomic news announcements; see, e.g.,
Andersen, Bollerslev, Diebold and Vega (2003, 2005) and the many references therein.

7
  Earlier studies based on time-invariant jump-diffusions include Merton (1976) and Ball and Torous (1983).
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priori ruling out jumps is unsatisfactory as discontinuities in the price path is entirely consistent with basic

no-arbitrage principles. In fact, in an efficient market setting the release of significant “news” should

induce an immediate jump in the price.6 Moreover, as previously noted, several recent empirical studies

highlight the importance of incorporating jumps in the price process; see, among others, Aït-Sahalia

(2002), Andersen, Benzoni and Lund (henceforth ABL) (2002), Bates (2000), Chan and Maheu (2002),

Chernov, Gallant, Ghysels and Tauchen (2003), Drost, Nijman and Werker (1998), Eraker (2004), Eraker,

Johannes and Polson (2003), Johannes (2004), Maheu and McCurdy (2004), and Pan (2002).7

When the jump component is present in the specification (1), the distributional results for the pure

diffusion case break down. A potential solution is to seek direct identification of the timing of jumps, so

that a jump-adjusted price path can be tested based on the distributional implications for the pure diffusive

case. BN-S (2004, 2005) provide inspiration that this may be feasible, although their results only speak to

the presence of jumps over a given trading period and not to their timing or whether multiple jumps have

occurred. Hence, we seek an alternative technique that directly identifies the jump timing.

Inspired by BN-S (2004), define the standardized realized bi-power variation measure,

(12)

where :1 / %(2/B). It follows then under weak regularity conditions that for )60, 

(13)

Consequently, the bipower variation (asymptotically) annihilates the contribution of jumps to the

quadratic variation and only measures the integrated variance attributable to the diffusive component.

Combining equations (4) and (13), the contribution to the quadratic variation process due to jumps may

therefore be estimated consistently by the difference between realized volatility and bipower variation.

BN-S (2004) derive the joint limiting distribution of the realized volatility and bipower variation under the

null hypothesis of a continuos sample path, in turn allowing for the construction of formal statistical tests



8
  These insights have inspired the construction of practical jump detection techniques by ABD (2005), BN-S

(2005), and Huang and Tauchen (2005), valid under slightly different circumstances. An alternative but related
nonparametric continuous record asymptotic jump detection scheme based on the Lévy Law for the modulo of continuity
for the sample path of a Brownian Motion has recently been developed in a series of papers by Mancini (2004, 2005a,b).
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for significant jumps based on the appropriately scaled difference between the two measures.8

We now outline an alternative procedure which focuses directly on individual intraday returns

through a uniform decision rule that allows for simultaneous identification of multiple significant jump on

each trading day. Specifically, given a realization of the robust-to-jumps bipower variation measure, we

consider whether a randomly selected intraday return, is subject to a jump,

where >>>> is an independently drawn index (uniformly distributed) from the set and

have conditional mean and variance given by and , respectively. This

randomization device is useful to express the conditional moments of an arbitrary intraday return in terms

of the corresponding conditional trading day moments. For example,

, (14)

where E rt+1 denotes the daily mean conditional on the daily integrated variance. Recall that this quantity

is typically non-zero under leverage, even if the drift is zero. Likewise, for the conditional (randomized)

intraday return variance, given the daily integrated variance, we obtain,

  

  (15)

These calculations verify that the randomized intraday return retain the standard relationship

between the mean and variance of diffusion increments over small intervals, ). In particular, the



9
  The assumption of constant intraday volatility greatly simplify matters, as all scaled intraday returns then are i.i.d.

Gaussian with a distribution uniquely determined by the conditional mean and variance given in equations (16) and (17).  If
volatility varies over the trading day, the scaled intraday returns will be heteroskedastic and the conditional distribution (given the
daily integrated variance) is then a normal mixture.  We will further investigate this issue in the simulations reported on below.

10
  There is no claim of optimality for this procedure, and future research will surely provide improvements.

Given the lack of theory for direct identification of jump timing we simply exploit the constant volatility benchmark to
develop a feasible approach and then verify that it performs well for relevant models. An alternative approach is provided
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appropriately scaled version has a vanishing mean,

, (16)

and a variance approaching the integrated variance,

. (17)

These results inspire our direct jump test based on individual intraday scaled return realizations. In

general,  we do not know the distribution of this object but only the first two moments. Asymptotically,

however, for very frequent sampling the diffusive null implies that each (scaled) intraday return is

approximately Gaussian. If we further assume, for tractability, that volatility is constant within the trading

day, we have9 

 (18)

We may now formalize our jump detection procedure as follows. First, choose the size  of the jump test

at the daily level, and define   as the level of the corresponding  confidence interval

for a randomly drawn intraday diffusive return distributed approximately .  Second,

detect possibly multiple intraday jumps  based on the rule:

 , (19)

where 1-$/2 refers to the corresponding critical value from the standard normal distribution. Note that this

procedure will tend to over-reject the diffusive null hypothesis whenever there is substantial intraday

variation in volatility. This therefore suggests a conservative choice of  and hence . Nonetheless, we

later document satisfactory practical performance in terms of effective power and size with  for a

variety of jump-diffusive specifications endowed with significant time-variation in volatility. In fact, we

find that it tends to outperform the existing BN-S procedure in term of identifying days with jumps.10



by the recursive strategy recently pursued in Andersen, Bollerslev, Frederiksen and Nielsen (henceforth ABFN) (2005).

11
  We are grateful to Nour Meddahi for this argument which offers a more elegant and simpler reasoning than

the discussion provided in an earlier version of the paper.
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The ability to draw inference regarding the timing and size of jumps allow us to devise a  non-

parametric strategy for deriving distributional implications within the jump-diffusion setting. First, we

subject the intraday return series to a jump identification scheme and remove identified jumps. These

returns are then seen as, approximately, generated by a pure diffusion process, so that we can apply the

techniques suitable for that case, discussed in the preceding sections. However, before we assess the

empirical merit of this approach in more detail, we need to discuss some pertinent implementation issues.

2.2.  Testing for Distributional Features of Jump-Adjusted Standardized Returns

Under ideal circumstances, including frictionless markets and perfect jump extraction techniques,  the

jump-adjusted and appropriately standardized trading day returns are asymptotically, for ever finer

sampling, distributed as i.i.d. standard normal variables, as stated in equations (8) and (11) for the distinct

diffusion cases. This property serves as the main benchmark for our empirical investigation concerning

the descriptive validity of the jump-diffusion setting, based upon the actual return distributions calculated

from the limited number of intraday trading day returns at our disposal.

2.2.1.  Some General Properties of Standardized Trading Day Returns

An important fact is that returns standardized by realized volatility will be thin tailed by construction. This

follows from the Cauchy-Schwartz inequality. Let n = 1/) denote the number of intraday returns,

(20)

so that

(21)

Consequently, the distribution of the standardized returns has finite support, or truncated tails, as all

realizations fall within the interval. This result is valid  for all return generating processes,

including those with jumps and microstructure noise. Moreover, notice that equality is achieved only

when all intraday returns are identical and thus constant throughout the entire trading day.11
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Similar reasoning suggests that the presence of jumps renders the standardized returns thin tailed.

For notational simplicity, let the set of intraday returns be denoted by and assume,

without loss of generality, that    so the trading day return is positive. Now, imagine that

the largest intraday return, say xi , represents a positive jump so it is of the same sign as the daily return -

as is typical if it is large enough to exert a marked impact on the overall return. Upon taking the partial

derivative of the standardized return, with respect to xi , one may readily determine

that the impact is negative if and only if,

(22)

This condition is trivially satisfied under the assumption on the jump since the largest intraday return must

exceed the right-hand-side of (22) unless all intraday returns equal c/n and (22) holds as an equality.

These arithmetic arguments support the notion that jumps tend to render the standardized returns

thin tailed. However, it is straightforward to construct counterexamples by considering jumps of the

opposite sign of the overall return. Similarly, if one jump helps offset another large jump on the same day,

the effect is generally unpredictable. Our simulation sections help shed additional light on the issue.

2.2.2.  Finite Sample Results for the Diffusion Case

For simplicity, we now consider a pure diffusion (equivalently all jumps are perfectly identified and

removed) and assume n equidistant intraday return observations are available. We continue to focus on the

case of constant diffusive volatility within the trading day to obtain insights within a tractable setting. It

then follows from PV (2004) that the density function for the standardized returns,

(23)

takes the explicit form,

(24)
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A number of observations are in order. First, the support of the distribution is as for the

general case in Section 2.2.1. Hence, the distribution is truncated and has thin tails. Second, equations (8)

and (11) imply that the density in (24) converges to the standard normal for n 6 4. We illustrate this effect

in Figure 1 for different values of n.  The normal approximation is very poor when based on only a few

high-frequency observations. For  n $ 48 it works reasonably in the center of the distribution, but the tail

behavior is only close to that of the normal for even higher values of  n.  Third, if instead the return period

is defined through the increment to realized volatility, as described in Section 2.1.2,  n, the number of

intraday observations may vary widely across “days.” If a full (financial) trading period consists of only a

handful of intraday observations, some of these are necessarily quite extreme, potentially undermining the

usefulness of the constant-within-trading-day volatility assumption. In such instances, the distributional

approximation in (24) is likely unreliable, as the simulations later on also confirm.

2.2.3.  Finite Sample Biases and Statistical Tests

A  popular set of normality tests is based on a comparison of higher order theoretical moments with the

corresponding sample moments. In the current context, we have the sharp asymptotic i.i.d. N(0,1) null

hypothesis for the standardized daily returns rather than a generic N( :,F2 ) null.  Hence, we may compare

the third and fourth sample moments directly to their theoretical values without any initial demeaning and

scaling of the observed series as is done, for example, when applying the common Jarque and Bera

(henceforth JB) (1980) test. In fact, such initial transformations of the data will induce finite sample size

distortions in the JB test under the i.i.d. Gaussian null as argued by Bontemps and Meddahi (henceforth

BM) (2002). Hence, the focus on the exact null hypothesis is likely to bring about improvements in both

the size and power compared to the generic normality tests. Further efficiency gains are feasible via a test

based on the joint distribution of the first four moments. BM (2005) argue such a test, implemented

through a representation based on the first elements of the Hermite polynomial expansion, brings about a

number of important advantages, including robustness towards parameter estimation uncertainty. Below,

we implement a GMM style test which is identical to the corresponding BM test for the current setting.

Such normality tests may actually result in an undesirable high level of power, as the finite sample

moments inevitably are downward biased, thus producing an excessive rejection rate even if the theory is

valid. Specifically, under the assumptions in Section 2.2.2, the fourth moment of the standardized trading

day return equals 3nt /(nt + 2). If the number of intraday observations is low, this finite-sample “bias,”

driving the kurtosis below the asymptotic value of 3, is substantial. In practice, the intraday returns are

also unlikely to be i.i.d., so the issue is likely even more pertinent than suggested by this illustration. Such
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considerations motivate the exploration of corresponding moment based tests for the approximate finite-

sample distribution in equation (24).

In particular, it follows directly from PV (2004) that,

 . (25)

Denoting the corresponding sample and population moments by,
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These quadratic forms enable tests for the validity of the approximate finite-sample distributional theory 

in equation (24). We focus on the usual strategy of relying on either individual moments, the joint third

and fourth moments, or the joint first four moments. Of course, if the number of intraday observations is

uniformly large, i.e., nt 6 4  for all t, the population moments converge to the standard normal values,

, and  The results from the finite-sample tests

may then be compared directly to the corresponding i.i.d. N(0,1) asymptotic moment tests obtained by

substituting the population moments into the quadratic forms above. As shown in the appendix, this GMM

normality test based on the first four moments is identical to the BM (2005) test constructed from the first
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four Hermite polynomials. Of course, many alternative tests for i.i.d. N(0,1) exist and we explore a

number of these as well, including some common Empirical Distribution Function (EDF) tests.

3.  Simulation Evidence

This section provides evidence on the finite sample distribution of jump-adjusted and realized volatility

standardized return series. We assume that the underlying high-frequency returns are generated by a jump

diffusion calibrated to parameter values obtained through recent empirical studies of the S&P 500 equity

index. The base scenario features pronounced volatility persistence, a strong leverage effect, and fairly

frequent jumps. We explore the separate impact of these features by studying a pure diffusion and a jump

diffusion, both with and without leverage effects. We also allow for different jump intensities and jump

sizes. All experiments are conducted for a range of financial time trading periods, J*, different return

horizons, along with different sample sizes. Finally, we shed light on the effect of i.i.d. microstructure

noise, and the limiting behavior of our testing procedure (for an increasing number of trading days) as we

simulate series corresponding to much larger data sets than those currently available with real data.

3.1.   A Standard One-Factor Stochastic Volatility Jump-Diffusion Model

Our simulation evidence is based on the one-factor stochastic volatility jump-diffusion model estimated by

ABL (2002) from daily S&P 500 data, but the specification of the jump component is also influenced by

the subsequent study in ABD (2005). The simulations capture the dominant features of the equity index

returns, yet the structure is sufficiently simple to allow for direct interpretation of the impact of the

various features of the return generating process. Specifically,

 (29)

corresponding to a standard affine (latent) stochastic volatility model augmented by a jump component. If

there are no jumps and the two Wiener processes are independent, we have a simple affine diffusion with

the three parameters 2, 0, and <  controlling, respectively, the unconditional (daily) return variance, the

strength of mean reversion in volatility, and the volatility-of-volatility. Obviously, in this setting equation

(8) applies. The complications of primary interest are introduced via correlation between the return and

volatility innovations as well as jumps. We capture these features through the following representation,
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(30)

The Poisson process has constant intensity rate, 8, with normally distributed jump size, so the jump

returns are approximately zero mean and Gaussian. The strength of the leverage effect is governed by D.

The diffusive parameters are fixed throughout at  ( 2, 0, < ) = (1, 0.01, 0.1) to keep the simulation

size manageable. This implies an unconditional daily return variance of 1% and a mean reversion for daily

stock returns which is roughly consistent with ABL (2002). The leverage effect is also, whenever present,

fixed to reflect recent empirical evidence from U.S. equity indices, namely  D = - 0.5.  Finally, the jump

parameters are inspired by the contribution of jumps to overall daily return volatility in ABD (2005),

although we experiment with different jump intensities and sizes to gauge the impact of this critical

component for the properties of the standardized return series.

We provide results for a simulated sample size of 5,000 ‘days’ with 195 ‘intraday’ return

observations, corresponding to the use of two-minute returns over a 6½ hour trading day, reflecting our

actual implementation with the S&P 500 futures data in Section 4. We approximate the diffusion process

through an Euler scheme and sample once every ‘second’ in order to achieve a high degree of precision,

although the actual prices are only recorded every 120 seconds. We produce a total of 1,000 simulated

samples for each scenario, and we vary the length of the trading period over which we construct the

standardized trading day returns from ½ ‘day’ up to 2½ ‘days’ in increments of ½ ‘day,’ although we only

report findings for ½, 1 and 2½ ‘days’ for brevity. These are all based on the original 5,000 trading days,

so there are 10,000 half and 2,000 biweekly trading periods. We fix the number of trading days to not

exploit more data in the simulation than is available in practice - intraday data typically are not available

before 1985, leaving a maximum of about twenty years of data. This configuration implies a trade-off in

the choice of a longer versus shorter trading period return. Shorter trading period (½ day) utilizes fewer

intraday returns so they are relatively more noisy but there are more trading periods available over the

5,000 trading day sample, so the sampling variation can be assessed better than for the longer trading

period (2½ day). However, the simulations can, of course, transcend such limitations. We explore the

limiting behavior of our tests by simulating corresponding long samples consisting of 50,000 trading days.

For every simulated return series we construct the corresponding jump-adjusted intraday series

and aggregate to different horizons to obtain the jump-adjusted trading period returns. We calibrate the

jump detection procedure to obtain a 0.001% chance of falsely identifying a jump on a given trading day

(conditional on constant volatility within the day). Hence, we employ a conservative jump extraction
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technique which only will flag price moves that we are quite certain represent actual discontinuities. Of

course, with time-varying volatility the actual significance level is somewhat higher as illustrated below.

Finally, both the original (physical) intraday series and the jump-adjusted series is converted into financial

period return series. These financial time return observations cover a varying (calendar) time interval, but

we calibrate the financial time clock via the choice of  J*  to obtain separate series which cover an average

trading period matching those for the physical return series.

3.2.   Simulation Results

For each simulation scenario we provide a variety of distributional tests conveying information about the

quality of fit. The most basic information is conveyed by the descriptive statistics for the standardized

returns, various direct i.i.d. N(0,1) test sizes and the size of moment tests inspired by the approximating

distribution in (24). We include three empirical distribution function (EDF) tests for i.i.d. N(0,1), namely

the Kolmogorov-Smirnov (KS) test, the Anderson-Darling (AD) test and the Cramer-von Mises (CVM)

test. The former is sensitive to deviation between the empirical distribution and the standard normal over

the entire support, while the latter two pay more attention to the tail behavior. We also explore the

performance of the generic JB test for normality based on the third and fourth sample moments. As

explained, this test is incorrectly sized but we included it due to its popularity in the wider literature.

3.2.1.   Evidence on the Intraday Jump-Detection Procedure

For each simulation design we implement our jump extraction procedure detailed in Section 2.1.3. The

jump test is conducted at a (daily) nominal size of 0.001%, but the actual size will be slightly higher in

realistic settings with time-varying intraday volatility. This section compares our intraday jump detection

technique with the prevailing BN-S technique based on the discrepancy between the realized volatility and

bipower variation over each “trading day.” We implement the ratio version of their test with maximum

adjustment. This approach is the preferred test among various candidates in Huang and Tauchen (2005).

The top panel of Table I reports on the BN-S jump test with a size of 0.1%. Simulation designs

#1-4 have no leverage effect, but varying jump intensity and size parameters, while simulation designs #5-

8n are similar except for the presence of a non-zero leverage coefficient, D = -0.5. We discuss the

simulation findings for the various tests in detail in the following sections, focusing in this section

exclusively on aspects of the jump detection procedures.  Moreover, since the presence of leverage effects

appear to have minimal impact on the performance, we focus our discussion on the first four designs.

The first row in the table corresponds to the case of no jumps. The BN-S test is seen to be
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  For brevity, we do not report the standard deviation across the simulated samples. It is relatively small in

each design and for all summary statistics. They were reported in the initial working paper draft of the paper.
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somewhat oversized at 0.16%, but the average daily imputed jump volatility (Det JV) is zero to three

decimals, reflecting the fact that the (falsely) identified jumps are quite small, and the associated root

mean squared error (RMSE) is also minimal at 0.009%. Nonetheless, the performance is inferior to that of

our intraday based procedure, as indicated in the middle panel of Table I. Here, the RMSE is 0.005%. This

procedure also provides a slight improvement in size. Finally, the intraday procedure with size 0.001%

produces RMSE of 0.001%, as indicated in the lower panel of the table. Hence, the errors stemming from

falsely detected jumps are minimal in this scenario. Moreover, the lower size results in only a slight loss

of power. This is evident from the last column, where the power reflects the percentage of days with

actual jumps that are detected by the test. Furthermore, this version of our procedure still retains more

power than the larger sized BN-S test. Even more significantly, our intraday jump detection approach with

minimal (theoretical) size of 0.001% still produces root mean squared errors across all designs that are

substantially lower than for the BN-S procedure. This suggests that our test uniformly dominates the BN-S

test. Our suspicion that the actual data display somewhat more irregular features than captured by our

simulation design motivates our conservative choice of test size 0.001% relative to 0.1%, even if the

evidence in Table I, if anything, indicates slightly better performance of the latter. Finally, we note that

the relative size of the RMSE due to true jump volatility (True JV) is largest in the “moderate jump

scenario” (#4) compared with the “rare large jump” (#2) and the “frequent small jump” (#3) designs. As

this case may be more representative of the actual data we pay particular attention to this scenario below.

3.2.2.   The No-Leverage Pure Diffusion Case

The most basic scenario involves the pure diffusive process with no correlation between the return and

volatility innovations. In this setting stochastic volatility is effectively a pure time deformation device. If

we control for the integrated volatility through the corresponding realized volatility measures, we should

recover standard normality (approximately) as stated in equation (8). Of course, in practice we do not

know the properties of the data generation process so we also explore what happens if we transform the

series into financial time and/or implement initial jump detection and extraction procedures.

 The first set of simulations are obtained from model (29) with the extraneous parameters from

equation (30) zeroed out. The descriptive statistics for the standardized return series are given in Table

II.1A, top panel, for design #1. As expected, the averages of the mean, standard deviation and skewness

equal the expected values for the standard normal distribution.12 In contrast, there is a downward bias in
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the kurtosis, even compared to the expected value which accounts for the impact of the finite sample

reported in the last column (assuming constant intraday volatility). The bias is most pronounced for the

short trading period and almost vanishes at the biweekly frequency. Only for this longer period does the 

fourth moment begin to match the expected value, 3 nt  / (nt + 2).  These observations underscore the

potential importance of developing the moment (finite sample) adjusted test statistics below.

We provide evidence on the size of some common normality tests in Table II.2A. For parsimony,

we report results for test size 5% only, but qualitatively identical results obtain for other significance

levels. The EDF tests KS, CVM and AD all have good size properties, albeit with a tendency towards

overrejection. This is likely associated with the mild deviations from standard normality in finite samples

discussed previously. The JB tests behave more erratically. As expected, they over-reject for short trading

periods where the bias in the kurtosis is most pronounced. However, the JB tests are undersized at daily

and longer frequencies due to initial centering and scaling, so they under-reject even if the (finite sample)

distributions are not exactly N(0,1). If one follows PV (2004) in adjusting the kurtosis in the JB test to

equal the finite sample adjusted value, the over-rejections for the half-day period are reversed to under-

rejections. Moreover, these under-rejections amplify for the longer trading period returns. The jump

detection step has no discernable impact on the results, whereas (unwarranted) conversion into financial

time is a bit more problematic as the tests now appear to be systematically, albeit mildly oversized.

A more direct testing strategy for the standardized returns is to exploit the moments of the two

approximating distributions, namely the standard normal and the finite sample approximation in equation

(24), thus sidestepping the loss of power associated with the JB test. Such moment based results are

presented in Tables II.3A and II.4A for each individual moment and selected combination of the moments,

including a joint test based on all four moments. Table II.3A refers to the test size computed against the

standard normal moments. The size of the tests based on individual moments appear sensible, while the

joint moment tests are oversized for the smallest trading period. However, this problem vanishes as the

trading period is increased. This is, of course, not surprising since the normal approximation is found to be

quite accurate at the daily trading frequency and above in Figure 1. The results in Table II.4A based on the

approximating finite sample distribution are uniformly impressive, as they also account for the downward

bias in the fourth moment over the lowest trading periods. These results also suggest that the convergence

of the sampling distributions to the standard normal becomes reliable around the one trading day period.

Consequently, these tests provide a convenient supplement to the empirical distribution tests for standard
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normality, whereas the JB tests are much less reliable.13

3.2.3.   The No-Leverage Jump-Diffusion Case

The impact of jumps and the difficulty in identifying and adjusting for them likely hinge on specific

features of the jump process. We explore two benchmark cases and one in-between. For the first scenario,

the parameters vector is  (h2, 8) = (2.5, 0.1).  This induces a jump about once every two weeks and the

jumps account for 20% of overall return volatility which is consistent with the evidence in ABD (2005),

even if the jump sizes may appear slightly exaggerated. As such, this scenario should provide a good sense

for how the presence of relatively large jumps impacts the distribution of the standardized returns.

Turning to the results, we note from Table II.1A that the kurtosis for the standardized return series

unadjusted for jumps now is more downward biased. This is in line with the reasoning in Section 2.2.1

that jumps induce thin tails. In contrast, there is essentially no bias for the jump-adjusted series relative to

the finite sample corrected values, reflecting the success of the test in capturing the large jumps. These

encouraging findings are confirmed in Table II.2A where the empirical distribution function (EDF) tests

for the jump-adjusted series all are correctly sized for the one day trading period and beyond, although a

slight deterioration occurs for the financial time transformed series, as noted before. Hence, in the absence

of leverage, this transformation is moderately harmful. Not surprisingly, we now find severe size

distortions for the series unadjusted for jumps. These conclusions are collaborated by the moment tests.

The test based on all four moments is oversized for all scenarios except the jump-adjusted series with

trading periods beyond the ½ day in Table II.3A, while the joint adjusted moment tests in Table II.4A

provide the same inference except that the jump-adjusted series for the ½ trading day now also is correctly

sized. This is, of course, consistent with the bias adjustment being more important at this return frequency.

Overall the results suggest that our procedure for jump adjustment, financial time transformation,

and standardization provides a feasible method for constructing correctly sized tests for the distributional

properties of a diffusion extended with rare large jumps. Of course, these findings may depend on the

specific scenario in which, as seen from the bottom panel of Table I (set #2), our jump detection scheme

performs fairly well. The extracted jumps account for 24.9% of  return variability compared to the true

contribution of 25%, and we correctly identify 82% of the jump days. We clearly identify the majority of

the large jumps, even if there are mistakes in inferring the exact size of each jump. We next check if these
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findings carry over to settings where jumps are harder to identify.

We now consider frequent but small jumps (set #3), with the same total contribution to volatility. 

Specifically (h2, 8) = (0.25, 1), so that jumps are about ten times more frequent, but also ten times smaller.

If anything the results are stronger, in terms of illustrating the importance of jump adjustments and

achieving satisfactory size for the jump-adjusted standardized return series in Tables II.3A and II.4A.

Finally, we explore a “moderate” jump scenario (set #4) (h2, 8) = (0.5, 0.2), with a smaller overall

jump contribution of 10% to return variability. The bottom panel of Table I shows that the tests now miss

a substantial fraction of the jumps, but still identify most large jumps, even if the errors are somewhat

larger than before. Even if the tests for the jump-adjusted series are appropriately sized, it is now harder to

distinguish the findings for the jump-adjustment series from those of the unadjusted returns. In fact, the

rejection rates for the unadjusted series at trading periods of one day or more in Tables II.2A-II.4A are

never much above 10% for the 5% test level. In contrast, the EDF tests are comparatively well behaved

and provide at least as much discriminatory power as the moment tests.

3.2.4.   The Pure Diffusion with Leverage Case

We now exclude jumps but introduce a strong, albeit realistic, leverage effect by letting D = - 0.5. Table

II.1B (set #5) reveals that leverage has a very different impact than jumps. Now, the mean is biased

upward whereas the kurtosis (unadjusted for the non-zero mean) accords with the theoretical value after

controlling for the finite number of observations used in the computation of the trading period returns.

The upward shift in the mean is due to the stronger standardization of negative returns stemming from

their correlation with the volatility innovations and hence realized volatility. Table II.2B shows that the

EDF tests are substantially oversized for all (physical) calendar period return series, whether jump

adjusted or not, while they are well sized for the returns computed in financial time. Hence, the financial

time transformation is successful, as stipulated by equation (11). These findings are further collaborated

by Tables II.3B and II.4B. Another distinct difference to the jump scenario is the lack of problems with

test size even for the shorter financial time periods, so finite sample considerations are simply less

pertinent in this situation. The realized volatility measures approximate the underlying integrated

variances sufficiently well, so that the transformed series are remarkably close to standard normal.

3.2.5.   The Jump-Diffusion with Leverage Case

Finally, we combine the leverage effect with the jump scenarios explored in Section 3.2.3. This produce

the setting arguably most reminiscent of the actual equity index return series. The results are documented
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in Tables II.1B-II.4B (set #6-8). The descriptive statistics now indicate both an upward bias in the mean

and a downward bias in the kurtosis, as may be expected from a combination of the above scenarios.

When the jump contribution to overall return variability is high (set #6 and #7) it is critical to perform

both a jump adjustment and a financial time transformation in order to obtain correctly sized tests. The

two features appear to reinforce each other to produce quite badly sized tests if either of the steps are

omitted. For the moderate jump scenario (set #8), the same qualitative findings obtain in attenuated form.

This suggests that within the moderate jump scenario the financial time transformation is by far the most

critical step in terms of achieving reasonably sized tests.

3.2.6.   Larger Sample Size

The power to reject normality increases with sample size, so our procedure for restoring normality should

stand out even more clearly on larger samples. We simulate 1,000 sets of 50,000 days for the moderate

scenario with leverage and jumps, which represents the hardest challenge for identifying incorrectly sized

tests within our initial simulation battery of 1,000 x 5,000 days. We report the findings in the bottom panel

of Tables II.1B-II.4B (set #X8). The results are striking as the power to reject normality for incorrectly

standardized returns approaches 100% in many cases, even though our three-stage standardization

procedure remains approximately correctly sized. Moreover, notice that the large sample size enhances

our ability to detect the impact of the finite intraday observation distortions. In Table II.3B, the joint four

moment test for normality of the financial time transformed and jump-adjusted series reject 99.8% of the

times for the ½ day returns, while the corresponding number in Table II.4B is an appropriate 5.2%.

Nonetheless, it is evident that it is very hard to obtain high power in terms of detecting the specific

features of the jump-diffusive process in this moderate jump and leverage design. For daily sampling, the

adjusted joint moment tests in Table II.4B never reject more than 40% of the time. It is notably easier to

detect the finite sample (in terms of intraday returns per day) deviation from normality than it is to

ascertain the presence of the leverage and jump features from the appropriately adjusted moments. Of

course, this jump scenario is deliberately chosen to present a challenge. Actual data are likely to display a

higher jump intensity and have jumps that routinely exceed the ones simulated here. Hence, it is tempting

to deem strong rejections of the null hypothesis based on our adjusted moment test to provide compelling

evidence against the jump-diffusive representation. However, this does not address another issue which

invariably impacts any test based on actual return data, namely market microstructure frictions or noise.

3.2.7.    Microstructure Noise
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The results in Tables II.1-II.4 indicate that our three-stage methodology works quite satisfactorily for the

simulated scenarios. However, this is an idealized setting void of market microstructure complications. It

is outside the scope of the paper to explore this topic in depth, so we only consider the simplest and

reasonably descriptive case of i.i.d. noise in the price observations. This case has been analyzed quite

extensively in the literature starting with Zhou (1996). We begin by briefly setting the stage and

describing the motivation for our specific simulation design.

Under the i.i.d. noise hypothesis the logarithmic prices are observed with error, resulting in the

following returns,

(31)

where the “true” return series, rt+j A), )  is assumed to be independent of the i.i.d. error sequence, 0 t+j A), .

The random price error induces excess variation in the realized volatility and negative serial correlation in

the high-frequency returns. In particular, for 0 t  i.i.d. (0, T2 ), it follows readily that,

(32)

and 

(33)

Equation (32) shows that the i.i.d. error structure induces excess variation that cumulates proportionally

with the sampling frequency. Consequently, the presence of noise renders realized volatility biased and

inconsistent (as )60) for the underlying quadratic variation, QVt+1. However, equation (33) immediately

suggests a simple bias correction, as the unknown noise parameter T2  may be estimated directly from the

(negative) first order sample return auto-covariance. The procedure for bias correction in financial time is

only slightly more complex. Instead of accumulating squared return innovations until the target, J*, is

surpassed, the modified stopping rule simply becomes,

(34)
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From equation (32), it is evident that the (daily) quadratic variation is invariant to the sampling frequency.

In contrast, the second noise (bias) term is intimately tied to each individual price observation and its size

is a direct function of the sampling frequency. Hence, to convey the strength of the market microstructure

friction in a manner which is independent of sampling frequency, it is standard to report the (average)

noise-to-signal ratio for a specific market as  8 = T2 / IV , where IV represents an estimate of the average

daily (diffusive) quadratic return variation over the full sample period.

For the simulation designs we calibrated the i.i.d. noise to estimates extracted from the S&P 500

futures index returns. The procedure used for obtaining these estimates is described in Section 4, where

we report estimates around  5 A10-5 or slightly higher. Thus, to explore the impact of a significant, yet

realistic, level of contamination we fix the noise-to-signal ratio across all designs at the comparatively

high value of  1 A10 -4. To conserve space, we focus on the most problematic scenario explored above,

namely set #8 with leverage and a moderate jump regime. We provide results both for series based on

return standardization ignoring the presence of jumps and for series where we explicitly correct for the

bias as described around equation (34). The basic findings, ignoring the presence of microstructure noise,

are reported in Table III.1. The label “#8n” reflects the fact that this design replicates the scenario used to

generate set #8 in Tables II.1B-II.4B, except for the inclusion of the i.i.d. noise component.

The descriptive statistics in panel one of Table III.1 reveal that the standard deviation of the

standardized returns no longer equals unity, but instead is downward biased to 0.97 and 0.98 for the

calendar and financial time series, respectively. The noise-induced bias of the realized volatility measures

implies that we are inflating volatility and therefore “over-standardizing” the trading day returns. This will

render the non-standard Gaussian features of the standardized returns more pronounced and should result

in higher rejection rates. The next two panels with the direct normality tests confirm this conjecture. Even

for the jump adjusted financial time standardized returns, the power for the joint moment tests increases

quite dramatically between Tables III.1 and II.3B. In short, the finite sample distortions and the noise

combine to produce significant evidence against standard normality. This interpretation is also confirmed

in the bottom panel of Table III.1, where we see that the finite-sample adjusted moment tests for the jump-

adjusted financial time returns now are badly oversized, or alternatively have considerable power due to

the impact of the noise and the resulting failure of the null hypothesis.

Of course, if one correctly assumes that i.i.d. noise is present and implements a bias correction by

estimating T2 over the full (simulated) sample, it should be possible to alleviate the impact of the noise.

Indeed, comparing the results for the bias corrected statistics in Table III.2 with the corresponding entries

in Tables II.1B-II.4B confirms that the findings are quantitatively close everywhere, although not
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identical. It is, of course, not feasible to literally undo the noise. The bias correction merely seeks to

remove the systematic impact and thus allow for meaningful inference.

This raises the question whether the ability to identify jumps is compromised severely by the

presence of noise. From Table II.4B, we know that it is hard to distinguish financial time sampled returns

before and after jump adjustment, and we have low power to reject the null of no jumps in the moderate

jump scenario with 5,000 daily observations. However, we also found that the power to detect jumps is

dramatically improved for the longer sample of 50,000 observations (set #X8). One may worry that this

power improvement is more elusive in the presence of noise. Table III.3 speaks to this issue, by repeating

the long sample but now with i.i.d. noise in the return process and with appropriate bias correction (if not,

the power to reject is uniformly close to 100%). The results are striking as the power to reject the null

hypothesis is even higher than before. This occurs because the noise adjustments necessarily is less than

perfect, so there is now an additional source of error in the system on top of the finite sample biases. With

the very large sample size, the power to reject such confounding sources of non-normality is high. Notice,

moreover, that this result is obtained without any serious size distortion for the jump-adjusted financial

time sampled returns, as they retain rejection frequencies distributed tightly around the nominal 5% level.

In short, given sufficient data, our sequential adjustment procedure appears to have the ability to identify

the qualitative features of the return process even in challenging situations. Of course, for realistic sample

sizes it is not always feasible to detect, say, infrequent and moderately sized jumps. However, simple i.i.d.

noise does not seem to directly impact our discriminatory power in this regard, as long as the potential

presence of noise is recognized and adjusted for. It remains an open question whether these basic findings

carry over to more complex noise structures and associated identification and adjustment procedures.

4.  Analysis of the S&P 500 Futures Returns

This section explores two-minute transaction returns from the S&P 500 futures contract traded at the

Chicago Mercantile Exchange (CME) from January 1, 1988 through July 26, 2004.14 An initial inspection

of the high-frequency data revealed a number of problematic days with missing activity, or data errors at

the beginning or the end of the active trading day from 9:30am to 4:00pm. To avoid any confounding

influences from these problem, we simply eliminated 44 trading days which started or ended with ten

consecutive zero returns, leaving us with a total of 4,126 complete trading days. Additional details
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concerning the construction of the 195 two-minute returns for each of these days is given in the appendix.

4.1.  Testing Standard Normality of Adjusted and Standardized S&P 500 Returns

The descriptive statistics in the top panel of Table IV.1 reveal that the mean standardized returns are

positive and highly significant, whereas the corresponding financial time mean returns are approximately

zero. This strong discrepancy across the sampling schemes is indicative of a pronounced leverage effect as

discussed previously. A positive bias is also evident in the skewness, while the standard deviation and

kurtosis are strongly downward biased.

Turning to the formal hypothesis tests, the second panel of Table IV.1 provides the EDF tests. The

evidence is striking. All EDF tests reject the standard normal null hypothesis with p-values of 0-1%. In

sharp contrast, none of the EDF tests for the series sampled in financial time reject at the 5% level. The

erratic behavior of the JB tests, albeit consistent with our prediction of them being severely undersized for

the longer trading period returns, supports the contention that they are largely useless in this context.

Moving on to the formal moment based tests, the third panel of the table underscores the strong rejections

of the standard normal hypothesis in physical time with p-values uniformly close to zero. Again, the

financial time return series appear much closer to the strict Gaussian benchmark, although there are a

number of small p-values for the shorter trading periods and especially for the series unadjusted for jumps.

This rejection pattern may reflect the inadequacy of the standard normal approximation for the lower

number of intraday observations, or it may reflect the lack of power to reject the null as the number of

return observations underlying the tests diminish for the longer trading period. The bottom panel of Table

IV.1 sheds additional light on the issue by exploiting the finite sample correction derived from the

approximating density in equation (24). The calendar time based return series continue to produce

extraordinarily strong rejections across the board, while the financial time return series now appear even

closer to the standard normal benchmark. There is also some indication that the jump-adjusted series

provides the closest approximation to the finite sample corrected moments, as none of the corresponding

tests reject at the 10% level for the one (financial) day returns, while the corresponding unadjusted return

series encounter rejections at the 5% level for some tests and produces a p-value of 7% for the joint four

moment test. As for the previous panel, once we move beyond one trading day none of the tests reject.

A couple of factors may explain our findings. First, we have lower power for the longer horizon

returns because of the lower number of time series observations so the similar properties of  the jump-
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adjusted and unadjusted series may be relatively uninformative.15 Second, if the actual data bear some

resemblance to the moderate jump design in our simulation experiments (set #8), the evidence for 5,000

trading days suggest it may be infeasible to discriminate the pure diffusion from the jump scenario

through the distributional properties of the standardized returns alone. Obviously, these points may

reinforce each other, thus rendering a clear verdict difficult. Even so, it is striking that the standard normal

approximation is acceptable across many dimensions once we transform the return series to financial time.

A more direct assessment of the evidence for jumps in the intraday return series may be obtained

from inspection and analysis of the extracted jump series. Our jump identification procedure indicates the

presence of 382 jumps, whereas we would expect to detect zero or one jump at the 0.001% level over the

full sample (even taking into account the slightly higher effective size). In total, the jumps contribute

about 4.4% to the overall return variability. The extracted jump series is displayed in Figure II along with

the original intraday return series and the jump-adjusted series. It is evident that the intraday return series

contain extreme outliers that appear incompatible with a pure diffusive framework. The only remaining

visible outliers in the jump-adjusted series occur during volatile periods where they are insignificant at the

conservative test level we have adopted. Generally, outliers in realized volatility will induce inliers in the

corresponding standardized trading day return series, which are much harder to identify in a small sample.

Consequently, it is not surprising that relatively infrequent and small jumps can be more difficult to

discern from the standardized returns than from the raw returns themselves. 

A couple of issues are worth further discussion. First, we identify relatively few jumps compared

with recent studies that implement less conservative jump tests such as ABD (2005). We have confirmed

that this remains true even if we increase the test size of our jump detection scheme. The primary reason is

the exclusion of the generally less active morning period covering 8:20-9:30am. The main macroeconomic

announcement releases take place at 8:30am, so we miss the corresponding, often large, jumps. On the

other hand, this period is usually very quiet in the absence of such news, so it is problematic to include it

for every trading day, as the distributional properties of financial time and jump-adjusted return series are

very sensitive to the number of (active) intraday returns and the requisite finite sample adjustments are

dependent on the market being “open” over the periods included in the return computations. In order to

avoid problems stemming from such issues, we exclude this heterogeneous segment of the trading day.

This is appropriate for testing the distributional predictions of interest here, and it facilitates comparison

to the PV (2004) study. In contrast, if the properties of the jump series per se is of primary concern, it may
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be advisable to use a lower significance level in the jump tests and to include the periods surrounding the

macroeconomics news releases in the analysis. Second, it is intuitively clear that the actual data are a bit

more complex than the artificial returns generated in the simulations. The ubiquitous microstructure

effects generate an extra layer of noise and both multiple volatility factors and more complex jump

processes are likely present. Added variability in the actual return process tends to inflate the realized

volatility measures, making it still harder to identify smaller jumps, especially during volatile periods.

The significant positive aspect of our findings is that we cannot reject the basic distributional

implications of the generic jump-diffusion model in spite of various possible shortcomings. In fact, in light

of the simulation evidence we have assembled compelling evidence for a pronounced leverage effect.

Moreover, the case for discontinuities in the high-frequency return series is overwhelming, even if the

associated adjustments have a limited impact on the distribution of standardized trading day returns. The

theoretical observations regarding the effect of jump removal and the extensive simulation evidence help

us understand the potential lack of power that our nonparametric distributional based test procedure may

possess versus a no-jump alternative. Of course, as previously noted, the S&P 500 series analyzed here is

artificially low on jumps, and most other relevant asset price series will be subject to both larger and more

frequent jumps, rendering the jump detection step even more critical.

4.2.  Results for Noise and Intraday Volatility Adjusted S&P 500 Futures Data

The recent study by Hansen and Lunde (2006) offers a comprehensive discussion of the impact of  market

microstructure noise for realized volatility estimation, along with empirical evidence indicative of more

complex noise structures for individual equity returns than the simple i.i.d. process entertained in Section

3.2.7. Nonetheless, they also present encouraging results for procedures that incorporate simple first order

auto-correlation type noise adjustments. In this section we explore whether such adjustments have any

impact on the findings for the S&P 500 equity index return series.

Direct estimation of the noise variance based on the expressions in equations (32) and (33)

encounters practical problems, as the full sample of 2-minute returns results in a positive first-order

autocorrelation. Meanwhile, since jumps are not contemplated in existing theoretical work dealing with

microstructure noise,16 it seems advisable to omit the most volatile days, where large jumps typically are

to be found, from the sample used in estimating the noise variance. Indeed, doing so results in a more

robust and, importantly, negative estimate. Of course, simply excluding the most volatile days may impart
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a negative bias to the inferred average realized (diffusive) volatility, so to counterbalance this we exclude

a matching number of low volatility days. Letting Q denote the number of high and low volatility days

excluded from the sample, we find the striking pattern in the sample autocorrelation coefficients and

associated noise variance estimates depicted in Figures III.1 and III.2. As seen from these figures,

increasing the value of Q, the serial correlation coefficient stabilizes in the range of -0.010 to -0.013,

while the noise variance reaches a level of about 4A10-9. Moreover, the average daily realized volatility for

the jump adjusted return series is consistently above 8A10-5 , implying a noise-to-signal ratio, 8, of

approximately 5A10 -5 . Of course, in the presence of undetected jumps the true value of the diffusive

volatility may be slightly lower and the noise-to-signal ratio correspondingly higher.17

The findings reported in Table IV.2, obtained from the full sample, but with noise correction

estimates based on Q = 500, convey largely the same message as for the unadjusted series in Table IV.1.

However, there are indications that the insights from the simulation study discussed in Section 3.2.7 also

are of relevance for the S&P 500 market. First, we obtain significantly larger p-values at the ½ day return

horizon for the joint moment tests of the jump-adjusted financial time returns in both the third and fourth

panel of Table IV.2 relative to Table IV.1. Given the properties of the data, these are clearly the most

relevant entries in the tables. Second, there is a tendency for the distinction between the financial time

jump adjusted and unadjusted series in panels three and four to now appear more significant. Whether this

truly is indicative of power gains achieved through the control for i.i.d. type noise can only be answered

definitively through more extensive empirical work across a number of alternative asset return series.

Another important feature of high-frequency asset prices concerns the strong pattern observed in

the level of volatility across the trading day.  In particular, it is well established that for markets with a

well-defined trading day volatility tends to be highest around the open and close of the market, see, e.g.,

Harris (1986) and Wood, McInish and Ord (1985).  The simulation evidence in Section 3 and the

empirical results for the S&P 500 reported so far ignore such patterns.  Meanwhile, as shown by Andersen

and Bollerslev (1997b), a failure to properly account for this strong intraday periodicity in volatility may

seriously distort any inference regarding the underlying dynamic dependencies in the returns.  Hence, as a

final robustness check, we compute our summary statistics and distributional test statistics for the S&P

500 data after we first standardize each of the 2-minute returns with the average sample standard deviation

for that particular 2-minute interval of the day.  The results are reported in Table IV.3. It is evident that the

results closely mirror the ones in Table IV.2, and if anything provides even stronger evidence. The p-
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values for the EDF tests increase slightly and the p-values for the joint four moment tests covering the

shorter return horizons also tend to go up after the modified jump adjustments.

One message of this section is that corrections for market microstructure noise may be critical for

inference regarding the distributional properties of daily returns obtained from high-frequency data.

Moreover, the observed effects for the S&P 500 are generally consistent with our simulation experiments

based on i.i.d. noise. On the other hand, the intraday volatility pattern do not impact our basic conclusions.

As such, our supportive evidence for the adequacy of the standard jump-diffusive paradigm for modeling

equity index returns remains intact, with the accumulated evidence strongly suggesting that both leverage

style effects and jumps are critical ingredients of the return generating mechanism.

5.  Conclusion

We have introduced a novel three step procedure to explore the general properties of the return generating

process underlying a given intraday return series. Each step speaks to the empirical strength of important

features of the corresponding daily returns, namely stochastic volatility, the presence of an asymmetric

relationship between return and volatility innovations (the leverage effect) and the existence of jumps or

extreme outliers in the return distribution. In combination, the procedure may be taken as an informal test

for whether the underlying return process belongs to the arbitrage-free class of continuous-time semi-

martingales. The properties of the relevant test statistics associated with each step of the procedure are

explored through an extensive simulation study, where importantly we also consider the impact of

microstructure noise. Finally, we show that the empirical behavior of the financial time standardized

returns from the S&P 500 futures equity index market is compatible with a jump-diffusion endowed with

a pronounced leverage effect. The associated decomposition into a jump process, an indication of the

strength of the leverage effect, and a measure of the integrated variance associated with the diffusive

component of the return process should be useful in the formulation of empirically more realistic

continuous-time models. For now, we only claim to have shed new light upon the relationship between the

recent high-frequency realized volatility based literature and the more traditional daily conditional return

distribution literature based on the discrete-time ARCH or stochastic volatility paradigm.

The only preceding studies to focus on similar issues from an empirical perspective are Zhou

(1998) and PV (2004), and only the latter pursue formal normality tests. We expand significantly on their

work in several important dimensions. First, they provide evidence only for standardized financial time

returns over an average of 2½ trading days. Given the sample size, our simulations document very poor

power properties at this sampling frequency. Second, since they do not study standardized calendar returns
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nor allow for jumps, they fail to elicit evidence regarding the importance of these key distinct features of

the return process. Third, they apply only two direct normality tests, namely the KS test and the (adjusted)

JB test, supplemented by a tail test and two tests focusing on independence of the standardized financial

time return series. Our simulation study finds that none of these tests have any discernable discriminatory

power at the relevant sampling frequency. In contrast, we systematically explore the size of a battery of

tests for i.i.d. standard normality and study the power of the tests when all relevant features of the return

series are accommodated. As a result, we are able to focus our empirical study on a number of well-

behaved test statistics. Consequently, our empirical conclusions also differ in substantial ways. We find

that jumps are important and that the null hypothesis of a continuous semi-martingale is strongly rejected.

Accounting for the presence of jumps also allows us to draw more firm conclusion about the wider semi-

martingale class of models consistent with the observed returns. In the course of this analysis, we

introduce a novel intraday jump identification and extraction procedure which performs admirably in

comparison to the existing BN-S test. We also explore the potential impact of microstructure noise on the

inference, suggesting a relatively simple-to-implement strategy for dealing with some of the potential

problems encountered in the practical implementation of standard i.i.d. noise adjustment procedures.

A number of issues call out for additional inquiry. First, how widely can these strict tests for

normality of the appropriately standardized return series be expected to apply? The S&P 500 futures series

is quite unique in terms of having minimal market microstructure distortions. Second, the various steps

involved in our test procedure may be refined or extended in a variety of ways. Third, it is feasible to

explore the impact of more complex market microstructure noise and a range of other complications

within the simulation setting. Fourth, the decomposition of the return process may be related to other

market activity variables within the context of the Mixture-of-Distributions hypothesis, and it would be

interesting to study the validity of these predictions more closely. Lastly, further investigation concerning

the usefulness of the new distributional results and test statistics for practical financial decision making

constitutes another very interesting and important avenue for future research.
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Corollary 1. The following chi-square test statistics provide different moment-based tests of the null

hypothesis that the sample  is from a distribution with the moments specified above:
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Corollary 2. As  gets large, uniformly for all  , the moment-based tests become

asymptotically equivalent to those for the special limiting case of Gaussian :

( )T M M M M

M

M

M

M

T T T T

T

T

T

T

( ) ( ) ( ) ( )

( )

( )

( )

( )

~ ( )
1 2 3 4

1 1

2

3

4

21 3

1 0 3 0

0 2 0 12

3 0 15 0

0 12 0 96

1

3

4− −



















−

−





















−

χ

(A12)

Corollary 3. The moment-based test for N(0,1) based on all four moments is identical to the test for
N(0,1) on the corresponding four orthogonal Hermite polynomials spanning the same moments.

Proof. Adapting the BM (2005) Hermitian N(0,1) test to our notation and context it suffices to show that 
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Indeed, the left hand side simplifies to the following quadratic form of moments:

(A14)

The Hermite polynomials on the right hand side produce the expression

(A15)

which turns out to be just another representation of the same quadratic form. QED.



APPENDIX II. Data Description

Data Type Set #Samples x #Days Description

Simulated #1 1,000 x 5,000 No leverage, no jumps

Simulated #2 1,000 x 5,000 No leverage, large rare jumps

Simulated #3 1,000 x 5,000 No leverage, frequent small jumps

Simulated #4 1,000 x 5,000 No leverage, moderate jumps

Simulated #5 1,000 x 5,000 Leverage, no jumps

Simulated #6 1,000 x 5,000 Leverage, large rare jumps

Simulated #7 1,000 x 5,000 Leverage, frequent small jumps

Simulated #8 1,000 x 5,000 Leverage, moderate jumps

Simulated #X8 1,000 x 50,000 #8 for ten times larger samples

Simulated #8n 1,000 x 5,000 #8 under Gaussian i.i.d. microstructure noise

Simulated #X8n 1,000 x 50,000 #X8 under Gaussian i.i.d. microstructure noise

Real Data SP500        1 x 4,126 S&P 500 most liquid futures from 1/1/88 to 7/26/04

1. Simulated data.

We generate samples from eight specifications of a one-factor jump-diffusion model with Poisson jumps

of constant intensity  and lognormal jump size  with variance :

,

The diffusive volatility parameters are set to . We simulate four jump

scenarios first without leverage and then with leverage by setting :

Jump scenario Jump parameters Jump contribution
to total volatility

No jumps 0 %

Large rare jumps 20%

Small frequent jumps 20%

Moderate jumps 9.1%

The simulations are based on an Euler scheme, the simulation frequency is 1 second, while the sampling
frequency is 120 seconds with a total of 195 sample returns per day. For scenarios  #1 - #8 we simulate
5,000,000 days providing 1,000 high-frequency data samples with 5,000 days each. Scenario #X8 is the
same as #8 but each of the 1,000 samples has ten times larger size 50,000 days, i.e. 50,000,000 days in
total. Finally, we simulate scenarios #8n and #X8n that replicate #8 and #X8 under Gaussian i.i.d.
microstructure noise at the sampling frequency with noise-to-signal ratio set to 0.0001 (noise variance
realtive to the daily diffusive component of daily return variation).



2. Real data.

We use the R & C Research tick transaction data for the S&P 500 stock index futures contract traded on
the Chicago Merchantile Exchange. The sample spans January 1, 1988 to July 26, 2004. We construct two
minute returns by the previous tick method from the recorded transaction prices between 9:30 and 16:00
EST for the most liquid futures contract (with shortest maturity above five busines days). We exclude
days beginning or ending with ten or more zero two-minute returns. After excluding 44 such days we are
left with 4,126 trading days.

3. Sampling procedure in feasible financial time

Given a sample of intraday returns, we measure feasible financial time in units of the average daily
realized volatility for the sample. Then we sample in periods of length 0.5, 1, and 2.5 units of financial
time by the following procedure:
1. Set the financial time clock to zero;
2. Increment the financial time clock by the square of the next intraday return in the sample (and subtract
      twice the noise variance to correct for microstructure effects, if necessary);
3. Repeat step 2 until the clock reaches/exceeds the chosen period length;
4. Sample, increment the period count, and return to step 1;

The sample points obtained following this procedure define "days" in financial time. However, unlike in
physical time, the days in financial time have a different numbers of intraday returns and almost the same
volatility level, unless significant diffusive return outliers or undetected jumps induce spikes in the
measurement of financial time (see tables V.1. and V.2.)

4. Adjusting the jump extraction procedure for intraday volatility pattern

First, the intraday volatility pattern is approximated by the average squared return at each of the 195
intraday sample points across the ful sample. Each sqaured intraday return is simply divided by the
corresponding average squared return for that interval. Then jump-detection is performed on the pattern-
adjusted return series to find statistically significant jumps that are not driven by the identified pattern.
The actual jump size is restored by scaling back the adjusted series or, equivalently, by scanning the
original series at locations identified as jumps in the pattern-adjusted series.
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Table Notes

Table I

“Set” is the simulation set # described in Appendix II;
“Jump Intensity” and “Jump Variance” are jump parameters of the corresponding simulation set;
“True JV” is the simulated average daily jump volatility;
“Det JV” is the detected average daily jump volatility;
“RMSE” is the square root of the mean square difference between simulated and detected JV for all sample days;
“Eff Daily Size %” is calculated as the percentage ratio of the number of days, having detected JV>0 and true JV=0, to the
number of days, having true JV=0;
“Eff Daily Power %” is calculated as the percentage ratio of the number of days, having detected JV>0 and true JV>0, to
the number of days, having true JV>0.

Tables II.1.A.-II.1.B.

“Set” is the simulation set # described in Appendix II;
“Days” is the daily sample length as a fraction of one trading day in physical/financial time;
“Mean”, “Std”, “Skew”, “Kurt” are the sample mean, standard deviation, skewness, and kurtosis;
“Kurt*” is the adjusted kurtosis implied by the finite sample distribution (Lemma 1 in Appendix I).

Tables II.2.A.-II.2.B.

“Set” is the simulation set # described in Appendix II;
“Days” is the daily sample length as a fraction of one trading day in physical/financial time;
“KS” is the rejection frequency of the Kolmogorov-Smirnov test for N(0,1);
“CVM” is the rejection frequency of the Cramer-Von Mises test for N(0,1);
“AD” is the rejection frequency of the Anderson-Darling test for N(0,1);
“JB” is the rejection frequency of the Jarque-Bera test for normality;
“JB Adj” is the rejection frequency of the Jarque-Bera test with informal kurtosis adjustment implied by the finite sample
distribution (Lemma 1 in Appendix I).

Tables II.3.A.-II.3.B.

“Set” is the simulation set # described in Appendix II;
“Days” is the daily sample length as a fraction of one trading day in physical/financial time;
“1”, “2", “3", “4", “3-4", “1-4" are the rejection frequencies of the corresponding moment-based tests for N(0,1) described
in Corollary 2, Appendix I.

Tables II.4.A.-II.4.B.

“Set” is the simulation set # described in Appendix II;
“Days” is the daily sample length as a fraction of one trading day in physical/financial time;
“1”, “2", “3", “4", “3-4", “1-4" are the rejection frequencies of the corresponding adjusted moment-based tests for the finite
sample distribution described in Corollary 1, Appendix I.

Tables III.1.-III.3.

“Set” is the simulation set # described in Appendix II;
“Days” is the daily sample length as a fraction of one trading day in physical/financial time;
The columns in each of the four subsections are the same as the corresponding columns in Tables II.1-II.4.

Tables IV.1.-IV.3.

“Set” is the S&P 500 real dataset described in Appendix II;
“Days” is the daily sample length as a fraction of one trading day in physical/financial time;
The columns in each of the four subsections are the same as the corresponding columns in Tables II. and III. and the
reported numbers for each test are the obtained p-values.

Tables V.1.-V.2.

“Day Length in Phys. Time” gives the mean count of 2-min returns across all days of the sampling scheme;
“Day Length in Fin. Time” gives the mean (std. dev.) of the realized variance across all days of the scheme.



Table I. Jump Detection Efficiency on Simulated Data: Standard Daily vs. New Intraday Procedure

Standard Daily Jump Detection Procedure: Effective Size, Power and RMSE for Daily Test Size 0.1%

Set Jump Intensity Jump Variance True JV Det JV RMSE Eff Daily Size % Eff Daily Power %

#1 0.00 0.00 0.000 0.000 0.009 0.160 -

#2 0.10 2.50 0.250 0.228 0.133 0.160 74.446

#3 1.00 0.25 0.250 0.170 0.174 0.157 44.015

#4 0.20 0.50 0.100 0.078 0.096 0.159 49.501

#5 0.00 0.00 0.000 0.000 0.009 0.158 -

#6 0.10 2.50 0.250 0.228 0.133 0.160 74.472

#7 1.00 0.25 0.250 0.170 0.174 0.157 44.028

#8 0.20 0.50 0.100 0.078 0.096 0.164 49.496

New Intraday Jump Detection Procedure: Effective Size, Power and RMSE for Daily Test Size 0.1%

Set Jump Intensity Jump Variance True JV Det JV RMSE Eff Daily Size % Eff Daily Power %

#1 0.00 0.00 0.000 0.000 0.005 0.153 -

#2 0.10 2.50 0.250 0.250 0.078 0.149 84.869

#3 1.00 0.25 0.250 0.236 0.093 0.153 65.397

#4 0.20 0.50 0.100 0.098 0.051 0.149 68.428

#5 0.00 0.00 0.000 0.000 0.005 0.153 -

#6 0.10 2.50 0.250 0.250 0.078 0.151 84.893

#7 1.00 0.25 0.250 0.236 0.092 0.148 65.405

#8 0.20 0.50 0.100 0.098 0.051 0.152 68.437

New Intraday Jump Detection Procedure: Effective Size, Power and RMSE for Daily Test Size 0.001%

Set Jump Intensity Jump Variance True JV Det JV RMSE Eff Daily Size % Eff Daily Power %

#1 0.00 0.00 0.000 0.000 0.001 0.002 -

#2 0.10 2.50 0.250 0.249 0.079 0.002 81.912

#3 1.00 0.25 0.250 0.224 0.109 0.003 57.994

#4 0.20 0.50 0.100 0.096 0.055 0.003 62.468

#5 0.00 0.00 0.000 0.000 0.001 0.003 -

#6 0.10 2.50 0.250 0.249 0.079 0.002 81.915

#7 1.00 0.25 0.250 0.224 0.109 0.002 58.000

#8 0.20 0.50 0.100 0.096 0.055 0.003 62.476

The standard daily jump detection procedure is based on the ratio jump statistics with maximum adjustment as in

Barndorff-Nielsen and Shephard (2006). The new intraday procedure is described in the jump detection section of the paper.



Table II.1A. Descriptive Statistics for Simulated Datasets Without Leverage

Set Days Mean StdD Skew Kurt Kurt* Mean StdD Skew Kurt Kurt*

#1 Physical Time Before Jump Detection Financial Time Before Jump Detection
 0.5  0.00   1.00   -0.00   2.94   2.94   0.00   1.00   -0.00   2.91   2.91  
 1.0  0.00   1.00   0.00   2.97   2.97   0.00   1.00   -0.00   2.95   2.96  
 2.5  0.00   1.00   0.00   2.98   2.99   0.00   1.00   -0.00   2.98   2.98  

Physical Time After Jump Detection Financial Time After Jump Detection
 0.5  0.00   1.00   -0.00   2.94   2.94   0.00   1.00   -0.00   2.91   2.91  

 1.0  0.00   1.00   0.00   2.97   2.97   0.00   1.00   -0.00   2.95   2.96  

 2.5  0.00   1.00   0.00   2.98   2.99   0.00   1.00   -0.00   2.98   2.98  

#2 Physical Time Before Jump Detection Financial Time Before Jump Detection
 0.5  -0.00   1.00   -0.00   2.89   2.94   -0.00   1.00   -0.00   2.86   2.92  
 1.0  -0.00   1.00   0.00   2.90   2.97   -0.00   1.00   -0.00   2.86   2.96  
 2.5  -0.00   1.00   0.00   2.88   2.99   -0.00   1.00   0.00   2.83   2.98  

Physical Time After Jump Detection Financial Time After Jump Detection
 0.5  -0.00   1.00   -0.00   2.94   2.94   -0.00   1.00   -0.00   2.91   2.91  
 1.0  -0.00   1.00   0.00   2.97   2.97   -0.00   1.00   -0.00   2.95   2.96  
 2.5  -0.00   1.00   0.00   2.98   2.99   -0.00   1.00   0.00   2.98   2.98  

#3 Physical Time Before Jump Detection Financial Time Before Jump Detection
 0.5  0.00   1.00   -0.00   2.82   2.94   -0.00   1.00   -0.00   2.77   2.91  
 1.0  0.00   1.00   0.00   2.84   2.97   0.00   1.00   0.00   2.82   2.96  
 2.5  0.00   1.00   0.00   2.88   2.99   0.00   1.00   0.00   2.90   2.98  

Physical Time After Jump Detection Financial Time After Jump Detection
 0.5  0.00   1.00   -0.00   2.93   2.94   -0.00   1.00   0.00   2.90   2.91  
 1.0  0.00   1.00   0.00   2.97   2.97   -0.00   1.00   0.00   2.95   2.96  
 2.5  0.00   1.00   0.00   2.98   2.99   -0.00   1.00   0.00   2.97   2.98  

#4 Physical Time Before Jump Detection Financial Time Before Jump Detection
 0.5  0.00   1.00   -0.00   2.89   2.94   0.00   1.00   -0.00   2.86   2.92  
 1.0  0.00   1.00   -0.00   2.91   2.97   0.00   1.00   -0.00   2.89   2.96  
 2.5  0.00   1.00   0.00   2.93   2.99   0.00   1.00   -0.00   2.92   2.98  

Physical Time After Jump Detection Financial Time After Jump Detection
 0.5  0.00   1.00   -0.00   2.94   2.94   0.00   1.00   0.00   2.91   2.91  
 1.0  0.00   1.00   -0.00   2.97   2.97   0.00   1.00   0.00   2.95   2.96  
 2.5  0.00   1.00   0.00   2.99   2.99   0.00   1.00   -0.00   2.98   2.98  



Table II.1B. Descriptive Statistics for Simulated Datasets With Leverage

Set Days Mean StdD Skew Kurt Kurt* Mean StdD Skew Kurt Kurt*

#5 Physical Time Before Jump Detection Financial Time Before Jump Detection
 0.5  0.01   1.00   -0.00   2.94   2.94   0.00   1.00   0.00   2.91   2.91  

 1.0  0.02   1.00   0.00   2.97   2.97   0.00   1.00   0.00   2.95   2.96  

 2.5  0.02   1.00   -0.00   2.99   2.99   0.00   1.00   -0.00   2.97   2.98  

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  0.01   1.00   -0.00   2.94   2.94   0.00   1.00   0.00   2.91   2.91  

 1.0  0.02   1.00   0.00   2.97   2.97   0.00   1.00   0.00   2.95   2.96  

 2.5  0.02   1.00   -0.00   2.99   2.99   0.00   1.00   -0.00   2.97   2.98  

#6 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  0.01   1.00   -0.00   2.90   2.94   -0.00   1.00   0.00   2.86   2.92  

 1.0  0.01   1.00   0.00   2.90   2.97   -0.00   1.00   0.00   2.87   2.96  

 2.5  0.02   1.00   0.00   2.88   2.99   -0.00   1.00   -0.00   2.84   2.98  

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  0.01   1.00   -0.00   2.94   2.94   0.00   1.00   0.00   2.91   2.91  

 1.0  0.01   1.00   0.00   2.97   2.97   0.00   1.00   0.00   2.95   2.96  

 2.5  0.02   1.00   0.00   2.99   2.99   0.00   1.00   0.00   2.98   2.98  

#7 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  0.01   1.00   -0.00   2.82   2.94   -0.00   1.00   0.00   2.77   2.91  

 1.0  0.01   1.00   0.00   2.84   2.97   -0.00   1.00   0.00   2.82   2.96  

 2.5  0.02   1.00   0.00   2.88   2.99   0.00   1.00   -0.00   2.90   2.98  

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  0.01   1.00   -0.00   2.93   2.94   0.00   1.00   0.00   2.90   2.91  

 1.0  0.02   1.00   -0.00   2.97   2.97   0.00   1.00   0.00   2.95   2.96  

 2.5  0.02   1.00   0.00   2.98   2.99   0.00   1.00   0.00   2.98   2.98  

#8 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  0.01   1.00   -0.00   2.90   2.94   0.00   1.00   0.00   2.86   2.91  

 1.0  0.01   1.00   0.00   2.91   2.97   0.00   1.00   0.00   2.89   2.96  

 2.5  0.02   1.00   0.00   2.93   2.99   0.00   1.00   0.00   2.92   2.98  

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  0.01   1.00   -0.00   2.94   2.94   0.00   1.00   0.00   2.91   2.91  

 1.0  0.02   1.00   0.00   2.97   2.97   0.00   1.00   0.00   2.95   2.96  

 2.5  0.03   1.00   0.00   2.98   2.99   0.00   1.00   0.00   2.98   2.98  

#X8 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  0.01  1.00  -0.00  2.90  2.94  -0.00  1.00  0.00  2.86  2.91 

 1.0  0.01  1.00  0.00  2.91  2.97  -0.00  1.00  0.00  2.89  2.95 

 2.5  0.02  1.00  0.00  2.93  2.99  -0.00  1.00  0.00  2.92  2.98 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  0.01  1.00  -0.00  2.94  2.94  0.00  1.00  0.00  2.91  2.91 

 1.0  0.02  1.00  -0.00  2.97  2.97  0.00  1.00  0.00  2.95  2.95 

 2.5  0.02  1.00  0.00  2.99  2.99  0.00  1.00  0.00  2.98  2.98 



Table II.2A. Common Normality Tests on Simulated Datasets Without Leverage: Rejection % for Size 5%

Set Days KS CVM AD JB JB Adj KS CVM AD JB JB Adj

#1 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  5.2  5.1  5.1  14.8  3.3  8.5  7.2  7.8  30.4  2.9 

 1.0  6.3  5.2  5.1  4.9  3.5  5.5  5.8  5.8  6.2  3.5 

 2.5  5.4  5.3  5.4  3.6  3.7  6.0  6.2  6.9  4.4  4.7 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  5.2  5.1  5.1  14.8  3.3  8.3  7.1  7.8  30.3  2.8 

 1.0  6.3  5.2  5.1  4.9  3.5  5.4  5.6  5.9  6.2  3.4 

 2.5  5.4  5.3  5.4  3.6  3.7  6.3  6.1  7.0  4.3  4.5 

#2 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  21.4  14.1  15.6  49.7  10.4  35.3  25.1  27.1  61.8  11.2 

 1.0  15.1  10.4  10.2  23.8  12.5  26.1  16.4  17.7  32.2  16.0 

 2.5  10.7  7.6  8.1  14.1  12.0  17.7  11.3  12.1  20.0  15.7 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  6.4  5.5  5.4  16.4  3.0  7.3  6.3  6.9  33.2  2.7 

 1.0  5.4  5.3  5.4  6.0  4.6  6.5  5.2  5.4  7.9  3.6 

 2.5  5.1  5.6  5.7  4.7  4.4  4.3  5.3  5.7  4.5  4.5 

#3 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  55.0  47.6  55.0  93.5  61.1  83.7  81.0  86.7  98.8  73.4 

 1.0  18.0  13.1  15.0  51.9  34.5  24.2  18.1  20.5  62.8  37.4 

 2.5  6.4  5.7  6.7  10.6  8.5  6.3  6.6  6.9  8.5  5.9 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  6.3  6.4  7.1  19.2  3.0  7.8  7.9  8.9  39.8  3.1 

 1.0  5.5  6.3  6.4  4.7  3.9  5.5  6.0  5.7  6.5  3.4 

 2.5  5.2  6.0  6.1  4.4  4.6  5.5  6.3  6.8  3.1  2.5 

#4 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  16.4  10.7  11.6  48.5  9.7  29.0  18.6  20.2  71.5  8.8 

 1.0  9.2  7.1  6.6  15.5  7.6  13.6  8.8  9.4  23.7  8.3 

 2.5  5.4  4.8  4.8  7.3  7.0  5.8  4.8  5.0  6.9  5.9 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  6.0  5.9  6.3  19.7  4.2  7.0  5.9  6.7  34.5  2.3 

 1.0  5.1  5.2  4.8  4.5  4.3  5.7  5.3  5.1  6.7  3.0 

 2.5  4.0  4.4  4.7  6.1  6.4  4.7  5.0  5.3  4.1  4.2 



Table II.2B. Common Normality Tests on Simulated Datasets With Leverage: Rejection % for Size 5%

Set Days KS CVM AD JB JB Adj KS CVM AD JB JB Adj

#5 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  18.1  20.4  21.6  15.4  3.9  6.6  6.9  6.9  31.6  2.6 

 1.0  17.9  18.9  19.0  4.7  3.6  5.6  5.8  5.7  5.8  2.6 

 2.5  16.0  18.6  19.0  4.2  3.9  4.7  4.9  4.9  4.3  4.8 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  18.2  20.4  21.6  15.5  3.9  6.5  6.8  6.8  31.5  2.5 

 1.0  17.9  18.8  19.0  4.7  3.6  6.0  5.9  5.8  5.7  2.7 

 2.5  16.0  18.6  19.0  4.2  3.9  4.6  5.0  4.9  4.4  4.8 

#6 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  39.5  32.2  33.3  48.3  8.8  37.4  24.5  28.7  62.1  12.0 

 1.0  29.2  23.2  24.8  22.7  11.0  24.7  17.3  19.1  33.3  15.5 

 2.5  22.3  18.8  20.0  12.0  10.1  17.6  12.0  12.7  21.3  16.7 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  19.0  20.0  20.5  16.4  4.1  8.1  7.3  7.4  31.7  2.8 

 1.0  15.3  16.8  17.3  5.6  4.6  5.7  5.6  5.2  5.5  2.4 

 2.5  15.1  17.1  17.7  4.7  5.2  4.9  5.1  4.9  5.3  5.2 

#7 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  60.8  54.9  60.4  93.2  61.4  85.1  83.3  87.7  99.0  73.0 

 1.0  26.4  20.1  22.9  52.7  34.2  26.6  17.6  20.5  63.5  36.3 

 2.5  11.8  11.4  12.3  12.0  9.8  6.7  6.3  6.5  8.0  6.3 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  18.2  20.1  20.2  19.5  3.7  8.4  7.1  8.0  38.0  2.8 

 1.0  16.8  19.1  19.0  4.8  4.1  5.4  5.2  5.5  7.9  4.1 

 2.5  16.0  18.2  18.8  4.7  4.3  5.6  5.3  5.2  3.8  3.9 

#8 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  31.7  27.7  29.7  46.5  8.7  29.2  19.9  21.5  70.7  8.1 

 1.0  21.9  22.0  22.7  15.8  7.4  11.1  7.1  7.8  25.0  9.9 

 2.5  16.7  17.3  18.1  7.2  6.4  7.8  6.4  6.2  6.2  4.5 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  19.7  21.8  22.8  15.3  4.3  7.8  6.9  7.7  31.1  2.9 

 1.0  17.0  21.0  21.4  4.5  3.2  4.8  4.6  4.6  6.9  3.8 

 2.5  17.6  19.9  20.3  5.4  5.8  5.1  5.2  4.6  4.1  4.2 

#X8 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  99.9  99.7  99.9  100.0  72.4  100.0  100.0  100.0  100.0  84.4 

 1.0  96.9  96.1  97.1  95.3  60.8  90.5  90.7  94.2  99.5  72.5 

 2.5  82.1  84.0  85.4  46.2  33.7  18.5  13.8  15.2  48.9  28.1 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  92.9  93.5  95.0  95.9  2.5  35.3  30.8  43.3  100.0  3.1 

 1.0  86.2  89.2  91.1  22.4  4.0  9.2  7.8  8.5  43.6  3.6 

 2.5  82.9  89.2  89.5  6.0  4.5  5.4  6.1  6.2  5.6  4.0 



Table II.3A. N(0,1) Moment Tests on Simulated Datasets Without Leverage: Rejection % for Size 5%

Set Days 1 2 3 4 3-4 1-4 1 2 3 4 3-4 1-4

#1 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  5.0  4.2  3.6  7.0  4.9  10.2  5.9  3.7  4.6  11.7  8.2  23.1

 1.0  5.0  4.4  4.5  3.8  4.2  5.4  6.1  4.7  5.2  5.6  5.4  5.3 

 2.5  5.2  5.2  5.0  4.5  5.1  5.4  6.2  5.2  6.4  3.1  4.8  6.5 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  5.0  4.3  3.6  7.0  4.9  10.2  6.0  3.8  4.6  11.3  8.1  23.1

 1.0  5.0  4.4  4.5  3.8  4.2  5.4  6.0  4.6  5.0  5.8  5.4  5.2 

 2.5  5.2  5.2  5.0  4.5  5.1  5.4  6.1  5.3  6.4  3.4  5.2  6.5 

#2 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  5.7  3.0  4.8  15.5  11.1  35.9  5.3  2.9  4.5  19.8  12.2  46.6

 1.0  5.4  4.4  4.9  10.6  7.8  14.4  5.0  3.6  4.0  11.8  7.9  20.1

 2.5  5.3  4.4  4.8  8.4  5.9  9.9  5.1  4.0  4.0  9.2  6.6  12.6

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  5.7  3.9  5.3  6.1  6.0  12.0  5.6  3.5  4.5  11.4  7.8  20.6

 1.0  5.5  4.1  4.9  4.9  4.4  5.9  5.5  4.4  4.8  3.9  4.4  5.9 

 2.5  5.3  4.9  5.3  4.5  5.5  4.8  5.6  5.8  5.7  5.3  5.0  4.7 

#3 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  5.9  5.0  3.4  46.2  34.2  87.1  6.2  3.8  3.8  61.9  48.7  97.2

 1.0  6.1  4.5  4.4  18.3  12.7  39.7  6.2  4.2  4.4  21.7  14.2  47.2

 2.5  5.6  4.7  4.6  6.0  5.3  9.4  6.5  5.1  5.0  5.0  4.5  5.6 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  5.9  5.7  4.0  7.4  5.9  14.8  6.6  6.0  4.7  13.6  11.9  29.6

 1.0  6.1  5.4  4.6  4.6  4.5  6.5  6.5  4.8  4.8  4.8  4.5  4.5 

 2.5  6.0  6.0  5.6  5.0  5.1  5.1  6.5  5.0  3.8  3.7  3.5  4.1 

#4 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  4.4  4.5  4.5  17.3  11.5  36.8  4.3  3.8  4.2  24.2  16.6  55.6

 1.0  4.4  5.0  3.9  7.3  5.5  11.2  4.2  4.2  4.2  8.3  5.9  16.1

 2.5  4.5  4.1  3.9  4.5  4.3  5.3  4.2  4.5  3.8  4.3  3.7  5.0 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  4.4  4.8  5.1  7.5  6.1  12.1  4.5  3.4  4.1  11.3  7.9  21.2

 1.0  4.7  4.7  4.0  4.2  3.6  4.4  4.6  4.5  4.4  4.6  4.2  4.7 

 2.5  5.0  4.9  6.1  4.8  5.2  5.3  4.6  4.1  5.0  4.7  4.4  4.8 



Table II.3B. N(0,1) Moment Tests on Simulated Datasets With Leverage: Rejection % for Size 5%

Set Days 1 2 3 4 3-4 1-4 1 2 3 4 3-4 1-4

#5 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5 21.1 4.1 12.2 8.0 11.9 21.6 5.4 4.4 4.4 12.1 8.1 20.6

 1.0 20.6 3.9 14.8 5.1 10.6 13.7 5.5 4.0 4.0 5.1 4.1 5.1

 2.5 20.4 4.5 13.7 3.8 10.4 12.6 5.6 4.6 4.3 4.5 4.4 4.0

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5 21.1 4.1 12.2 8.0 11.9 21.6 5.4 4.6 4.4 12.3 8.4 20.7

 1.0 20.6 3.8 14.8 5.1 10.7 13.7 5.5 4.0 3.9 5.3 4.3 5.2

 2.5 20.4 4.5 13.7 3.8 10.4 12.6 5.6 4.9 4.1 4.8 4.5 4.2

#6 Physical Time Before Jump Detection Financial Time Before Jump Detection
 0.5 18.6 4.4 12.2 15.2 16.9 44.1 4.6 3.6 3.8 20.0 13.1 46.0

 1.0 17.5 3.9 11.9 10.3 13.7 21.9 4.6 4.6 3.7 13.3 9.4 22.7

 2.5 15.9 3.4 10.6 6.5 8.9 16.1 4.8 5.0 3.1 9.4 5.8 12.6

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5 19.2 4.7 14.1 6.5 11.3 20.0 5.4 4.5 4.8 11.0 9.0 22.3

 1.0 19.8 4.2 12.7 4.4 9.7 12.4 5.5 3.9 3.4 4.3 3.7 4.7

 2.5 19.4 6.1 12.9 5.3 10.3 10.9 5.4 3.3 4.8 4.5 4.6 4.1

#7 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5 14.2 5.5 9.9 45.6 39.7 87.2 5.2 4.0 3.5 65.6 50.7 97.0

 1.0 13.2 4.2 8.6 18.8 17.4 44.0 4.6 4.2 3.2 21.2 13.8 47.8

 2.5 11.0 5.0 8.3 6.3 8.5 12.3 4.3 4.8 4.0 4.7 3.5 5.6

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5 20.0 5.4 13.6 9.5 13.0 24.1 5.2 4.8 3.2 14.7 10.3 28.7

 1.0 19.8 4.7 14.2 4.8 10.0 11.9 5.7 4.9 4.4 6.2 5.2 7.0

 2.5 19.5 5.9 13.8 4.5 10.4 11.5 5.4 3.3 4.8 4.5 4.6 4.1

#8 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5 22.1 3.7 13.8 17.1 19.6 44.2 4.6 3.8 3.2 23.8 16.3 54.6

 1.0 20.5 4.4 14.0 7.3 13.1 20.0 4.5 4.4 4.2 8.9 6.9 16.8

 2.5 18.8 5.7 13.4 4.8 10.6 12.5 5.2 3.5 3.8 4.0 3.4 4.9

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5 23.1 4.4 14.2 8.5 13.4 22.6 5.0 4.3 4.4 11.0 8.0 21.8

 1.0 22.4 3.7 15.5 3.1 11.1 12.4 4.8 4.8 4.4 4.6 4.3 5.1

 2.5 21.7 5.4 16.6 4.8 12.6 13.6 5.0 4.8 5.7 4.0 4.4 5.2

#X8 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  89.4  4.1  70.1  93.0  97.9  100.0  5.7  4.7  3.4  99.3  98.1  100.0 

 1.0  88.4  5.3  70.0  46.6  80.4  98.9  5.9  4.8  3.9  66.4  54.7  98.9 

 2.5  84.0  5.1  64.9  15.2  61.1  83.9  6.1  4.0  3.9  19.8  14.1  36.2 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  91.9  4.6  75.2  46.9  83.7  99.4  5.5  5.2  4.0  83.0  73.0  99.8 

 1.0  91.5  5.6  76.1  9.6  67.6  86.8  5.4  5.4  4.2  15.2  12.4  34.6 

 2.5  91.3  5.5  75.6  4.2  65.3  80.1  5.6  5.4  5.3  6.1  5.0  5.2 



Table II.4A. Adjusted Moment Tests on Simulated Datasets Without Leverage: Rejection % for Size 5%

Set Days 1 2 3 4 3-4 1-4 1 2 3 4 3-4 1-4

#1 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  5.0  5.0  4.1  5.0  5.4  5.5  5.9  4.0  6.1  4.3  5.6  5.7 

 1.0  5.0  4.5  4.8  4.2  4.9  4.9  6.1  5.2  5.5  5.9  6.3  5.4 

 2.5  5.2  5.3  5.3  5.2  5.5  5.6  6.2  5.2  6.6  3.8  5.6  6.9 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  5.0  5.0  4.1  5.0  5.3  5.6  6.0  4.1  6.0  4.3  5.6  5.5 

 1.0  5.0  4.5  4.8  4.2  4.9  4.9  6.0  5.2  5.3  5.8  6.4  5.0 

 2.5  5.2  5.3  5.3  5.2  5.5  5.6  6.1  5.3  6.6  4.1  5.8  7.0 

#2 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  5.7  3.3  6.0  5.9  5.5  11.0  5.3  3.0  4.9  6.3  5.2  11.1

 1.0  5.4  4.5  5.1  7.9  6.5  9.6  5.0  3.8  4.8  8.5  6.3  12.2

 2.5  5.3  4.4  4.9  8.1  5.8  9.4  5.1  4.2  4.0  8.4  6.2  11.2

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  5.7  4.3  5.9  3.5  5.2  5.0  5.6  3.5  6.0  3.0  4.7  4.9 

 1.0  5.5  4.3  5.4  3.8  4.9  5.4  5.5  4.5  5.3  5.1  5.0  5.8 

 2.5  5.3  5.0  5.4  4.8  6.0  5.0  5.6  6.1  6.0  5.5  5.3  5.2 

#3 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  5.9  5.4  3.8  25.8  17.8  58.5  6.2  4.4  4.2  31.6  22.2  71.0

 1.0  6.1  4.7  4.7  14.3  10.4  28.3  6.2  4.8  4.8  14.4  9.9  29.9

 2.5  5.6  4.7  4.6  5.6  5.2  8.5  6.5  5.1  5.3  4.9  4.7  5.3 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  5.9  5.7  4.9  5.4  4.8  6.1  6.6  6.9  5.1  5.2  6.2  6.4 

 1.0  6.1  5.6  4.7  5.0  5.1  5.3  6.5  4.9  6.1  4.7  5.3  4.3 

 2.5  6.0  6.1  5.9  5.4  5.2  5.0  6.5  5.0  3.9  4.2  3.9  4.3 

#4 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  4.4  4.7  5.4  6.5  6.1  10.6  4.3  4.1  4.5  8.0  6.4  10.9

 1.0  4.4  5.0  4.2  6.3  4.3  7.2  4.2  4.4  4.7  5.6  4.1  7.3 

 2.5  4.5  4.3  4.1  4.3  4.4  5.5  4.2  4.5  4.0  4.5  3.6  4.4 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  4.4  5.1  6.0  4.3  4.5  5.3  4.5  3.7  5.0  4.7  3.8  4.0 

 1.0  4.7  4.8  4.1  5.0  3.8  3.9  4.6  4.8  5.3  4.8  4.7  4.3 

 2.5  5.0  5.1  6.1  5.4  5.7  5.4  4.6  4.1  5.0  5.2  5.0  4.9 



Table II.4B. Adjusted Moment Tests on Simulated Datasets With Leverage: Rejection % for Size 5%

Set Days 1 2 3 4 3-4 1-4 1 2 3 4 3-4 1-4

#5 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5 21.1 4.6 13.7 5.1 11.4 13.4 5.4 4.9 5.2 4.9 5.2 5.1

 1.0 20.6 3.9 15.4 4.9 11.5 13.4 5.5 4.4 4.8 4.9 5.0 5.0

 2.5 20.4 4.5 14.0 4.3 11.0 13.0 5.6 4.9 4.4 4.2 4.3 4.6

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5 21.1 4.6 13.7 5.1 11.4 13.4 5.4 5.2 5.2 4.7 5.4 4.7

 1.0 20.6 3.9 15.4 4.8 11.5 13.3 5.5 4.4 4.9 4.9 5.2 4.9

 2.5 20.4 4.5 14.0 4.3 11.0 13.1 5.6 5.2 4.2 4.4 4.5 4.9

#6 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5 18.6 4.4 13.8 6.2 12.6 18.2 4.6 4.0 4.8 7.9 6.2 12.4

 1.0 17.5 4.1 12.8 8.0 11.6 16.4 4.6 4.9 4.0 9.7 6.9 13.8

 2.5 15.9 3.6 10.7 6.5 9.1 15.1 4.8 5.2 3.3 8.1 5.6 11.5

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5 19.2 5.1 14.8 5.6 11.0 12.5 5.4 5.2 5.5 4.7 5.0 4.7

 1.0 19.8 4.3 13.6 4.2 9.8 12.1 5.5 4.1 4.0 4.0 4.4 4.2

 2.5 19.4 6.2 13.4 5.6 11.1 11.6 5.4 3.4 4.9 5.2 4.8 5.4

#7 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5 14.2 5.7 10.7 25.4 25.0 61.3 5.2 4.3 4.5 33.6 24.7 71.6

 1.0 13.2 4.7 9.2 13.8 14.1 32.9 4.6 4.5 3.3 14.3 10.0 31.1

 2.5 11.0 5.0 8.5 6.1 8.3 11.8 4.3 4.8 4.2 4.6 3.6 4.9

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5 20.0 5.8 15.2 5.1 12.5 12.5 5.2 5.2 4.2 4.6 4.3 5.3

 1.0 19.8 5.0 14.6 5.6 10.5 11.2 5.7 5.2 5.0 5.8 5.5 5.5

 2.5 19.5 5.9 13.8 5.3 11.0 11.8 5.4 5.3 4.3 5.0 4.5 5.1

#8 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5 22.1 3.8 14.7 7.2 13.4 18.5 4.6 4.4 4.2 6.7 5.2 10.4

 1.0 20.5 4.4 14.7 5.5 12.9 15.1 4.5 4.5 4.8 6.0 4.6 7.9

 2.5 18.8 5.7 13.5 4.7 10.9 12.3 5.2 3.5 4.1 3.7 3.2 4.4

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5 23.1 4.8 15.6 4.7 12.8 13.7 5.0 5.1 5.7 4.8 5.1 5.0

 1.0 22.4 3.9 16.1 3.8 11.7 12.8 4.8 5.0 4.8 4.7 4.8 4.7

 2.5 21.7 5.5 16.6 5.5 13.4 13.8 5.0 4.9 6.0 4.3 5.2 5.3

#X8 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  33.3  4.6  22.2  16.1  26.8  52.8  5.9  5.8  4.7  28.1  21.6  62.1

 1.0  31.7  5.6  20.9  11.8  23.1  39.4  5.9  4.6  4.9  18.7  14.0  38.5

 2.5  31.3  5.5  21.5  6.4  17.8  23.3  5.4  4.7  4.0  8.5  6.6  12.2

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  35.7  4.8  23.5  5.4  19.1  20.3  6.3  5.9  5.2  5.3  5.7  5.2 

 1.0  35.3  6.3  23.9  6.5  19.5  21.7  6.3  6.5  5.6  6.6  7.1  7.1 

 2.5  34.3  5.6  24.1  5.4  19.2  21.3  6.4  5.8  5.5  5.0  5.2  5.3 



Table III.1. Tests Distortion on Dataset #8 Under Gaussian i.i.d. Microstructure Noise

When RV Is Not Bias-Corrected

Descriptive Statistics

Set Days Mean StdD Skew Kurt Kurt* Mean StdD Skew Kurt Kurt*

#8n Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  0.01  0.97  -0.01  2.91  2.94  0.00  0.98  -0.00  2.87  2.92 

 1.0  0.01  0.97  -0.01  2.92  2.97  0.00  0.98  -0.00  2.89  2.96 

 2.5  0.02  0.97  -0.01  2.93  2.99  0.00  0.98  -0.00  2.92  2.98 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  0.01  0.97  -0.01  2.96  2.94  0.00  0.98  -0.00  2.92  2.91 

 1.0  0.01  0.97  -0.01  2.98  2.97  0.00  0.98  -0.00  2.96  2.96 

 2.5  0.02  0.97  -0.01  3.00  2.99  0.00  0.98  -0.00  2.98  2.98 

Common Normality Tests: Rejection % for Size 5%

Set Days KS CVM AD JB JB Adj KS CVM AD JB JB Adj

#8n Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  29.7  34.8  64.9  34.2  6.7  9.0  6.9  16.0  67.5  9.6 

 1.0  19.5  23.9  36.8  12.5  6.2  5.2  4.9  7.7  24.7  8.7 

 2.5  14.9  17.3  21.3  6.8  6.0  5.7  5.6  5.6  6.6  5.6 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  50.1  53.7  75.1  10.0  6.0  7.9  8.2  15.5  25.8  2.7 

 1.0  37.3  36.7  50.9  4.1  4.4  6.4  7.0  9.0  6.1  3.8 

 2.5  23.4  24.6  31.3  5.6  5.8  5.7  5.5  6.3  3.8  3.5 

N(0,1) Moment Tests: Rejection % for Size 5%

Set Days 1 2 3 4 3-4 1-4 1 2 3 4 3-4 1-4

#8n Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  17.8  97.7  7.0  99.4  98.8  95.8  4.0  68.7  2.3  93.2  87.8  83.0 

 1.0  16.9  82.2  6.9  85.8  78.2  70.2  4.3  39.6  2.3  60.4  47.3  34.2 

 2.5  15.2  43.5  6.0  44.0  34.7  30.0  4.5  17.5  2.8  22.2  14.4  9.4 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  18.1  98.2  6.9  98.4  96.6  94.0  4.6  74.8  3.1  87.4  77.8  64.7 

 1.0  18.2  86.7  7.2  80.0  71.2  70.8  4.4  44.8  3.1  46.2  34.3  26.1 

 2.5  18.2  52.3  7.3  40.1  31.9  38.1  4.3  23.3  3.7  18.6  12.2  9.6 

Adjusted Moment Tests: Rejection % for Size 5%

Set Days 1 2 3 4 3-4 1-4 1 2 3 4 3-4 1-4

#8n Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  17.8  97.7  7.4  97.7  94.8  93.6  4.0  70.5  3.2  78.3  68.9  53.8 

 1.0  16.9  82.5  7.1  82.0  73.5  67.7  4.3  40.4  2.8  50.7  37.4  25.4 

 2.5  15.2  43.6  6.3  42.4  34.0  30.4  4.5  17.6  2.9  20.2  13.7  9.5 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  18.1  98.2  8.1  94.8  91.0  93.8  4.6  76.4  3.4  64.2  52.0  51.4 

 1.0  18.2  87.2  7.7  76.0  66.9  72.7  4.4  45.8  3.4  37.1  27.8  26.5 

 2.5  18.2  52.4  7.8  38.9  31.3  38.8  4.3  23.4  3.7  17.5  11.7  10.2 



Table III.2. Tests Success on Dataset #8 Under Gaussian i.i.d. Microstructure Noise

When RV Is Bias-Corrected

Descriptive Statistics

Set Days Mean StdD Skew Kurt Kurt* Mean StdD Skew Kurt Kurt*

#8n Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  0.01  1.00  0.00  2.91  2.94  0.00  1.00  0.00  2.87  2.91 

 1.0  0.01  1.00  0.00  2.92  2.97  0.00  1.00  0.00  2.89  2.96 

 2.5  0.02  1.00  0.00  2.93  2.99  0.00  1.00  0.00  2.92  2.98 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  0.01  1.00  0.00  2.96  2.94  0.00  1.00  0.00  2.92  2.91 

 1.0  0.02  1.00  0.00  2.97  2.97  0.00  1.00  0.00  2.96  2.96 

 2.5  0.03  1.00  0.00  2.99  2.99  0.00  1.00  0.00  2.98  2.98 

Common Normality Tests: Rejection % for Size 5%

Set Days KS CVM AD JB JB Adj KS CVM AD JB JB Adj

#8n Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  33.5  29.4  31.1  35.2  6.8  30.2  21.3  23.5  65.5  7.8 

 1.0  21.8  22.2  22.9  14.1  6.8  11.8  7.7  7.8  22.0  7.6 

 2.5  15.7  17.3  18.4  6.9  6.1  6.1  5.3  5.3  5.7  3.9 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  20.5  22.5  23.4  11.0  6.7  6.5  5.1  5.4  29.6  3.1 

 1.0  18.5  20.8  22.6  3.9  3.3  5.0  4.8  4.3  6.1  3.9 

 2.5  18.0  19.6  20.4  5.8  5.7  5.5  5.1  5.1  3.4  4.0 

N(0,1) Moment Tests: Rejection % for Size 5%

Set Days 1 2 3 4 3-4 1-4 1 2 3 4 3-4 1-4

#8n Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  22.2  6.0  14.8  8.8  15.4  37.7  4.7  3.7  3.7  19.0  13.0  51.0 

 1.0  21.5  4.2  14.3  5.9  11.3  19.0  4.7  3.6  4.0  8.8  5.8  13.9 

 2.5  18.6  5.6  13.6  5.5  10.5  12.8  5.0  4.4  4.0  4.5  3.7  4.9 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  23.3  6.5  15.6  5.4  13.3  21.2  4.6  4.0  4.6  8.6  6.0  20.4 

 1.0  22.5  3.9  16.3  3.8  12.4  12.7  4.6  4.1  4.2  4.0  4.5  4.1 

 2.5  22.1  6.2  16.8  5.6  13.8  12.9  4.7  4.5  4.8  4.6  4.8  4.7 

Adjusted Moment Tests: Rejection % for Size 5%

Set Days 1 2 3 4 3-4 1-4 1 2 3 4 3-4 1-4

#8n Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  22.2  6.8  16.2  5.4  13.3  16.7  4.7  3.9  4.7  6.1  5.5  10.5 

 1.0  21.5  4.2  14.8  4.3  11.5  14.6  4.7  3.8  4.6  5.3  4.4  7.4 

 2.5  18.6  5.6  13.7  5.3  11.1  12.7  5.0  4.5  4.1  4.5  3.9  4.4 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  23.3  6.9  17.4  10.0  17.6  18.8  4.6  4.4  5.4  4.9  5.4  6.3 

 1.0  22.5  4.1  17.4  4.8  13.4  13.5  4.6  4.4  5.1  4.7  4.6  5.2 

 2.5  22.1  6.2  17.1  6.3  14.4  13.8  4.7  4.8  5.1  5.1  5.2  5.4 



Table III.3. Tests Power Gain on Ten Times Larger Samples of Dataset #8 With Gaussian i.i.d. Noise

When RV is Bias-Corrected

Descriptive Statistics

Set Days Mean StdD Skew Kurt Kurt* Mean StdD Skew Kurt Kurt*

#X8n Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  0.01  1.00  0.00  2.91  2.94  -0.00  1.00  0.00  2.87  2.91 

 1.0  0.01  1.00  0.00  2.92  2.97  -0.00  1.00  0.00  2.89  2.95 

 2.5  0.02  1.00  0.00  2.93  2.99  -0.00  1.00  0.00  2.92  2.98 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  0.02  1.00  0.00  2.93  2.99  0.00  1.00  0.00  2.91  2.91 

 1.0  0.01  1.00  0.00  2.95  2.94  0.00  1.00  0.00  2.96  2.95 

 2.5  0.02  1.00  0.00  2.98  2.97  0.00  1.00  0.00  2.98  2.98 

Common Normality Tests: Rejection % for Size 5%

Set Days KS CVM AD JB JB Adj KS CVM AD JB JB Adj

#X8n Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  99.9  99.7  99.9  100.0  33.1  100.0  100.0  100.0  100.0  77.6 

 1.0  97.2  96.2  97.3  91.2  48.5  89.3  88.6  92.8  99.2  70.2 

 2.5  82.4  83.8  85.5  43.2  30.9  19.2  13.5  14.8  48.2  28.5 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  94.2  94.6  95.8  76.3  13.7  36.6  32.5  43.6  99.8  3.3 

 1.0  85.8  89.1  91.4  13.5  5.9  8.1  7.2  8.6  39.7  3.2 

 2.5  82.1  89.3  89.6  6.1  4.9  4.9  5.7  5.6  8.1  5.2 

N(0,1) Moment Tests: Rejection % for Size 5%

Set Days 1 2 3 4 3-4 1-4 1 2 3 4 3-4 1-4

#X8n Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  89.6  18.0  75.8  49.3  84.9  100.0 6.0  6.2  4.0  97.6  97.0  100.0 

 1.0  88.4  6.9  72.4  29.6  75.0  98.3 6.0  4.6  3.7  64.3  51.3  98.1 

 2.5  84.3  6.3  65.4  12.7  60.2  82.6 6.1  4.1  4.6  18.5  12.9  36.2 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5 92.1  21.1  78.9  8.5  71.4  97.7  5.3  6.7  4.0  71.9  59.9  99.5 

 1.0 92.0  8.0  77.7  5.8  68.6  84.7  5.2  4.5  5.1  12.9  9.7  29.4 

 2.5 91.9  7.4  76.2  4.8  66.1  80.0  5.6  4.8  6.2  5.3  4.4  6.2 

Adjusted Moment Tests: Rejection % for Size 5%

Set Days 1 2 3 4 3-4 1-4 1 2 3 4 3-4 1-4

#X8n Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  89.6  19.0  77.6  5.3  67.3  90.8  6.0  6.3  4.8  31.3  22.7  78.0 

 1.0 88.4  7.0  73.4  11.9  66.7  89.6  6.0  5.2  4.4  26.8  19.2  64.9 

 2.5 84.3  6.4  65.8  10.3  59.2  79.3  6.1  4.2  4.9  11.5  9.2  20.9 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5 92.1  22.1  81.3  36.6  81.5  87.9  5.3  7.5  5.3  7.3  6.7  6.6 

 1.0 92.0  8.2  78.9  11.3  73.1  80.5  5.2  4.9  5.5  4.9  5.6  5.8 

 2.5 91.9  7.4  76.3  6.5  67.3  79.8  5.6  4.9  6.2  5.1  5.2  5.1 



Table IV.1. Test P-Values on The S&P500 Futures Dataset When RV is Not Bias-Corrected

Descriptive Statistics

Set Days Mean StdD Skew Kurt Kurt* Mean StdD Skew Kurt Kurt*

SP500 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  0.04  0.93  0.03  2.84  2.94   0.01  0.99  -0.00  2.73  2.86  

 1.0  0.05  0.98  0.11  2.92  2.97   0.01  0.99  0.00  2.72  2.92  

 2.5  0.07  0.94  -0.01  2.92  2.99   0.01  0.98  -0.03  2.82  2.96  

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  0.04  0.93  0.02  2.87  2.94   0.01  0.98  0.04  2.70  2.86  

 1.0  0.06  0.97  0.11  2.94  2.97   0.01  1.00  0.05  2.76  2.93  

 2.5  0.07  0.94  0.00  2.94  2.99   0.01  0.98  0.04  2.81  2.97  

Common Normality Tests: P-Values

Set Days KS CVM AD JB JB Adj KS CVM AD JB JB Adj

SP500 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  0.000  0.000  0.000  0.008  0.536  0.125  0.271  0.194  0.000  0.530 

 1.0  0.023  0.013  0.002  0.006  0.155  0.511  0.482  0.336  0.002  0.449 

 2.5  0.016  0.010  0.003  0.779  0.955  0.769  0.817  0.811  0.298  0.814 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  0.000  0.000  0.000  0.045  0.735  0.441  0.271  0.074  0.000  0.204 

 1.0  0.011  0.007  0.001  0.013  0.194  0.277  0.314  0.215  0.004  0.402 

 2.5  0.007  0.005  0.002  0.874  0.979  0.953  0.897  0.751  0.220  0.725 

N(0,1) Moment Tests: P-Values

Set Days 1 2 3 4 3-4 1-4 1 2 3 4 3-4 1-4

SP500 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5 0.000 0.000 0.001 0.000 0.000 0.000 0.537 0.144 0.687 0.000 0.002 0.000

 1.0 0.001 0.044 0.000 0.040 0.000 0.000 0.660 0.187 0.709 0.005 0.019 0.013

 2.5 0.009 0.001 0.080 0.003 0.003 0.001 0.666 0.231 0.941 0.090 0.238 0.476

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5 0.000 0.000 0.002 0.000 0.000 0.000 0.486 0.006 0.153 0.000 0.000 0.000

 1.0 0.000 0.023 0.000 0.033 0.000 0.000 0.538 0.713 0.196 0.069 0.083 0.025

 2.5 0.005 0.002 0.054 0.006 0.003 0.001 0.570 0.254 0.400 0.093 0.172 0.415

Adjusted Moment Tests: P-Values

Set Days 1 2 3 4 3-4 1-4 1 2 3 4 3-4 1-4

SP500 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5 0.000 0.000 0.001 0.000 0.000 0.000 0.537 0.130 0.667 0.011 0.035 0.059

 1.0 0.001 0.042 0.000 0.055 0.000 0.000 0.660 0.178 0.699 0.015 0.047 0.070

 2.5 0.009 0.001 0.078 0.003 0.003 0.001 0.666 0.226 0.940 0.114 0.286 0.564

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5 0.000 0.000 0.001 0.000 0.000 0.000 0.486 0.004 0.127 0.000 0.000 0.000

 1.0 0.000 0.022 0.000 0.046 0.000 0.000 0.538 0.707 0.181 0.152 0.146 0.112

 2.5 0.005 0.002 0.052 0.006 0.004 0.001 0.570 0.251 0.393 0.110 0.194 0.472



Table IV.2. Tests P-Values on The S&P500 Futures Dataset When RV is Bias-Corrected

Descriptive Statistics

Set Days Mean StdD Skew Kurt Kurt* Mean StdD Skew Kurt Kurt*

SP500 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  0.05  0.95  0.03  2.83  2.94  0.01  0.99  0.02  2.64  2.86 

 1.0  0.06  1.00  0.12  2.90  2.97  0.01  1.00  0.02  2.86  2.92 

 2.5  0.07  0.95  0.01  2.91  2.99  0.01  1.01  0.00  2.99  2.96 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  0.05  0.95  0.03  2.85  2.94  0.01  0.99  0.02  2.74  2.86 

 1.0  0.06  0.99  0.12  2.93  2.97  0.01  1.00 -0.03  2.81  2.92 

 2.5  0.07  0.96  0.01  2.94  2.99  0.01  1.00  0.04  3.03  2.97 

Common Normality Tests: P-Values

Set Days KS CVM AD JB JB Adj KS CVM AD JB JB Adj

SP500 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  0.000  0.000  0.000  0.002  0.414  0.162  0.082  0.043  0.000  0.138 

 1.0  0.071  0.014  0.001  0.003  0.121  0.109  0.355  0.344  0.176  0.899 

 2.5  0.029  0.012  0.004  0.755  0.948  0.618  0.505  0.583  0.990  0.993 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  0.000  0.000  0.000  0.015  0.599  0.317  0.389  0.184   0.000  0.507 

 1.0  0.036  0.008  0.001  0.006  0.154  0.310  0.518  0.480  0.035  0.687 

 2.5  0.017  0.006  0.003  0.851  0.969  0.560  0.595  0.694  0.770  0.885 

N(0,1) Moment Tests: P-Values

Set Days 1 2 3 4 3-4 1-4 1 2 3 4 3-4 1-4

SP500 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  0.000  0.000  0.000  0.000  0.000  0.000  0.544  0.272  0.394  0.000  0.000  0.000 
 1.0  0.000  0.559  0.000  0.345  0.000  0.000  0.647  0.750  0.552  0.245  0.427  0.464 

 2.5  0.006  0.014  0.046  0.020  0.009  0.008  0.661  0.497  0.694  0.584  0.796  0.955 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  0.000  0.000  0.001  0.000  0.000  0.000  0.506  0.184  0.393  0.001  0.002 0.000 

 1.0  0.000  0.412  0.000  0.315  0.000  0.000  0.520  0.478  0.942  0.069  0.191  0.128 

 2.5  0.003  0.024  0.028  0.038  0.010  0.008  0.566  0.831  0.379  0.944  0.678  0.925 

Adjusted Moment Tests: P-Values

Set Days 1 2 3 4 3-4 1-4 1 2 3 4 3-4 1-4

SP500 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  0.000  0.000  0.000  0.000  0.000  0.000  0.544  0.254  0.363  0.002  0.005  0.000 

 1.0  0.000  0.556  0.000  0.441  0.000  0.000  0.647  0.744  0.538  0.491  0.653  0.884 

 2.5  0.006  0.013  0.045  0.021  0.009  0.008  0.661  0.492  0.688  0.460  0.703  0.944 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5 0.000  0.000  0.000  0.000  0.000  0.000  0.506  0.168  0.362  0.015  0.035  0.060 

 1.0 0.000  0.556  0.000  0.441  0.000  0.000  0.520  0.469  0.940  0.156  0.365  0.407 

 2.5 0.006  0.013  0.045  0.021  0.009  0.008  0.566  0.830  0.372  0.951  0.670  0.889 



Table IV.3. Tests P-Values on The S&P500 Futures Dataset When RV is Bias-Corrected and

The Jump Extraction Procedure Is Adjusted for the Intraday Volatility Pattern

Descriptive Statistics

Set Days Mean StdD Skew Kurt Kurt* Mean StdD Skew Kurt Kurt*

SP500 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  0.046  0.947  0.034  2.827  2.94  0.007  0.991  0.018  2.638  2.86 

 1.0  0.056  0.992  0.121  2.903  2.97  0.007  0.996  0.015  2.859  2.92 

 2.5  0.067  0.954  0.006  2.914  2.99  0.011  1.012  0.004  2.989  2.96 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  0.047  0.946  0.027  2.857  2.94  0.008  0.990  0.028  2.760  2.86 

 1.0  0.059  0.990  0.116  2.937  2.97  0.010  0.992  0.009  2.819  2.92 

 2.5  0.074  0.957  0.015  2.934  2.99  0.016  0.994  0.030  2.837  2.97 

Common Normality Tests: P-Values

Set Days KS CVM AD JB JB Adj KS CVM AD JB JB Adj

SP500 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  0.000  0.000  0.000  0.002  0.414  0.162  0.082  0.043  0.000  0.138 

 1.0  0.071  0.014  0.001  0.003  0.121  0.109  0.355  0.344  0.176  0.899 

 2.5  0.029  0.012  0.004  0.755  0.948  0.618  0.505  0.583  0.990  0.993 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  0.000  0.000  0.000  0.016  0.601  0.460  0.346  0.212  0.000  0.548 

 1.0  0.033  0.007  0.001  0.007  0.152  0.642  0.734  0.716  0.060  0.784 

 2.5  0.011  0.005  0.002  0.819  0.959  0.808  0.724  0.713  0.344  0.816 

N(0,1) Moment Tests: P-Values

Set Days 1 2 3 4 3-4 1-4 1 2 3 4 3-4 1-4

SP500 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  0.000  0.000  0.000  0.000  0.000  0.000  0.544  0.272  0.394  0.000  0.000  0.000
 1.0  0.000  0.559  0.000  0.345  0.000  0.000  0.647  0.750  0.552  0.245  0.427  0.464 

 2.5  0.006  0.014  0.046  0.020  0.009  0.008  0.661  0.497  0.694  0.584  0.796  0.955 

Physical Time After Jump Detection Financial Time After Jump Detection
 0.5  0.000  0.000  0.000  0.000  0.000  0.000  0.461  0.192  0.235  0.001  0.003  0.000 

 1.0  0.000  0.463  0.000  0.393  0.000  0.000  0.526  0.477  0.527  0.081  0.179  0.196 

 2.5  0.003  0.021  0.023  0.033  0.008  0.006  0.525  0.726  0.428  0.342  0.465  0.658 

Adjusted Moment Tests: P-Values

Set Days 1 2 3 4 3-4 1-4 1 2 3 4 3-4 1-4

SP500 Physical Time Before Jump Detection Financial Time Before Jump Detection

 0.5  0.000  0.000  0.000  0.000  0.000  0.000  0.544  0.254  0.363  0.002  0.005  0.000 

 1.0  0.000  0.556  0.000  0.441  0.000  0.000  0.647  0.744  0.538  0.491  0.653  0.884 

 2.5  0.006  0.013  0.045  0.021  0.009  0.008  0.661  0.492  0.688  0.460  0.703  0.944 

Physical Time After Jump Detection Financial Time After Jump Detection

 0.5  0.000  0.000  0.000  0.000  0.000  0.000  0.461  0.176  0.205  0.032  0.044  0.108 

 1.0  0.000  0.460  0.000  0.499  0.000  0.000  0.526  0.468  0.512  0.182  0.331  0.551 

 2.5  0.003  0.021  0.022  0.035  0.008  0.006  0.525  0.724  0.421  0.398  0.506  0.744 



Table V.1. S&P 500 Day Length Variation in Financial Time Before Jump Detection

Day
Count

Day Length in Phys.
Time Mean x 2 min

Day Length in Fin. Time
Mean ( StdD ) x 10^-5

Days in Physical Time: 4126 195.00 8.97 ( 11.83 )

Corresponding Days in Feasible Financial Time: 3923 205.09 9.43 ( 3.65 )

  - of physical time length from 1 to 5 x 2 min 32 2.63 23.05 (31.41 )

  - of  physical time length from 6 to 15 x 2 min 84 10.81 12.16 ( 7.94 )

 - of  physical time length from 16 to 30 x 2 min 202 23.27 10.21 ( 4.28 )

 - of  physical time length from 31 to 60 x 2 min 450 45.45 9.53 ( 2.31 )

 - of  physical time length from 61 to 195 x 2 min 1652 123.72 9.24 ( 1.29 )

 - of  physical time length from 196 to 390 x 2 min 979 273.47 9.08 ( 0.39 )

 - of  physical time length from 391 to 780 x 2 min 453 528.54 9.07 ( 1.16 )

 - of  physical time length from 781 to 1,666 x 2 min 71 941.89 9.02 ( 1.29 )

Table V.2. S&P 500 Day Length Variation in Financial Time After Jump Detection

Day
Count

Day Length in Phys. Time
Mean x 2 min

Day Length in Fin. Time
Mean (StdD) x 10^-5

Days in Physical Time: 4126 195 8.57 ( 9.84 )

Corresponding Days in Feasible Financial Time: 4022 200.04 8.79 ( 0.73 )

  - of physical time length from 1 to 5 x 2 min 22 3.72 11.93 ( 5.37 )

  - of  physical time length from 6 to 15 x 2 min 87 11.39 9.82 ( 1.67 )

 - of  physical time length from 16 to 30 x 2 min 197 23.27 9.20 (1.10 )

 - of  physical time length from 31 to 60 x 2 min 502 45.86 8.94 ( 0.71 )

 - of  physical time length from 61 to 195 x 2 min 1714 122.99 8.75 ( 0.48 )

 - of  physical time length from 196 to 390 x 2 min 987 272.28 8.65 ( 0.13 )

 - of  physical time length from 391 to 780 x 2 min 446 522.47 8.62 ( 0.08 )

 - of  physical time length from 781 to 1,750 x 2 min 67 944.99 8.61 ( 0.04 )



Figure I. Log-PDF Plot of the Finite Sample Distribution (solid line) for
Different nt against Standard Normal Distribution (dashed line)

Each of the eight graphs plots the Gaussian pdf (dashed line) against the pdf of the finite sample distribution (solid
line) for different values of nt. See Appendix I for closed-form expression of the finite sample pdf.



Figure II. Detected Jumps On Two-Minute Returns In The S&P 500 Futures Dataset

The top graph plots the intraday return series before jump detection.
The middle graph plots the series of detected jumps, following the procedure described in the jump detection section.
The bottom graph plots the intraday return series after extracting all detected jumps.



Figure III.1. Robust Estimation of The First Order Autocorrelation on Two-Minute S&P500 Returns

The solid line plots the standard autocorrelation estimate as a function of the number Q of excluded days with highest
and lowest realized volatility. Values outside the dashed line bounds indicate significance at 5% level

Figure III.2. Robust Estimation of The I.I.D. Noise Variance on Two-Minute S&P500 Returns

The solid line plots the standard i.i.d. noise variance estimate as a function of the number Q of excluded days with
highest and lowest realized volatility. The dashed lines represent standard 95% confidence bounds.




