46 research outputs found
Organic Aerosol Component (OACOMP) Value-Added Product Report
Significantly improved returns in their aerosol chemistry data can be achieved via the development of a value-added product (VAP) of deriving OA components, called Organic Aerosol Components (OACOMP). OACOMP is primarily based on multivariate analysis of the measured organic mass spectral matrix. The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and physicochemical properties
Coherent diffractive imaging of microtubules using an X-ray laser
X-ray free electron lasers (XFELs) create new possibilities for structural studies of biological objects that extend beyond what is possible with synchrotron radiation. Serial femtosecond crystallography has allowed high-resolution structures to be determined from micro-meter sized crystals, whereas single particle coherent X-ray imaging requires development to extend the resolution beyond a few tens of nanometers. Here we describe an intermediate approach: the XFEL imaging of biological assemblies with helical symmetry. We collected X-ray scattering images from samples of microtubules injected across an XFEL beam using a liquid microjet, sorted these images into class averages, merged these data into a diffraction pattern extending to 2 nm resolution, and reconstructed these data into a projection image of the microtubule. Details such as the 4 nm tubulin monomer became visible in this reconstruction. These results illustrate the potential of single-molecule X-ray imaging of biological assembles with helical symmetry at room temperature
Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser
A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments (Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determine that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids
Ultrasound as a tool to study muscle\u2013tendon functions during locomotion: A systematic review of applications
Movement science investigating muscle and tendon functions during locomotion utilizes commercial ultrasound imagers built for medical applications. These limit biomechanics research due to their form factor, range of view, and spatio-temporal resolution. This review systematically investigates the technical aspects of applying ultrasound as a research tool to investigate human and animal locomotion. It provides an overview on the ultrasound systems used and of their operating parameters. We present measured fascicle velocities and discuss the results with respect to operating frame rates during recording. Furthermore, we derive why muscle and tendon functions should be recorded with a frame rate of at least 150 Hz and a range of view of 250 mm. Moreover, we analyze why and how the development of better ultrasound observation devices at the hierarchical level of muscles and tendons can support biomechanics research. Additionally, we present recent technological advances and their possible application. We provide a list of recommendations for the development of a more advanced ultrasound sensor system class targeting biomechanical applications. Looking to the future, mobile, ultrafast ultrasound hardware technologies create immense opportunities to expand the existing knowledge of human and animal movement
Recommended from our members
Organic Aerosol Component (OACOMP) Value-Added Product Report
Significantly improved returns in their aerosol chemistry data can be achieved via the development of a value-added product (VAP) of deriving OA components, called Organic Aerosol Components (OACOMP). OACOMP is primarily based on multivariate analysis of the measured organic mass spectral matrix. The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and physicochemical properties
Human fascicle strain behavior during twitch using ultrafast ultrasound
There is recent experimental evidence that sarcomere strain behavior is highly heterogeneous across and between muscle structures. Hence, considering the hierarchical architecture of muscles, also the behavior of all acting muscle substructures is effected. However, typical investigations are limited to ex-vivo experiments or pose serious limitations for in-vivo studies. In this work, we investigate in-vivo length changes in human muscle fascicles by means of non-invasive ultrafast ultrasound. To this end, we employ a research ultrasound system and a linear array transducer to image, in plane-wave mode, medial gastrocnemius muscles during electrically-stimulated contractions. The ultrasound-based approach presented in this study allows to measure strain distributions within muscle fascicles during contractions, where the sub-fascicle structures exhibit heterogeneous behaviors